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Preface

Much of social science research is concerned with group differences and
comparisons. When the attribute of interest is continuous, for example the
differences in life expectancy between racial groups, or comparisons of earn-
ings between men and women, we often summarize the comparisons in terms
of means or medians. The usual parametric analysis of location and varia-
tion, however, provides a weak and unnecessarily restrictive framework for
comparison. Consider the earnings distribution in the United States. Over
the past 30 years, median real earnings have declined by about 10% and the
variance in earnings has risen dramatically. Hidden behind these summary
statistics are a range of important questions. Have the upper and lower tails
of the earnings distribution grown at the same rate? Can we determine the
role played by the decade-long freeze in the minimum wage? Is there any-
thing more to the narrowing of the gender wage gap than the convergence
in median earnings between the two groups? The information we need to
answer these questions is there in the data, but inaccessible using standard
statistical methods such as regression and Gini index summaries.

Inequality is a good example in this context, because it is a property
of a distribution, rather than an individual. So it would be natural to ex-
pect that the statistical methods we use to analyze inequality should be
focused on distributional analysis. In general, they are not. The traditional
statistical methods used in the social sciences – based on the linear model
and its extensions – are not designed to represent the rich detail of distri-
butional patterns in data. They instead focus on modeling the conditional
mean, with the residual variation often assumed to be homogeneous, and
treated as a nuisance parameter. As a result, these methods leave most of
the distributional information in the data untapped. The Lorenz curve and
the Gini index, which do represent distributional patterns associated with
inequality, are a special case of the methods outlined in this monograph.

With the emergence of Exploratory Data Analysis (EDA, Chambers,
et al 1983; Tukey 1977) and the development of high speed computing and
graphical user interfaces, there has been a movement towards more nonpara-
metric and distribution-oriented analytic methods. A prominent feature of
these methods is the use of graphical displays. This is not surprising, as the
visual display is the analogue to the numerical summary once one leaves
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the world of parametric assumptions behind. For those social scientists who
have made the transition from reams of output containing various summary
statistics to the simple visual summary of the boxplot and the world of
Chernoff faces, data will never look the same. Graphics exploit the power
of our visual senses to convey information in a direct and unambiguous
way. The running boxplot, empirical P-P plot and Q-Q plot provide sub-
stantial help for comparing distributions, but do not in themselves provide
a comprehensive framework for analysis.

The methods developed in this monograph seek to bridge the gap be-
tween exploratory tools and parametric restrictions to put comparative dis-
tributional analysis on a firm statistical footing and make it accessible to
social scientists. We start with a general nonparametric framework that
draws on the principles of EDA. The framework is based on the concept of
a “relative distribution,” a transformation of the data from two distribu-
tions into a single distribution that contains all of the information necessary
for scale-invariant comparison. The relative distribution is the set of per-
centile ranks that the observations from one distribution would have if they
were placed in another distribution. An example would be the set of ranks
that women earners would have if they were placed in the men’s earnings
distribution. The relative distribution turns out to have a number of prop-
erties that make it a good basis for the development of a general analytic
framework. It lends itself naturally to simple and informative graphical dis-
plays that reveal precisely where and by how much two distributions differ.
An example would be graphs that show the proportion of women in the
bottom decile of the men’s earnings distribution (47% in 1967 versus 20%
in 1997 for full-time, full-year workers). The relative distribution can be de-
composed into location and shape differences, and can also be adjusted in a
fully distributional way for changes in covariate composition. One can thus
examine whether the difference in men’s and women’s earnings is simply
a location shift, or something more, and what impact the age composition
has on the difference in the two distributions at every point of the earn-
ings scale. The relative distribution provides principles for the development
of summary statistics that are often more sensitive to detailed theoretical
hypotheses about distributional difference. It does this all in a framework
that can be exploited for statistical inference. The relative distribution can
provide this general framework for analysis because it represents a theo-
retically rich and substantively meaningful class of data in a fundamental
statistical form: the probability distribution.

The goal of this monograph is to present the concepts, theory and prac-
tical aspects of the relative distribution in a coherent fashion. We thus al-
ternate the chapters on theory and methodological development with chap-
ters that provide an in-depth practical application. Many of the application
chapters are based on papers that have appeared in recent academic jour-
nals, including the American Journal of Sociology, the American Sociologi-
cal Review, the Journal of Labor Economics, and Sociological Methodology.
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These chapters perform the dual role of clarifying the intuition behind the
techniques and highlighting how they can be used in contemporary theo-
retical and empirical debates in the social sciences.

There are several audiences that we hope will find this monograph
useful. As written, the monograph is mainly intended for quantitative re-
searchers in the social sciences – demographers, economists, sociologists,
and those involved in prevention research – and statisticians who focus on
methodology. Social scientists will find connections to many standard meth-
ods made here, including Lorenz curves, quantile regression and regression
decomposition. For the statistical methodologist, this monograph pulls to-
gether a wide range of earlier developments that are related to the relative
distribution, for example, probability plots (Wilk and Gnanadesikan 1968),
comparison change analysis (Parzen 1977; Parzen 1992), the “grade trans-
formation” (Cwik and Mielniczuk 1989; Cwik and Mielniczuk 1993), and
the two-sample vertical quantile comparison function (Li, et al 1996). Be-
cause the comparison of distributions is fundamental in any quantitatively
oriented discipline, however, the methods here will also be of interest to a
broad group of non-social scientists. Biomedical scientists, for example, will
find that the relative CDF is related to the receiver operating character-
istics (ROC) curves used in the evaluation of the performance of medical
tests for separating two populations (Begg 1991; Campbell 1994, and the
references therein). The prerequisite background in mathematical statistics
is relatively low, though the notation representing distributional concepts
may be unfamiliar and somewhat daunting on first sight. The monograph is
designed for use in a one semester course, and contains exercises at the end
of each chapter. It can also be used for independent study by practitioners
with a solid quantitative background.

We would like to acknowledge first and foremost the contributions that
Annette D. Bernhardt has made to the development of these methods. The
first seeds of this book were planted by a question she emailed to us nearly
a decade ago. She was working on her dissertation then, a study of the
impact of economic restructuring on the growth in earnings inequality in
the United States. Finding the standard summary measures like the Gini
index too blunt to discriminate between inequality caused by job growth at
the top or the bottom of the wage distribution, she asked us if we knew of
any better methods. The result was the development of the median relative
polarization index (and its siblings, the upper and lower indices) now dis-
cussed in Chapter 5. Eventually, we came to recognize that the summand
in the index was actually the more interesting quantity: the relative dis-
tribution itself. Almost all of the subsequent developments of the relative
distribution framework were made in collaboration with Annette over the
years, as attested by the journal articles on which the application chapters
are based.

Our research during the writing of this book has been supported in
part by the Russell Sage and Rockefeller Foundations. The effect can be
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seen throughout the book, but particularly in Chapter 8.
Many of the new results in Chapters 9, 10 and the appendices are due

to the work of Paul Janssen. We have also benefitted greatly from interac-
tions about distributional approaches with William Alexander, Mark Hay-
ward, James Heckman, Eric Holmgren, Paul Janssen, Diane McLaughlin,
Manny Parzen, Jeffrey Simonoff, and Marc Scott. Jeffrey Simonoff and Paul
Janssen gave comments on (close to) final drafts of the manuscript. Charles
Kooperberg provided the log-spline density estimation program. We would
also like to acknowledge the support and encouragement provided by Ron
Brieger, the late Clifford Clogg, Douglas Massey, Adrian Raftery, and Eric
Wanner over the years. Their interest in this work helped to convince us
that it was worth making the effort to develop new methods and place them
in a broader context. Stefan Jonsson has provided truly heroic research as-
sistance, with Icelandic assiduity. Finally, we would like to thank our editor
at Springer, John Kimmel, for his patience and encouragement throughout
the publication process.

The software for implementing a relative distribution analysis is avail-
able in two sets of macros: one for the S-PLUS statistical program, and
the other for SAS. Both can be downloaded from the Relative Distribution
website. A link to the website is maintained by the publisher at

http://www.springer-ny.com/stats
under the heading “Author/Editor Home Pages.” This site also contains
many of the data sets used in application chapters of the book, so that the
reader can reconstruct the graphics and results presented here.

The authors can be reached via electronic mail at the Internet address
handcock@stat.psu.edu.

Croton-on-Hudson, N.Y. Mark S. Handcock
Martina Morris
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Chapter 1

Introduction and Motivation

1.1 Motivation

In an increasing number of social science applications, the comparison of
an attribute across groups requires consideration of more than the usual
summary measures of location and variation. Survey and census data on
attributes, such as earnings, test scores, birth weights, and survival times,
all contain a wealth of distributional information. Traditional methods for
the analysis of such data rely heavily on measures that capture only dif-
ferences in averages between groups or rough measures of dispersion over
time. Such summary measures leave much of the information inherent in
a distribution untapped. More recent exploratory data analysis techniques
have provided important complementary tools for traditional methods, and
have helped to change the way we look at data, check the assumptions of
our models, and evaluate their performance. But methods that combine
both the exploratory power of EDA and a framework for complex statis-
tical inference and estimation remain rare. Our motivation for developing
the relative distribution approach is based on this gap in existing statistical
methodology.

The relative distribution is a statistical tool for fully representing dif-
ferences between distributions. It provides a general integrated framework
for analysis: a graphical component that simplifies exploratory data analysis
and display; a statistically valid basis for the development of hypothesis-
driven summary measures; and the potential for decomposition that enables
one to examine complex hypotheses regarding the origins of distributional
changes within and between groups. We demonstrate the use of the relative
distribution for each of these analytic tasks in this book. The integration
of the different analytic components in the context of full distributional
information helps to clarify complex patterns and relationships in data,
making the relative distribution approach well suited to emerging research
questions in many fields.

The gender wage gap provides a good example of the limitations of
traditional summary measures. Analyses of the earnings gap typically focus
on statistics which summarize the location differential between women’s and

1



2 Chapter 1. Introduction and Motivation

men’s earnings, e.g., the median earnings ratio graphed in Figure 1.1. The
women’s median is in the numerator, so the ratio represents the fraction of
a dollar the median woman earned relative to the median man – about 55
to 60 cents by this measure for much of this period. While the earnings gap
was stable from the late 1960s through the 1970s (and had actually been
stable for close to 50 years), it began to narrow in the 1980s. This new trend
generated predictions that gender equality might finally be moving within
reach (Nasar 1992). Numerous articles in the popular and academic press
chronicled this historic upgrading in women’s earnings, speculating on its
origins, and highlighting the breakthroughs women were making in high-
profile professional occupations. But is the upgrading of women’s earnings
the real story here?
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Fig. 1.1. The ratio of the median of women’s wages to the median of men’s wages
for 1967–1987, full-time, full-year workers only.

A different picture emerges if the full distribution of women’s earnings
relative to men’s is examined. This is presented as a relative decile series in
Figure 1.2. The relative distribution graphed here is essentially a rescaled
density ratio: the ratio of women’s to men’s probability of falling at each
level of the earnings scale. In effect, each woman’s earnings is assigned
the rank it would have had in the men’s distribution for that year, and
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these ranks are plotted as a histogram. The histogram bin cutpoints are
defined by the deciles of the men’s distribution, so the frequency in each
bin represents the fraction of women falling into each decile of the men’s
earnings scale over time. (The formal definition of the relative distribution
is presented in Chapter 2.) If the women’s and men’s earnings distributions
were the same, the relative deciles would take a uniform value of 10% over
the earnings scale, because 10% of women earners would fall into each men’s
decile.
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Fig. 1.2. The relative distribution of women’s to men’s wages 1967–1987. The
relative deciles are plotted, see text for details.

In this case the relative distribution is far from uniform: nearly all of
the mass in the women’s distribution is concentrated in the lower tail of
the men’s distribution, and this does not change much over the 20–year
period. In 1967, nearly half of all women earners were in the bottom decile
of the men’s distribution, and over 90% (the cumulative sum of all those
in deciles 1–5) earned less than the median male worker. By 1987, this had
changed somewhat, but over a quarter of the women still remained in the
bottom decile of the men’s distribution, and over 80% still earned less than
the median male worker. The persistent absence of women in the upper
tail of the men’s earnings distribution is equally striking: less than 1% of
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women fell in the top decile in 1967, less than 2% twenty years later.
While the median ratio graphed in Figure 1.1 suggests that women

made progress during this period, the relative distribution makes it clear
that progress was largely limited to women at the bottom end of the earn-
ings distribution: three-quarters of the total change in relative density oc-
curred below the male earnings median, half of it in the lowest decile alone.
If upgrading is the story here, it is not the high-profile top earners that this
story is about, but rather the lower profile earners at the bottom end of
the distribution. The simple median wage trends in Figure 1.1 thus provide
a very incomplete picture of the changes in earnings for men and women;
obscuring the key features of the trend, inviting misinterpretation, and fo-
cusing research agendas on the wrong end of the earnings scale.

The patterns revealed by the relative distribution in Figure 1.2 provide
substantially more information about key aspects of these changes. At the
same time, this figure is more complicated to interpret because it repre-
sents the combined outcome of several factors: a baseline median earnings
differential between the two groups, changes in this differential over time
(the information conveyed by the median ratio in Figure 1.1), and changes
in the shape of the men’s and women’s earnings distribution. The relative
distribution can be decomposed into pieces representing each of these ef-
fects (Chapter 3). Decomposition makes it clear that the gains made by
women at the bottom of the distribution are due more to the downgrading
of men’s earnings than to the upgrading of women’s.

The substantive trends of interest, and the ones that need to be ex-
plained, are often neither visible nor statistically accessible when using tech-
niques that are restricted to summary measures. Distributional methods en-
hance our understanding of the data and the phenomenon they represent,
and our ability to pose the questions that should guide further research.

1.2 Principles of comparison

Suppose we wish to compare two distributions. What principles should be
considered as the basis for comparison? Under what circumstances should
one distributional comparison be defined as equivalent to another distribu-
tional comparison?

One important principle concerns the issue of scale invariance. For ex-
ample, in the comparison of earnings in Figures 1.1 and 1.2, no adjustments
were made for inflation. We can remove the effects of inflation, however, by
transforming all of the earnings into 1967 (or 1987) “real dollars.” So the
earnings comparison can be based on one of several scales: the raw earnings
scale, the 1967 real dollar scale, or the 1987 real dollar scale. Will the com-
parison be the same on these three scales? That depends on the measure
chosen. The median ratio, for example, will be the same for all three scales.
The median difference, on the other hand, will not.



1.2 Principles of comparison 5

The choice of measurement scale is a substantive choice, rather than
a statistical one. Much of the work on economic inequality is based on
measures which obey the “principle of (proportionate) scale invariance”
(Schwartz and Winship 1980), which states that the comparison should not
be affected by multiplying each individual’s earnings by a positive constant.
This principle preserves percentage changes in earnings, an approach that is
consistent with an underlying assumption that a 5% change in earnings for
someone at the bottom of the earnings scale is equivalent to a 5% change
for someone at the middle or top. The Lorenz curve (Lorenz 1905) and
associated Gini index are standard measures of inequality that satisfy the
principle of (proportionate) scale invariance. In some cases, however, one
could argue that an inequality measure should preserve the absolute dollar
difference. For example, a 200% increase in earnings may not raise a person
above the poverty line if their starting level is very low. In such cases, the
true value of the dollar is measured by what it can (or cannot) purchase,
and the proportionate change does not capture what needs to be measured
(Rae 1981).

Dalton (1920) has argued that comparison of inequality should be ap-
proached by considering social welfare, as expressed via the form of a so-
cial welfare function. Given a social welfare function U(g) that is an addi-
tively separable and symmetric function of individual earnings, we would
prefer individual distributions according to their expected mean welfare
(EY [U(Y )]). The measurement scale defined by the social welfare function
would be the scale for absolute comparison.

If we knew the actual value (or utility) an attribute like earnings had for
an individual, then the appropriate analysis would be based on the attribute
data transformed to the scale in which units represented equal measures of
utility. But the true utility scale of an attribute is hard to establish. The
approaches described above assume that the utility scale is either a linear
or logarithmic version of the original scale, but the true underlying scale
may not have this level of regularity. We may, therefore, wish to consider
methods that impose weaker assumptions on the underlying utility curves.

Suppose, for example, that all individuals share a common but un-
known utility function for earnings, and we wish to compare distributions
of utilities across groups rather than the distributions of raw earnings. If
the utility function is unknown, it is useful for comparison measures to be
invariant to different transformations of the data. Under what conditions
will this invariance be met? Using the Lorenz curves, the conditions are
quite restrictive. Unless the underlying common utility function is linear,
the Lorenz curves for the utilities will be different than the Lorenz curves
for the raw earnings. Thus, comparative analyses of inequality based on the
Lorenz curves, or on indices of inequality derived from them, may lead to
different conclusions for the utilities than for the earnings themselves. It
can be shown that the ordering of distributions in terms of inequality by
the Lorenz curves is not invariant to any (nondegenerate) transformation
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to utiles; the Lorenz curve, and summary measures such as the Gini index,
Pietra index, coefficient of variation, and Kakwani index are intrinsically
tied to the original scale of measurement, up to a proportionate scale.

The relative distribution, by contrast, is invariant to all monotonic
transformations of the original measurement scale. The utility scale will
thus be accurately and equivalently represented by comparisons of the raw
earnings, the log-earnings, or any other monotonic transformation of the
earnings, as long as there is a common monotonic underlying utility function
in the population. We shall call this the principle of strong scale invariance.
When this principle holds, the relative distribution plays the primary role
in comparisons, in the sense that it contains all the information necessary
for comparing distributions, making the minimal assumptions necessary for
valid comparison. Holmgren (1995) shows that under appropriate techni-
cal conditions the relative distribution is the maximal invariant – loosely
speaking, any other quantity that contains more information does not sat-
isfy the principle of strong invariance (cf, Lehmann 1983). This does not
mean the relative distribution is inappropriate when the assumptions are
not known to hold, only that comparisons may exist that cannot be ex-
clusively expressed in terms of the relative distribution and may require
additional characteristics of the original distributions.

An important issue for between-group comparisons is how the compar-
isons are to be ordered. Suppose we compare women’s to men’s earnings in
1967 and again in 1987. Have the two groups become more equal in 1987
than they were in 1967? One approach would be to compute a measure
of within-group inequality, such as the Gini index, and compare the four
resulting measures (one for each sex-time distribution). A more succinct
approach, however, is to start with a measure that captures the between-
sex comparison directly, and then compare the change in this measure over
time. This is the approach taken by relative distribution methods. Holmgren
(1995) shows that any preference ordering between pairs of distributions can
be expressed in terms of preference between their relative distributions, un-
der appropriate technical conditions. In this sense the relative distribution
plays the same role for between-group comparisons as the Lorenz curve
plays for within-group comparisons.

1.3 Description and summarization

The description, summarization, or analysis of a population (or data sam-
pled from one) cannot proceed without making some assumptions about
the underlying process. Imposing assumptions on the data carries risks as
well, so the challenge is to find the right balance. Parametric approaches
to modeling data impose a particular mathematical form on the under-
lying distribution. This parametric form allows concise descriptions and
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summarization of the population and provides access to a statistical frame-
work for estimation and inference. For the parametric representations of
the data to be (at least approximately) valid, relatively strong – and often
implicit – assumptions are required. If these assumptions are not met, sub-
stantively interesting features of the data may be obscured, and statistical
inference invalidated. If weaker explicit assumptions can be made instead
(e.g., smoothness of the underlying distribution) then one is free to estimate
– rather than assume – the more detailed characteristics of the population,
such as the distributional quantiles.

The key is to avoid making unnecessary or unjustified assumptions;
to represent the data using approaches that are both flexible and robust
to violations of the assumptions made. Relative distribution methods were
developed with this philosophy in mind.

1.4 Graphical displays

A good graphical image conveys a remarkable amount of information, and
the development of accessible graphical methods has dramatically changed
the way we analyze data. The techniques for visualization have come a long
way since the first simple hand-drawable tools proposed by Playfair (1786)
and Tukey (1977). But the principles remain much the same as those ar-
ticulated in these early works. Looking at the data permits the analyst to
discover features that have both substantive and statistical importance, and
to model these features in an informed way. Visual perception is a powerful
tool to enlist in the service of data analysis. In some cases the perceptual
task can be translated into an algorithm and automated (e.g., outliers and
other case statistics). In many cases, however, direct visual inspection re-
mains the most efficient and effective way to assimilate information and
identify potential statistical problems.

Visualization techniques are at the heart of distributional comparisons,
so it is not surprising that they will play a large role here. The amount of
information contained in a distribution cannot be conveyed in any other
way unless restrictive parametric assumptions are met. Even then, intu-
ition benefits enormously from a simple graphical display. There has been
a great deal of work on the development of graphical techniques for dis-
tributional comparison. Displays have evolved from simple density overlays
to running boxplots, back-to-back stem and leaf plots, and percentile and
quantile plots (both theoretical and empirical). Principles for effective dis-
play have also been systematically examined and defined. Some of these,
such as parsimony (or absence of “chartjunk”) and emphasizing the key
features of the data, are similar to the principles that apply in traditional
statistical analyses. Others, such as the preference for displays that code
information into deviations from a straight horizontal line rather than a
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sloped line, are a function of (hypothesized) perceptual competencies and
are exclusive to visual displays.

Relative distribution methods include a set of graphical displays for
comparing distributions that draw on much previous literature. Many of
the principles of good visual display have been adopted and married to the
techniques for interdistributional comparison. The techniques for relative
distribution visualization range from simple back-of-the-envelope calcula-
tions for decile-based displays, to computer-intensive resampling methods
for discrete data and imputation schemes for heaped continuous data. In
our experience, even the simplest versions of these displays do a remarkable
job in allowing the data to educate the analyst.

1.5 Numerical summary measures

While graphical displays are a key part of the relative distribution frame-
work, summary measures remain an important tool for the comparison of
distributional change. A good summary statistic makes it possible to pro-
vide a simple and precise answer to a substantive question, such as “has
inequality in earnings grown significantly over the past 20 years?” or “has
the upgrading in earnings been matched or exceeded by the downgrading?”
Several summary measures are currently available for comparing aspects
of distributional shape, e.g., the Gini index, the Theil index, and the co-
efficient of variation. The key challenge for such measures, however, is to
summarize the right thing. As the “right thing” depends on the specific
application, it would be useful to have a framework for developing sum-
mary measures, rather than a one-size-fits-all single statistic. The relative
distribution provides such a framework and can be used as the basis for
defining a wide and flexible range of summary measures. One of these mea-
sures – the mean absolute deviation of the relative distribution – captures
the polarization or inequality that is the focus of the Gini index. It has the
additional property of being easily decomposed into the contributions made
by specific sections of the distribution (e.g., the upper and lower tails).

The generality of this framework for summary measure development
is due to the fact that the relative distribution effectively captures all of
the information that is necessary and sufficient for strongly scale-invariant
comparison of distributions. Summary measures based on the relative distri-
bution can be defined to capture the right thing, both from the theoretical
and the statistical standpoint. By working with a measurement scale that
preserves the detailed and nuanced properties of the distributions, the an-
alyst is freed to focus on comparison or comparisons that are driven by
theoretical interests, rather than methodological constraints.

Summary measures are no longer a luxury as the dimension of the
analysis increases. Consider, for example, the gender wage gap data given
above. Further analysis of these data naturally lead to decompositions that
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(1) distinguish between location and shape changes in the two underly-
ing earnings distributions; and (2) introduce explanatory covariates, such
as education, work experience, and other workforce composition variables,
each of which has a distribution of its own. The “education effect” in this
context is a distributional effect: it captures the conditional distribution of
wages at each level of education, rather than the conditional mean. These
effects have both a composition component and a returns component, which
parallel the traditional regression decomposition approach. The education
composition effect compares the original distribution of earnings to the
distribution obtained by reweighting the original education-specific con-
ditional wage distributions by the new education profile. The education
returns effect comprises the changes in the education-specific conditional
wage distributions over time. Both components may induce a change in the
location and/or shape of the earnings distribution. Graphical displays of the
composition and returns components quickly proliferate, making summary
measures a necessity. Again, the key issue is to ensure that these measures
capture the features of substantive interest, revealing, rather than obscur-
ing, the important structural features in the data.

Summary measures based on the relative distribution are robust to
both outliers and to deviations from assumptions. This robustness follows
from two properties of the relative distribution: the rescaling of the compar-
ison distribution to the reference distribution and the absence of parametric
assumptions. Outliers in either the reference or comparison distribution are
not necessarily outliers in terms of the relative distribution. The rescaling
maps the original units of both distributions to a rank measure (i.e., [0, 1])
moderating the influence of outliers. As a result, summary measures based
on the relative distribution are less likely to be influenced by problem cases.
The relative distribution, as well as the decomposition techniques, and natu-
ral summary measures in this framework are also fully nonparametric. They
require minimal assumptions about the underlying distributions – either in
terms of the individual distributions, or in terms of their relationship to
one another. This actually distinguishes relative distribution methods from
other nonparametric approaches, as most nonparametric approaches im-
plicitly assume that the reference and comparison distributions have a well
defined relationship to each other (e.g., are simply location shifted versions
of each other) (Lehmann 1975).

1.6 Limitations

Relative distribution methods are not for small data sets. While the the-
ory requires a minimum of 20 observations, realistically, the displays and
methods are not well behaved with fewer than 200 observations, and the
decomposition techniques become fully functional with 1000 or more. This
is the tradeoff for the absence of parametric assumptions: full distributional
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information requires data support for each quantile. With small to mod-
erate data sets, the variation swamps the distributional information, so
the uncertainty of the distributional estimates makes interpretation diffi-
cult. With more traditional parametric methods, we trade off uncertainty
about the distribution for bias in the way the parametric distribution rep-
resents the distribution. For example, when we use means and variances
to summarize the distribution, the implicit assumption is that these two
parameters capture all of the information in the distribution. Parameter
estimates based on small samples can be grossly misleading if the actual
distribution is far from normal.

These methods are also not robust to the common data problem of
“heaping.” The heaping problem arises in the survey context when respon-
dents report in round numbers rather than exact values. Classic examples
can be found in self-reported data on income, age, and lifetime number of
sex partners (Handcock, et al 1994; Heitjan and Rubin 1990; Morris 1993).
Heaping can fundamentally change the quantile characteristics of a distri-
bution, and the relative distribution graphical techniques in particular can
be quite sensitive to this. Means and mean-based statistics are by contrast
quite robust to heaping.

Full distributional information can also become overwhelming in the
context of multivariate decomposition. This, again, is the price one pays
for not assuming that the conditional mean and variance provide an ade-
quate summary of the relationships of interest. As noted above, summary
measures based on the relative distribution can be developed for multivari-
ate analyses. These measures need not be used blindly, as the graphical
displays of the relative distribution extend to all forms of the covariate
decomposition.

The natural unit of analysis for relative distribution techniques is the
population – not the individual. Some social scientists will find this natu-
ral; others will find it disconcerting. Measurement is clearly still anchored
at the individual level, but virtually all of the displays and summaries re-
flect population attributes that have no analog at the individual level. The
concepts represented, like inequality, are not properties of individuals. By
making the group the unit of analysis, this approach takes the concept of
a distribution as fundamental, rather than residual.

1.7 Organization of book

This book presents the techniques of relative distribution analysis in al-
ternating chapters of statistical development and application. Interested
readers with minimal statistical training should be able to work through
the applications chapters independently to gain an understanding of the
methods and their potential uses. Those interested in the statistical theory
will find the chapters on measure development, estimation, and inference
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contain all that is required to understand and apply these techniques. Ex-
ercises are provided at the end of these chapters to reinforce key theoretical
points and provide an introduction to data analysis using relative distribu-
tion methods. Computer programs and data extracts used in the book are
available via the Internet. Information on the website for this book is found
in the Preface.

Chapter 2 provides a technical introduction to the relative distribution.
It begins with a review of basic distributional concepts: probability mass
functions for discrete populations, probability density functions (PDF) for
continuous functions, cumulative distribution functions (CDF), quantiles
(including percentiles and deciles), the quantile function, and transforma-
tions. These concepts are then used to define the relative distribution and
its associated graphical representation. The chapter concludes with a re-
view of the history and literature that contributes to the development and
understanding of these methods.

Chapter 3 develops the technical basis for the decomposition of the
relative distribution into location, scale, and shape shifts.

Chapter 4 applies the basic relative distribution methods to an analysis
of the changes in the annual earnings distribution for full-time, full-year
white male workers from 1967 to 1997. A decomposition of these changes
into location and shape shifts shows both a decline in median real earnings,
and a dramatic polarization in earnings over this period. This polarization
is a key concept in the debates over growing inequality, and motivates the
summary measures developed in the next chapter.

Chapter 5 discusses summary measures for the divergence between two
distributions. It develops a decomposition of these measures into their loca-
tion and shape components. It also develops a set of summary measures for
capturing polarization in the distribution: the median relative polarization
index, and its component upper and lower polarization indices.

Chapter 6 applies the divergence and polarization indices in an analy-
sis of the changes in annual earnings for full-time, full-year workers by race
and sex from 1967 to 1997. The analysis here focuses on the shape and lo-
cation shifts that have taken place in the earnings distributions within each
group. The relative distribution graphs, entropy summaries, and polariza-
tion indices provide a detailed picture of the earnings trends by group.

Chapter 7 extends the methods to the situation where covariates are
measured on the individuals within the groups, and the comparisons need
to be adjusted to take into account any differences in the distributions of
these covariates.

Chapter 8 presents an application of the covariate adjustment proce-
dures to the study of wage mobility, using data from two longitudinal panels
of the National Longitudinal Survey (NLS). The location/shape decompo-
sition is used to identify how wage growth has changed for the two cohorts.
Covariate decomposition is then used to isolate the impact of differences in
educational attainment between the two groups, and to contrast the trends
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in mobility between more and less educated workers.
Chapter 9 develops the estimation and inference for the relative dis-

tribution, with emphasis on the relative CDF and PDF. The development
begins with the case where the reference distribution is known, and then
generalizes to the case where this distribution is estimated from the data.

Chapter 10 considers inference for summary measures based on the
relative distribution. In addition to the measures developed in Chapter 5,
measures are motivated by considering alternative hypotheses in testing
situations.

Chapter 11 defines the relative distribution for discrete distributions
and connects its properties to those of the relative distribution in the con-
tinuous situation. Estimation based on grouped data is discussed.

Chapter 12 applies the discrete data methods to an analysis of the
changes in weekly hours worked for white male workers from 1980 to 1997.
A significant polarization in work schedules is observed in the data. The
covariate adjustment techniques are then applied to identify the role this
work schedule polarization plays in growing wage inequality over the period.

Chapter 13 describes quantile estimation, focusing on quantile regres-
sion techniques. The most common model assumes the quantiles are a linear
regression function of the covariates. The nonparametric quantile regression
model is also considered.

Background material

Section 1.1

The analysis of the gender wage gap data is adapted from Bernhardt, et al
(1995) and Morris (1996).

Section 1.2

Tukey (1977) emphasized the importance of looking at the data in all sta-
tistical analysis.

Simonoff (1996) discusses the value of methods motivated by prior
beliefs in smoothness as a bridge between strict parametric methods and
“purely” nonparametric methods.

Section 1.3

Du Toit, Steyn, and Stumpf (1986) give an overview of basic methods for
analyzing and portraying data graphically, and their paper provides a useful
set of historical references. They emphasize the goals of statistical commu-
nication and data exploration, noting the dangers of presenting only certain
aspects of a data set in isolation.
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Tufte (1983; 1990) presents many sophisticated and creative examples
of graphical displays from diverse cultures and eras.

Section 1.5

Freedman, Pisani, Purves, and Adhikari (1991, Part II) give a conceptually
clear and accessible development of the art of describing and summarizing
univariate data. In particular, they look at histograms as a means of describ-
ing distributions, and motivate the use of means and standard deviations
as summaries of distributional characteristics.

Computational issues

This section describes the availability of computer software to use the
methods discussed in each of the following chapters. The software includes
both commercial and free (shareware) resources. An important resource is
the statlib archive at Carnegie–Mellon University; information on using
statlib can be obtained by sending the message send index to the elec-
tronic mail address statlib@lib.stat.cmu.edu. In many instances, au-
thors of the referenced papers will provide code of some sort upon request.

Exercises

Exercise 1.1. In Section 1.1 we considered the wages of full-time workers.
The data for 1987 is in the file cpswge87. Calculate the usual summary
statistics for the distribution of women’s wages (e.g., mean, median, stan-
dard deviation and interquartile range). Repeat the process for men. Using
these summaries, write a brief comparison of the two distributions.

Exercise 1.2. Calculate the median ratio of women’s to men’s wages based
on the results of Exercise 1.1. Give an interpretation of it. Repeat the
process using the mean ratio of women’s to men’s wages. Can you think
of other numerical summaries that compare the wages of the two groups?
Describe the value of each of these summaries, and the circumstances in
which one or another may be preferable for use.

Exercise 1.3. Construct separate histograms of the women’s and men’s
wages considered in Exercise 1.1. How does the histogram look if the default
number of classes is used? Now create histograms with at least 50 classes.
Compare the information provided by the two pairs of graphs.

Exercise 1.4. Repeat Exercise 1.3 using the logarithm of wages, instead of
the wages themselves. Compare the descriptions of wages provided by the
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graphs. Describe situations in which one or the other graph might be more
appropriate.

Exercise 1.5. On the histograms constructed in Exercise 1.3, plot the normal
distributions with the means and standard deviations calculated in Exercise
1.1. These are the best fitting normal distributions to the wage distribu-
tions. Are the normal approximations close to the true distributions? In
which regions of the distributions are the approximations poor? Comment
on the degree to which the numerical summary measures are appropriate
summaries of the distributions.

Exercise 1.6. Using the graphical representations of the distributions of
wages in Exercises 1.3–1.5, revise the comparison of the wage distributions
given in Exercise 1.1. Do the histograms provide additional information
about the distributions? Do they confirm the claims made about the dis-
tributions made in Exercises 1.1 and 1.2?

Exercise 1.7. If your software is capable, construct separate nonparamet-
ric density estimates of the women’s and men’s log-wages considered in
Exercise 1.1. Compare the information provided by the graphs to the his-
tograms in Exercise 1.4. For what purposes would you prefer the histogram
estimates of the distribution to the other nonparametric density estimates?
Do these nonparametric density estimates alter your descriptions of the
distributions?

Exercise 1.8. Calculate the Lorenz curve for the distribution of women’s
wages in 1987. Does this curve change if the wages are expressed in 1967
dollars?



Chapter 2

The Relative Distribution

This book is mainly intended for quantitative researchers in the social sci-
ences, so the prerequisite background in mathematical statistics has been
kept to a minimum. For this chapter, social scientists familiar with statis-
tical theory at the level of Rice (1995) should be able to follow the devel-
opment with no difficulty. The more detailed results and proofs are given
in Chapters 9-13 and the Appendices.

2.1 Basic distributional concepts

In this section we review fundamental concepts concerning distributions
that underlie many of the ideas in the book. The objective is to present the
requisite distributional theory as a coherent whole and to fix a standard
notation.

Consider a measurement made on each member of a population of finite
size. Unless otherwise noted, we will assume that the observation is a real
number, as distinct from a nominal value such as race. The set of all possible
values the measurement takes in the population is called the outcome set.
We will assume the population distribution can then be described by listing
each value in the outcome set along with the frequency with which members
of the population take that value. For example, consider the hourly wages
of full-time white women workers in the U.S. in 1998, measured to the
closest penny. The distribution is the list of each value the wage takes (e.g.,
$0.00, $0.01, $0.02, . . .) along with the number of women with that wage.
The relative frequency distribution replaces the frequency with the relative
frequency (i.e., proportion) of members taking the value.

Probability Mass Function

Let X denote the value for a member of the population selected at
random from the population. Then X is a random variable taking on values
from the outcome set with probability given by the corresponding relative
frequency. In this case X is a discrete random variable as it takes on only a

15
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finite number of possible values. The probability mass function of X is then
a listing of each value x, say, in the outcome set along with the probability
that X takes on the value. We will denote this number by P (X = x) for
each x (in words, “the probability that X = x”). Note that we will always
have:

0 ≤ P (X = x) ≤ 1 for any x

with the function strictly positive for values in the outcome set, and∑
x

P (X = x) = 1

where the sum is over the outcome set.
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Fig. 2.1. The probability mass function for the distribution of women’s earnings
in 1998.

Figure 2.1 is a graph of the probability mass function for women’s
annual earnings, based on 1998 March Current Population Survey (CPS).
The earnings scale is on the horizontal axis and the probabilities for each
earnings value are represented by the vertical lines. As there is one line per
earnings value the graph is very busy. A “smoothed” version of the proba-
bility mass function is plotted by the continuous line. From this display, we
can see several features of the earnings distribution. It is quite unsymmetric
in shape, with a long right-hand tail. It is also not a smooth function of
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the earnings value. People tend to report earnings in round numbers (e.g.,
to the closest hundred or thousand dollar). This leads to a “heaping” of
probability mass at these values.

In many situations it may be desirable to approximate the probability
mass function of X by using a mathematically tractable or conceptually
simpler form. For example, in the above graph we have placed a smooth
curve through P (X = x) and could use it to describe the distribution of
earnings. Such approximations allow us to summarize the main features
of the distribution using a continuous function even when the underlying
probability mass function is discrete. Other examples are histograms and
the normal probability curve. The latter is a parametric approximation that
leads to great parsimony if it is accurate.

Probability Density Function

In some contexts it is necessary to consider infinitely many outcomes
and probability mass functions become inappropriate. While we can assign
probabilities to the individual outcomes for discrete random variables using
relative frequencies, we need to consider outcome sets that consist of a
continuum of possible values. For this we employ the continuous analog of
the probability mass function – a probability density function (PDF) – to
describe the distribution of probability over the outcome set. The PDF is
a function f(x) where x is in the outcome set, such that:

f(x) ≥ 0 for all x∫ ∞

−∞
f(x)dx = 1.

The PDF enables probabilities to be calculated using the relationship:

P (a ≤ X ≤ b) =
∫ b

a

f(x)dx a ≤ b.

Thus f(x) serves the same role as the probability mass function. The
smooth curve on Figure 2.1 is an example of a PDF. We do not have to
assume that f(x) is a continuous function of x, but we do need to assume
that it is smooth enough for the above probabilities to exist. This property
is called absolute continuity of the distribution (Kelly, 1994 ). Note that
the probability assigned to any specific value is zero – we can only assign
positive probabilities to sets of values that contain intervals.

Two continuous distributions are worth noting here, as they will play
important roles in the rest of this book. The first is the uniform distribution
on the outcome space the interval [0, 1], and is defined by the PDF:

f(x) =
{ 1 0 ≤ x ≤ 1

0 otherwise
.



18 Chapter 2. The Relative Distribution

For this distribution the probability that a randomly chosen value from the
outcome space falls in the interval [a, b], 0 ≤ a ≤ b ≤ 1 is just b − a. That
is, no part of the interval is more likely to contain the value than any other
part of the interval – hence the name. The second is the standard normal
distribution, which has outcome space the set of all real numbers on the
interval (−∞,∞), and is defined by the PDF:

f(x) =
1√
2π

∫ ∞

−∞
e−x2/2 − ∞ < x < ∞.

The graph of this PDF is often called the “bell curve,” and is the most
common distributional approximation used in statistical methods.

Cumulative Distribution Function

A distribution, whether continuous or discrete, can also be character-
ized by its cumulative distribution function (CDF):

F (x) = P (X ≤ x) for each x in the outcome space.

That is F (x) gives the probability that a randomly chosen value is less than
or equal to x. If X is discrete we have

F (x) =
∑
y≤x

P (X = y) for each x in the outcome space,

and if X is continuous

F (x) =
∫ x

−∞
f(y)dy for each x in the outcome space

These relationships can be inverted to express the PDF in terms of the
CDF. In the discrete case, this is

P (X = x) = F (x) − F (x−),

where x is in the outcome space and x− is the largest value in the outcome
space smaller than x. In the continuous case, the relationship is:

f(x) ≡ d

dx
F (x) ≡ lim

h→0

F (x + h) − F (x)
h

. (2.1)

Thus F (x) can be derived from either the probability mass function or the
PDF. Note, also, that we can determine the probability mass function or
the PDF from F (x), so that we can characterize the distribution by either
representation. Indeed, if f(x) is continuous at x, f(x) is the derivative of
F (x).
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Quantile Function

A useful quantity related to the CDF is the inverse cumulative distri-
bution function, also called the quantile function. This function will play a
critical role in the development of the relative distribution. It is defined to
be:

Q(p) = F−1(p) = inf
x

{x | F (x) ≥ p }.

The quantile Q(p) can be thought of as the value of y below which a propor-
tion p of the values fall. The reason for the infimum is that there could be
many values y for which F (y) = p if F (y) is constant in the neighborhood
to the right of Q(p). If F (x) is continuous, Q(p) = infx{x | F (x) = p }
and F (Q(p)) = p for 0 ≤ p ≤ 1. Thus if the distribution is continuous
and the CDF is strictly increasing when it is not zero or one, a quantile
represents the exact value below which a proportion p of the values fall.
One can also say that this value defines the pth quantile of the population
(or equivalently, of the probability distribution of X). Special cases are the
median (p = 0.5) and the lower and upper quartiles (p = 0.25, p = 0.75,
respectively). If the distribution is discrete, then the definition of a quan-
tile may be ambiguous, so the smaller value is chosen by convention. This
choice ensures that the quantile function is left continuous. Two common
ways to express the quantile function are through deciles (i.e., the quantiles
corresponding to 0.0, 0.1, . . . , 0.9, 1.0) and percentiles (i.e., the quantiles
corresponding to 0.00, 0.01, . . . , 0.99, 1.00). For example, the bottom decile
is the quantile corresponding to p = 0.10. In the earnings distribution from
Figure 2.1, the bottom decile is Q(0.1) = $11, 500. The median and upper
quartiles are Q(0.5) = $24, 000 and Q(0.75) = $34, 000, respectively.

Often we will need to determine the probability distribution of some
function of X. For example, if we know the distribution of earnings, we can
determine the distribution of log-earnings. In general if the random variable
Y is defined to be some function h, say, of X (i.e., Y = h(X)) then the
CDF of Y is FY (y) = P (Y ≤ y) = P (h(X) ≤ y). The outcome space of Y
is the outcome space of X transformed by h. We usually can reexpress the
last form in terms of the CDF of X. We call h(x) a monotone function of
x, if either h(x) < h(y) whenever x < y or h(x) > h(y) whenever x < y. If
h(x) is a monotone function of x, we can always find h−1(x), the inverse of
h(x). If u = h(x), the value of h−1(x) is just u. In this case

FY (y) = P (X ≤ h−1(y)) = F (h−1(y)).

The uniform distribution plays a role for distributions similar to the
role played by unity for arithmetic. Suppose we have a continuous proba-
bility distribution for X and the corresponding CDF is strictly increasing
when it is not zero or one (i.e., the density does not have intervals where it
is zero). Consider transforming X by the function F (x), leading to the new
random variable Z = F (X). One can think of F (x) as giving the percentile
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in the distribution of x. Hence F (X) is the percentile of a value randomly
selected from the distribution. Intuitively, Z has a uniform distribution on
the outcome space [0, 1]. For example, suppose F represents the distribu-
tion of grades from an exam in a large class. Then X represents the grade
of a randomly chosen person in the class, and Z = F (X) represents the
percentile in the class that the person appeared. As the person is equally
likely to be any class member, the percentile is equally likely to be any
value from 0% to 100%. It is in this sense that the percentile of the person
is uniform, even though the actual grade is not. Furthermore, let U be a
random variable with a uniform distribution. Then transforming U by the
quantile function Q(x) leads to the new random variable Q(U), which has
the same probability distribution as X. We can think of U as a percentile
chosen equally likely to be any value from 0% to 100%. Each percentile can
also be associated with a person in the class, so randomly choosing a per-
centile is the same as randomly choosing a class member. Then Q(U) gives
the exam grade corresponding to the percentile, and hence the randomly
chosen class member. We will use these properties in the next sections.

Numerical Summary Measures

Throughout this book we will summarize properties of population dis-
tributions through numerical measures. The overall level of a population is
often summarized by the mean, or average value. The value of the mean
can be expressed as the sum of each value in the outcome set weighted by
the relative frequency distribution. For a discrete random variable X, the
corresponding concept is that of an expectation or expected value. This can
be formally defined as the weighted sum:

E[X] =
∑

x

xP (X = x)

where the sum is over the outcome set. We can also think about expectations
of functions of random variables. Let h(x) be a real-valued function for x
in the outcome space. Then

E[h(X)] =
∑

x

h(x)P (X = x)

For example, consider h(x) = |x| so E[|X|] is the mean absolute value taken
by X.

Other summary measures for probability distributions can be defined
in correspondence with their population counterparts. For example, the
spread of a distribution is often summarized by its variance, defined as

Var[X] = E
[|X − E[X]|2] =

∑
x

|x − E[x]|2P (X = x)

where the sum is over the outcome set.
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For continuous random variables the definitions of expectation and
variance can be based on their probability density functions. In particular,

E[X] =
∫ ∞

−∞
xf(x)dx,

E[h(X)] =
∫ ∞

−∞
h(x)f(x)dx,

and
Var[X] = E

[|X − E[X]|2] =
∫ ∞

−∞
|x − E[x]|2f(x)dx.

We shall return to these ideas in Chapter 5.

2.2 The relative distribution

Let Y0 be a random variable representing a measurement for a population
(e.g., hourly wages). We will call the population that generated Y0 the
reference population. Denote the CDF of Y0 by F0(y) and the density by
f0(y) (when the latter is defined). We do not place restrictions on the
outcome space of the reference measurement, although in many applications
it will only take on non-negative values.

Suppose we also observe another measurement of Y from a different
population. We will call the population that generated Y the comparison
population. It is assumed that Y has CDF F (y) and density f(y) (when
the latter is defined). Typically Y is the measurement for a separate group
or the same group during a later time period. The objective is to study the
differences between the comparison distribution and the reference distribu-
tion.

Unless explicitly mentioned, we will assume that both F and F0 are
absolutely continuous with continuous densities and common support. The
case where the distributions are discrete is treated in Chapter 11.

The relative distribution of Y to Y0 is defined as the distribution of
the random variable:

R = F0(Y ). (2.2)

R is obtained from Y by transforming it by the CDF for Y0, F0. This
has also been called the grade transformation (Cwik and Mielniczuk 1989).
While this transformation is not widely used or understood in the social
sciences, it is a very useful one, because R measures the relative rank of
Y compared to Y0. It is continuous on the outcome space [0, 1], and we
will call a realization of R, r, the relative data. We will sometimes use the
abbreviation RD for relative distribution.

As a random variable, R has both a CDF and a PDF. Using the method
described at the end of the previous section, we can reexpress the CDF of
R as
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G(r) = F (F−1
0 (r)) = F (Q0(r)) 0 ≤ r ≤ 1,

where Q0(r) is the quantile function of F0, and r represents the proportion
of values.

The PDF of R (which we will call the relative density) can be obtained
as the derivative of G(r) :

g(r) =
f
(
Q0(r)

)
f0
(
Q0(r)

) 0 ≤ r ≤ 1. (2.3)

The relative density can be interpreted as a density ratio. This can be seen
more easily by expressing g(r) explicitly in terms of the original measure-
ment scale, y. Let the rth quantile of R be denoted by the value yr on
the original measurement scale, so the yr corresponding to r is Q0(r). The
relative PDF is then:

g(r) =
f(yr)
f0(yr)

yr = Q0(r) ≥ 0.

Note, however, that while the relative density can be interpreted as a
density ratio, it is a proper PDF in the sense that it integrates to 1 over
the unit interval. A density ratio over the original measurement scale would
not, in general, have this property. The rescaling imposed by the quantile
function – the argument to the functions in the numerator and denominator
of equation 2.3 – is what ensures that the relative density will integrate to
1. Because PDFs are one of the basic building blocks of statistical theory,
the fact that the relative density is a proper PDF provides the relative
distribution with a firm basis for estimation, inference, and interpretation,
and a general framework for methodological development.

To understand the different components that together define the rel-
ative distribution, consider the PDFs of hypothetical reference and com-
parison groups shown in the top panel of Figure 2.2. The reference group
distribution is approximately normal, while the comparison group distribu-
tion has a lower median and is right-skewed. The vertical and horizontal
reference lines on the plot identify the components of the relative distribu-
tion. A solid vertical line is drawn at the quantile corresponding to r = 0.4,
the value of y at the 40th percentile of Y0. Here y(r) = Q0(r) = 6.37. The
density of observations at this value is given by the intersection of this line
and the PDF for each group. This is shown by the two horizontal lines:
f0
(
Q0(r)

)
and f

(
Q0(r)

)
for the reference and comparison group respec-

tively. Note that f
(
Q0(r)

)
is about half of f0

(
Q0(r)

)
. The relative density

is defined as the ratio of these two quantities (see equation 2.3) for every
value r in [0, 1], and this density is plotted in the bottom panel of Figure
2.2. Note that at r = 0.4, the relative density is about 0.5, as the top graph
suggests. For values in the lower two deciles of Y0 (r < 0.2), the relative
density is greater than 1, indicating a greater frequency of observations in
the comparison distribution Y , and in the remaining deciles the value is
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less than 1, indicating a lower frequency of observations in Y . We present
a more detailed discussion of the relative density plot elements with real
data below.

The smoothness of F and F0 ensure that g(r) is continuous on [0, 1]. If
the two distributions are identical, then the relative density is the uniform
probability distribution on [0, 1] and the CDF of the relative distribution
is a 45o line from (0, 0) to (1, 1).

The relative distribution is an intuitively appealing approach to the
comparison problem because the relative data, PDF and CDF have clear,
simple interpretations. The relative data can be interpreted as the per-
centile rank that the original comparison value would have in the reference
population. The relative PDF g(r) can be interpreted as a density ratio: the
ratio of the fraction of respondents in the comparison group to the fraction
in the reference group at a given level of the outcome attribute Y (Q0(r)).
The relative CDF, G(r), can be interpreted as the proportion of the com-
parison group whose attribute lies below the rth quantile of the reference
group. Note that even though the relative CDF is explicitly scaled in terms
of quantiles, the implicit unit of comparison is the value of the attribute on
the original measurement scale, with yr = Q0(r) = F−1

0 (G(r)) representing
the cut-point.

For an example using real data, consider the distributions of men’s
and women’s earnings in 1987. The PDF overlay for these distributions is
shown in the top panel of Figure 2.3, and the relative density of women’s
to men’s earnings in shown in the bottom panel. The relative density at
the 20th percentile of men’s wages is about equal to 2. This means women
are about twice as likely as men to fall at this point of the earnings scale
in 1987; or, equivalently, that the proportion of women with this level of
earnings is about twice the proportion of men. The dollar value at this
quantile, Q0(0.2), can be obtained from the labels on the upper axis, about
$15, 000. The dollar amount is the same for both women and men (yr =
Q0(r) = F−1(G(r))). Thus, each point on the relative PDF represents a
specific earnings level, and as you travel along the relative PDF curve, you
can read off the x and y axes the proportion of men and relative proportion
of women who earned that level of income.

The relative density simplifies comparison in several ways. In contrast
to the direct PDF overlay in Figure 2.3, which requires the viewer to con-
struct the differences between the two curves at each point on the scale,
the relative density codes this comparison directly in terms of a ratio. It
provides a simple visual (and numerical) signal for information that exists
but is not easy to process in the original PDF overlay (Chambers, et al
1983; Cleveland and McGill 1984).

The relative CDF for these two distributions is shown in Figure 2.4.
At the median of the male earnings distribution, r = 0.5, G(r) = 0.83. This
means that approximately 83% of women earn less than the median male.
The upper and right axes are labeled in thousands of dollars, representing
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Fig. 2.3. The distribution of women’s to men’s earnings in 1987.
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the quantiles for men (Q0(r)) and women (Q(r)) respectively. Again the
dollar amount along the CDF of R is constant in both distributions (you can
see that explicitly here because both the upper and right axes are labeled).
Each point on the relative CDF represents a specific earnings level, and as
you travel along the relative CDF curve, you can read off the x and y axes
the proportion of men and women who earned at or below that level of
income. Note that the rescaling imposed by the quantile function is evident
here, especially in the women’s distribution. The distance between dollar
values on the right hand scale is measured in units of persons rather than
dollars. The distance between $15 and $20 is much larger than the difference
between $25 and $30, because there are more people in the former range
than the latter.
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Fig. 2.4. The relative CDF of women’s to men’s earnings in 1987.

In general, the relative distribution is invariant to the scale of the
distributions (up to a monotone transformation). For example, one obtains
the same relative distribution from a comparison of log-attributes as from
the comparison of the attributes. In our application, for example, we would
obtain the same relative distribution from the ratio of earnings as we do
from the difference in log-earnings. We discuss the scale invariance in more
detail in Section 1.2.
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Designating which distribution will serve as the reference distribution is
a decision that must be made by the analyst, but it is often straightforward
in application settings. Natural choices are suggested by time ordering, a
well – understood standard reference group (like men in the example above),
or an experimental control group. If the designation is reversed, the relative
PDF and CDF will be symmetric around the distributional equivalence axis
(g(r) = 1 for the PDF, and the 45o line for the CDF) net of the rescaling.
This changes the displays in predictable ways, and the substantive findings
will be equivalent.

The relative density graph remains close to the original data, allowing
the researcher to identify detailed differences between two distributions.
The result is a more accessible, intuitively meaningful, and informative de-
scription of the data than that afforded by standard summary statistics or
PDF overlays. When the graphical displays above are linked to the decom-
position techniques developed in subsequent chapters, relative distribution
methods become a powerful tool for analysis.

2.3 Using a known reference distribution

In many contexts the relative distribution can be formed using a theoretical
or known distribution as the reference distribution. The typical context is
when the reference distribution is derived from social or statistical theory
and empirical observations are hypothesized to conform to this theory. In
this case we usually have a random sample from some population to use
for comparison, and the primary question is “goodness-of-fit”: How well do
the population observations conform to the theory?

This approach can serve as a useful diagnostic tool in any setting where
statistical assumptions are made for univariate distributions. The classic ex-
ample is residual diagnostics in the regression setting, where distributional
assumptions are key to statistical inference. If the assumptions of linearity,
constant variance, independence, and normality are satisfied then the stan-
dardized residuals should be approximately an independent sample from a
normal distribution with mean zero and variance one. Regression diagnos-
tic plots are often used to assess departures from these assumptions. To
check the normality assumption, we compare the calculated standardized
residuals to a standard normal reference distribution. This graphical test
is traditionally done using a “normal scores” (Q-Q) plot, a P-P plot or a
histogram overlaid with a normal curve. These plots are described in more
detail in Section 2.4.2. While the P-P plot contains the same statistical
information as the relative density, it does not provide an easy graphical
read, largely because the information is coded into the display in a way
that is difficult to extract. A plot of the relative density, by contrast, will
code the relevant information into deviations from a straight horizontal
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line that represents distributional equivalence. In this way, deviations from
normality may be easily observed and interpreted.

Figure 2.5 gives an example of residual plots for a linear regression
model designed to verify the principle of purchasing power parity (see the
Background material to this chapter). Panel (a) is the standard normal
scores (Q-Q) plot. It suggests some non-normality as the curve is bent in
the middle and not globally linear, but the nature of the deviations from
the normal distribution are not easily read from this display. Panel (b)
is the relative distribution of the standardized residuals to the standard
normal reference distribution. Here too one can immediately observe the
non-normality of the residuals, but in this case the nature and magnitude
of the deviations from the normal distribution are clearly visible. There are
too few residuals in the lower tail of the distribution and about twice as
many as expected in the second decile. At the median we have only half as
many residuals as we would expect from a normal distribution. The upper
quartile of the data is somewhat more consistent with the normal, but
there is some evidence of a denser top tail. The patterns of polarization in
the tails suggests nonhomogeneity of variance. This is confirmed by a plot
of the standardized residuals versus the fitted values, which shows larger
variability at larger fitted values.

The reference distribution can also be derived from social theory.
Dagum (1977), for example, develops a model for personal income based
on a theoretical specification of a differential equation to represent the reg-
ularity and permanence of income. The model posits that income follows
a distribution with CDF depending on four parameters (cf., Singh and
Maddala 1976). Many other types of CDFs have been proposed because
they provide close fits to empirical income distributions. Examples include
the Pareto distribution (Pareto 1897), the gamma distribution (Salem and
Mount 1974), the beta distribution (McDonald 1984; Slottje 1984; Slottje
1987), and the income share elasticity models of Esteban (1986) and Ma-
jumder and Chakravarty (1990). These distributions are often chosen more
for descriptive than theoretical reasons, motivated by a balance of parsi-
mony, generality, and ease of use. For both the theoretical and descriptive
models, the CDF of the income distribution can typically be expressed in
a functional form that depends on a small number of parameters. For ex-
ample, Majumder and Chakravarty (1990) propose:

F0(y) = Bw

(1
d

− a

b
,
a

b

)
,

with

w =
(cy)b

(cy)b + d
,

where Bw(·) denotes the incomplete beta function (Abramowitz and Stegun
1965). The parameters a, b, c, and d are each interpretable in terms of in-
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come characteristics. This model includes many of the previously referenced
models as special cases.

To complete the specification, the parameter values can be determined
by theoretical considerations or estimated to produce a close fit to an ob-
served income distribution. The reference distributions determined in this
way are combinations of theoretically motivated and empirically represen-
tative forms. The relative distribution of the observed data to this reference
distribution can be used to diagnose how well the data fit the model, and
where in the distribution the discrepancies occur.

There are many other settings in which relative distributions could also
be used as a diagnostic tool. One example is in survival analysis. Nonpara-
metric (e.g., Kaplan-Meier) estimates of survival curves can be compared
to a reference exponential distribution. The relative density can be used to
identify exactly where the survival function departs from the exponential
process. Relative distributions can also be used to check the assumption of
proportional hazards in survival modeling by comparing the approximate
nonparametric estimates. Another area in which these methods could be
applied is test statistics. Relative distributions can be used to compare a
bootstrap distribution to its theoretically derived asymptotic approxima-
tions. In the Bayesian framework, the relative distribution can be used to
compare posterior to prior distributions, as a distributional analog to Bayes
factors. We return to these issues in Chapter 9, in the context of estimation
and inference. As distributional assumptions and comparisons lie at the
heart of many statistical methods, relative distributions have a wide range
of potential applications.

2.4 History and literature

2.4.1 Statistical origins

The ideas underlying the relative distribution framework have been rec-
ognized in statistics for decades, but explicit study of the relative data,
PDF, and CDF has been uncommon. There are at least three directly rel-
evant threads in the statistical literature. They are motivated by separate
substantive research questions and rarely reference each other.

Parzen (1977; 1992) appears to be the first to systematically study
aspects of the relative PDF as a basis for interdistributional comparison.
He prefers to construct the reference distribution by pooling all groups. If
λ is the proportion of the comparison group in the pooled reference group,
then the CDF of the pooled reference group is

H(y) = λF (y) + (1 − λ)F0(y).

Parzen focuses on the relative distribution of F to H as part of comparison
change analysis and refers to the corresponding relative CDF and PDF as
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the (pooled) comparison distribution and (pooled) comparison density, re-
spectively. He refers to the relative distribution as the unpooled comparison
distribution.

Almost all the work on the pooled comparison distribution is relevant
to the relative distribution, and vice versa. Let GP denote the CDF of the
relative distribution of the comparison group to the pooled reference group.
The interrelationship between the pooled and unpooled relative distribu-
tions can be expressed through the relation:

GP−1(p) = λp + (1 − λ)G−1(p).

Thus there is a 1:1 correspondence between the two relative distributions,
and relationships for one can be expressed in terms of the other. An excep-
tion is some of the material on inference, which relies on the independence
of the comparison and reference samples. We consider inference using a
pooled reference sample in Section 9.3.

Parzen’s students discuss the role of the comparison distribution (Pri-
hoda 1981) and develop kernel density estimation for the comparison den-
sity (Alexander 1989). Alexander is very comprehensive and gives a broad
review of the literature at that time. Eubank and LaRiccia (1987; 1995)
propose a framework for developing summary measures for comparison and
hypotheses testing based on the comparison density. These summary mea-
sures rely on generic features of Hermite and Legendre polynomials to test
for location and scale effects on the oscillation patterns in the relative den-
sity. We discuss these at length in Chapter 10.

Throughout this book we use an unpooled reference group to form
the relative distribution, but we note that a pooled reference group can be
used in almost all cases. The issue is analogous to the choice of reference
category in ANOVA and regression. Using a pooled reference distribution
is equivalent to using the mean as the reference category in ANOVA, while
using a specific comparison group is equivalent to indicator (or “dummy
variable”) specification in regression. We use a distinct reference group,
because we believe this usually leads to more interpretable quantities. For
example, consider the plots in Figures 2.3 and 2.4. The direct comparison
of women to men makes these plots easy to interpret because it presents
an unambiguous contrast. We could have, instead, compared women to the
pooled population of men and women. This would have been more difficult
to interpret, however, because the comparison is then confounded by the
sex composition of the population.

Yet there are situations in which the use of the pooled reference might
be preferable. In some contexts, the comparison of a specific group to a
total population may be of direct interest. Another case is where an indi-
vidual group was too small to provide adequate information for estimating
distributional information. One solution is then to compare the comple-
ment to the total, to identify the contribution of the smaller group. A final
case is when the comparison distribution is so different that the reference
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distribution is effectively disjoint. In that case, the support of the compari-
son distribution may not be contained in that of the reference distribution.
This would never occur if the reference distribution is made from the pooled
samples. However, note that if the support of the reference distribution is
not a subset of the support of the comparison distribution, then using the
pooled reference distribution will probably not represent what we are trying
to capture. For example, suppose there were no men with incomes below
$500, but among women, 20% of the incomes fell in that range. If the sex
ratio in the population was 1:1, then the relative density for earnings below
$500 based on the pooled reference would be about 2 (20% of women vs.
10% of the total population). One might be tempted to interpret this as
meaning that women were twice as likely as members of the general popu-
lation to have earnings below $500. While technically true, this completely
obscures the fact that there is not one man in this income range. In this
case, the relative density may be more effectively estimated using the pooled
reference, but the tradeoff is that we lose key aspects of the comparison.

In separate literature, Cwik and Mielniczuk (1989; 1993) have investi-
gated nonparametric density estimation for the relative PDF. They refer to
equation (2.2) as the grade transformation, because F0 can be thought of
as a grading function. In their terminology, the relative PDF is a grade den-
sity. They develop a kernel estimate for the relative PDF that has uniform
almost sure convergence, and a method for choosing an estimate which is
appropriately smooth. Gijbels and Mielniczuk (1995) generalize these re-
sults (to the Radon-Nikodym derivative) and determine the rates of uniform
almost sure convergence.

In other literature, Li, et al (1996) develop the statistical properties of
the relative CDF under the name of two-sample vertical quantile compari-
son function.

2.4.2 Relationship to probability plots

The relative CDF G(r) is implicitly a theoretical probability-probability
(P-P) plot of F against F0, an empirical version of which was considered
by Wilk and Gnanadesikan (1968). It is the plot {(F (x), F0(x)) : x ∈ IR}
which can be represented in the functional form {(r, G(r)) : 0 ≤ r ≤ 1}
(cf., Chambers, et al 1983). Another allied probability plot is the quantile-
quantile (Q-Q) plot: {(Q(r), Q0(r)) : 0 ≤ r ≤ 1}. This represents a compar-
ison of the quantiles and so is intrinsically measurement scale dependent.
In particular the Q-Q plot will be a straight line when the comparison
and reference distributions differ only in location or scale. See Wilk and
Gnanadesikan (1968) for a description of the strength and uses of probabil-
ity plots. The Q-Q plot can be motivated by a shift-function representation
of the distributions (Doksum 1974):

F0(y) = F (y + ∆(y))
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where
∆(y) = F−1(F0(y)) − y.

Here Y0 +∆(Y0) has the same distribution as Y so that ∆(y) represents the
shift needed to bring Y0 up to Y. The shift-function ∆(y) have also been
studied by Doksum (1976), and Switzer (1976) as measures of treatment ef-
fects. Despite its great value as a tool for comparing distributions, the Q-Q
plot has deficiencies for use in social science applications because it is not
scale invariant. While both Q-Q plots and the relative CDF form a com-
plete summary of the information necessary for comparisons, the relative
distributions are comparable across different time points and under differ-
ent economic conditions, while the Q-Q plots are not. The primary reason
for this is that the relative distribution is invariant to monotone transforma-
tions of the measurement scale, while the Q-Q plots are designed to reflect
the measurement scale.

Holmgren (1995) gives a nice discussion of the merits of the relative
CDF (P-P plots) compared to Q-Q plots for comparing the results of in-
dependent studies, each comparing a treatment to a control group. He also
shows that under appropriate technical conditions the relative distribution
is the maximal invariant – loosely speaking, that it summarizes all the infor-
mation in the comparison between the two distributions that is independent
of the measurement scale.

2.4.3 Relationship to Lorenz curves

One of the primary application areas for relative distribution methods is
the study of inequality. Lorenz curves (Lorenz 1905) and the associated
Gini index summary statistic are the standard method used for inequality
comparisons, so it is natural to examine their relationship to the relative
distribution. The Lorenz curve can be shown to be a particular kind of
relative distribution, but relative distributions are more general in three
key ways.

Lorenz curves are effectively CDFs: the cumulative fraction of Y that is
held by the p% of the population with lowest values of the attribute. When
everyone in the population has the same value of Y , the Lorenz curve is a
45◦ line joining (0, 0) to (1, 1). All other distributions curve below this.

To understand the link between Lorenz curves and relative distribu-
tions, it is necessary to understand what the Lorenz PDF represents. The
PDF of a Lorenz curve is the rescaled density ratio of two distributions.
The denominator is the income distribution: the fraction of earners at each
level Y . The numerator can be called the “dollar” distribution. Just as
each person is associated with an income level, each dollar in the economy
is associated with the income level that produced it. The dollar distribution
represents the likelihood that a given dollar came from a person with that
income level, or equivalently, the fraction of the total dollars that are al-
located to each income level (leaving aside point mass issues). The Lorenz
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PDF is the rescaled density ratio of dollars to people at each level Y of
income, and the Lorenz curve is therefore the CDF of a particular form
of relative distribution. Using the notation from above, RL is the grade
transformation of the dollar distribution by the income CDF (we will call it
the Lorenz grade transformation), and GL(r) is the corresponding relative
CDF, the Lorenz curve.

The fundamental difference between the two approaches is that a
Lorenz curve is defined by comparing two attributes within a single popu-
lation (e.g., dollars and people), while relative distribution techniques com-
pare attributes across two populations. To compare two groups using Lorenz
curves, the Lorenz curve for each is constructed, graphically overlaid, and
examined. The relative distribution, by contrast, compares one distribution
directly to the other, using a single curve to encode the differences.

Another key difference is the unit of measurement. Lorenz curves map
cumulative shares of Y to cumulative shares of population. Absolute equal-
ity is represented by a 45◦ line, and inequality is measured by the deviation
of the Lorenz curve from this line. For example, the Gini index is defined
to be twice the area between GL(r) and the 45o line:

Gini(F ) = 2E
(
RL

)− 1.

a rescaled mean of the Lorenz grade transformation. If the Lorenz curves for
different groups do not cross, the groups can be ordered in terms of inequal-
ity by the curves or Gini indices, otherwise ordering is ambiguous. Relative
distributions, by contrast, map population quantiles to population quan-
tiles, for each level of Y . Distributional equivalence, rather than absolute
equality, is represented for the relative CDF by the 45◦ line. Compara-
tive (rather than absolute) inequality is represented by summary measures
based on the relative PDF or CDF (see Chapter 5). While inequality is a
natural application area for relative distribution methods, they are appli-
cable to a much wider range of topics.

A final key difference concerns the level of scale invariance. Lorenz
curves (and the summary measures based on them) are multiplicatively
scale invariant, i.e., two distributions will have the same Lorenz curves if,
and only if, they differ by a simple multiplicative constant. The relative dis-
tribution, by contrast, is invariant to all monotonic transformations of the
original measurement scale. Relative distributions of the raw attribute, the
log-attribute, or any other monotonic transformation of the attribute are
equivalent. This means that the relative distribution makes less restrictive
assumptions about the underlying utility functions in the inequality con-
text, requiring only that they be monotonic. We shall call this the principle
of strong scale invariance. Whenever this principle holds, the relative distri-
bution plays the primary role in comparisons, in the sense that it contains
all the information necessary for comparing distributions, making the min-
imal assumptions necessary for valid comparison. Holmgren (1995) shows
that under appropriate technical conditions the relative distribution is the
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maximal invariant. This means, loosely speaking, that any other quantity
that contains the same information does not satisfy the principle of strong
invariance (cf.,Lehmann 1983). It does not mean that the relative distri-
bution is inappropriate when the assumptions are not known to hold, only
that other comparisons may exist that can not be exclusively expressed in
terms of the relative distribution.

2.4.4 Relationship to other econometric methods

With the dramatic changes in earnings distributions over the past three
decades (for a review cf., Danziger and Gottschalk (1996)), and the limita-
tions of the traditional Lorenz-based measures, the development of alterna-
tive methods for measuring distributional differences has become somewhat
of a growth industry. Some of the methods are simple descriptive mea-
sures based on quantiles, for example, the 90:10 ratio, Q(90)/Q(10), and
its cousins the 90:50 and 50:10 ratios. Plotted as a time series, these are
quite effective at representing changes in the tails of the earnings distribu-
tion (e.g., Smeeding and Gottschalk 1996). In addition, they are convenient
to calculate. More detailed versions of quantile-based plots can be found in
Karoly (1993), where ratios for each decile are constructed over time (e.g.,
Qp(t)/Qp(t − i); p = 10, 20, ..., 90; i = 1, ..., t). We discuss quantile-based
methods in in Chapter 13.

In a spirit more similar to the relative density, Picot, et al (1990)
work with a decile-based density ratio of earnings over time. The result
is a histogram-like display, where the height of the bars represents the
relative fraction of the comparison group in each decile of the reference
group distribution. These methods provided the initial inspiration for the
development of the relative distribution framework. Other authors have
used density ratios based on a breakdown of the earnings scale into upper,
middle, and lower class (or more accurately, income). Like the quantile
ratio plots, these density ratio histograms provide a simple and convenient
visual display for tracking the broad forms of distributional difference. The
drawback to these methods is the absence of a general theoretical basis.
Without this basis, the methods are limited to simple descriptive tasks.
They provide no framework for decomposition, or for statistical estimation
and inference. We discuss decile-based versions of the relative density in
Chapter 9.

In the regression setting, Juhn, et al (1991) develop a method for iso-
lating the impact of distributional changes in location (mean) and scale
(variance) on mean wage differences between two groups. They apply their
method to investigate the race-gap in wages, and Blau and Kahn (1994)
apply it to the gender-gap. Their method is derived from the classic re-
gression decomposition that separates changes in covariates (the X ′s) from
changes in the “returns” to the covariates (the regression coefficients, or βs).
The method partials out a series of terms representing changes in covariate
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means, estimated returns to the covariates, changes in the mean residual
earnings gap between the groups, and changes in the standard deviation of
the men’s residual earnings variation:

Dt − D0 = (δXt − δX0)βt + (βt − β0)δXt

+ (δθt − δθ0)σt + (σt − σ0)δθt.

Here, Dt −D0 is the change in the mean wage gap between two groups
from year t to year 0, δX represents the group difference in covariate means
(e.g., education), β represents the estimate of the regression coefficient for
the reference groups (the “returns” to the covariate), δθ represents the
group difference in the average standardized residual (effectively the inter-
cept difference for the group-specific regression estimates), and σ represents
the standard deviation in the reference group’s residual wage distribution.
Interested readers are referred to the papers cited above for a more detailed
explication.

While this method has the benefit of continuity with previous decom-
position techniques, it also suffers from some of their drawbacks. First, it
works only with average differences. Even though the residual wage dis-
tribution and the reference group’s standard deviation are included, both
distributions are collapsed into single number summaries: the average resid-
ual wage gap, and the standard deviation in the reference group residual
wage distribution. This makes it impossible to examine how changes in the
two distributions affect the relative density of each group at different levels
of the earnings scale. Second, this method does not separately identify and
estimate the effects of the changes in distributional shape for each group.
Instead, the two are summarized and combined in the third term, which
reflects simply the changes in the mean residual wage gap multiplied by
the reference group’s standard deviation. This has the effect of confound-
ing the two shape shifts, again removing the level of detail needed to answer
the most interesting questions – such as whether women’s gains were due
mainly to upgrading in their own wage distribution or to downgrading of
the men’s earnings. Finally, there is no graphical display to provide an in-
tuitive feel for what the estimates imply. A fully distributional approach
to location, shape, and covariate decomposition is possible in the relative
distribution framework, and this is developed in Chapters 5 through 8.

DiNardo, et al (1996) use the general approach of forming composi-
tionally adjusted distributions in order to isolate the marginal effects of
changes in the covariate distribution on changes in the distribution of earn-
ings. They apply this method to investigate the role of the minimum wage
freeze and declining union density on the growth in earnings inequality
over the 1980s (see also DiNardo and Lemieux 1996). These methods are
largely subsumed by the relative distribution framework, and we take up
the question of covariate adjustment in Chapter 7.

A final important method for tracking distributional change that has
emerged from the econometric literature is quantile regression (Buchinsky



Background material 37

1995). We consider this in detail in Chapter 13.

2.4.5 Relationship to receiver operating characteristics curves

The relative CDF is also an ordinal dominance curve (ODC) used in the
evaluation of the performance of medical tests for separating two groups
(Bamber 1975). It is directly related to the receiver operating characteristic
curve (ROC) through the relationship ROC(r) = 1 − G(1 − r). In this
context, Hsieh (1995), Li, et al (1996), and Hsieh and Turnbull (1996) use
an empirical process approach to describe the properties of ODC and ROC
curves. In the guise of ROC methods the relative CDF is used extensively
in a variety of fields (Begg 1991; Campbell 1994; Swets and Pickett 1982).

As noted above, a closely related quantity to the relative PDF g(r) is
that of the density ratio: h(x) = f

(
x
)
/f0
(
x
)
, x ∈ IR, considered by Silver-

man (1978). It is a key element of discriminant analysis (Hand 1982) and
likelihood-ratio methods. Note that h(x) = g

(
F0(x)

)
and g(r) = h

(
Q0(r)

)
.

Absava and Nadareishvili (1985) study nonparametric estimation of the
density ratio.

Background material

Section 2.1

Kelly (1994) is a careful and readable introduction to the probability theory
underlying the methods in this book. He goes into much greater depth than
is required here and either that book or one similar should be consulted if
the brief descriptions given in the text require reinforcement. Appendix A
in Kelly’s book provides a good review of ideas from calculus and discrete
mathematics useful for a complete understanding of the technical material
here and in later chapters. Rice (1995) provides an introduction to mathe-
matical statistics that gives special attention to data analysis and graphical
displays. The level is appropriate for the methodology presented here, and
the book can also be used as a reference for concepts not fully covered here.

Section 2.2

Simonoff (1996) describes how to estimate the population density from a
sample when at least weak prior beliefs about the density (e.g., smoothness)
are held. Conceptually these methods allow much more information to be
extracted from data than is possible when no formal assumptions are made
about the population. We consider these issues in depth in Chapter 9.
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Section 2.3

The principle of purchasing power parity states that over long periods of
time exchange rate changes will tend to offset the differences in inflation rate
between the two countries whose currencies comprise the exchange rate. To
verify this principle, Chatterjee, Handcock, and Simonoff (1995, page 153)
consider a sample of 44 countries for the years 1975–1990. The target vari-
able represents the estimated average annual rate of change of exchange
rates from 1985 to 1990. The predicting variable represents the estimated
average annual rate of change of the differences in wholesale price index
values for the country versus the United States. The data were originally
derived and supplied by Professor Tom Pugel of New York University’s
Stern School of Business, based on information given in the International
Financial Statistics Yearbook, which is published by the International Mon-
etary Fund. The residuals are from the regression model, excluding Iran,
and are given on page 161.

Computational issues

Almost all standard statistical packages contain facilities for representing
probability mass functions (bar charts), probability densities (histograms,
frequency polygons), and fixed bin-width histograms. At the heart of rela-
tive distribution methods is the need for nonparametric density estimation.
This issue is considered in depth in Chapter 9. Increasingly, many of these
packages also contain nonparametric CDF and density estimation routines.
Code for the relative density and CDF for standard packages such as SAS
and S-PLUS is directly available from the website for this book. Many
additional references are given by Simonoff (1996).

There are many sources for software to perform ROC-type analyses.
Elizabeth J. Atkinson contributed S-PLUS code to the S-news electronic
mailing list, which can be found in the S-news directory of statlib. The
Hmisc library of S-PLUS functions written by Frank E. Harrell contains
code for ROC estimation, and also for summary statistics useful for dis-
tributional comparison. The library is available from statlib. Harrell’s
website contains much information and software for distributional analysis,
in addition to information on using S-PLUS.

Exercises

Exercise 2.1. Describe and graphically sketch some examples from real ap-
plication contexts where one might expect the principle of strong scale in-
variance not to hold. What do the deviations from the principle represent?
Are these important substantively?



Exercises 39

Exercise 2.2. Suppose that X is a discrete random variable giving the total
number of successes from n independent experiments where the probability
of success in each experiment is p. The distribution of X is referred to as
the binomial distribution. Let x! be the number of possible permutations
of x distinct objects. By convention 0! is defined to be 1. Show that the
probability mass function of X is

P (X = x) =
(

n

x

)
px(1 − p)n−x x = 0, 1, . . . , n.

Here (
n

x

)
=

n!
x!(n − x)!

is the number of possible combinations of n objects taken x at a time
(ignoring the order of selection).

Exercise 2.3. Suppose that Y is a discrete random variable giving the pro-
portion of successes from n independent experiments where the probability
of success in each experiment is p. Note that the support of Y is a subset of
[0, 1]. Using the result in Exercise 2.2, derive the probability mass function
of Y.

Exercise 2.4. Suppose we have n = 5 experiments and p = 0.25. For the
random variable in Exercise 2.3, determine P (Y > 1

2 ). Is it greater than
P (0.3 < Y < 0.7)?

Exercise 2.5. Consider the random variable in Exercise 2.3 with n = 5
experiments and p = 0.25. Plot the probability mass function of X. Deter-
mine the CDF of X. Graph the CDF separately from the probability mass
function.

Exercise 2.6. Calculate the expectation of the random variable in Exercise
2.3. Give a heuristic reason for the value it takes. Calculate the variance
and standard deviation of the random variable.

Exercise 2.7. Consider a discrete random variable that takes the values
0, 1/n, 2/n, . . . , n with equal probability. Calculate the expectation of this
random variable. Give a heuristic reason for the value it takes. Calculate
the variance and standard deviation of the random variable. How do these
numbers compare to those for the distribution in Exercise 2.3?

Exercise 2.8. Suppose that X is a continuous random variable with proba-
bility density function

f(x) =
{

Cx(1 − x) 0 < x < 1
0 otherwise

.

What is the value of C? Determine P (X > 1
2 ). Is it greater than P (0.3 <

X < 0.7)?
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Exercise 2.9. Plot the PDF of the random variable in Exercise 2.8. Deter-
mine the CDF of the random variable. Graph both the PDF and CDF on
the same plot.

Exercise 2.10. Calculate the expectation of the random variable in Exercise
2.8. Give a heuristic reason for the value it takes. Calculate the variance and
standard deviation of the random variable. How do these numbers compare
to those for the uniform distribution on [0, 1]?

Exercise 2.11. Suppose that X is a discrete random variable. Let Y = aX+b
be a function of X where a and b are constants. Show that

E[Y ] = aE[X] + b,

and
Var[Y ] = a2Var[X].

Exercise 2.12. Answer Exercise 2.11 when X is a continuous random vari-
able.

Exercise 2.13. The conditions that F and F0 be absolutely continuous with
continuous densities are stronger than is necessary for most of the properties
of the relative distribution to apply. Show that if F is only continuous
then R has the uniform distribution on [0, 1]. In general, that is, for F not
necessarily continuous, show that G(r) ≤ r, 0 ≤ r ≤ 1, with equality
failing if and only if r is not in the closure of the range of F.



Chapter 3

Location, Scale and Shape
Decomposition

Differences between distributions can be divided into two basic components:
changes in location and changes in shape. If the comparative distribution
is a simple location-shifted version of the reference distribution, that is,
F (x) = F (x − c) or F (x) = F (x × c) for some constant c, then the dif-
ference between the two distributions can be parsimoniously summarized
by this shift. Differences that remain after a location adjustment are dif-
ferences in “shape” – a general concept that comprises scale, skew, and
other distributional characteristics. In this chapter, we develop a general
approach to decomposing the overall relative distribution into component
relative distributions that represent differences in location and shape.

Location and shape shifts have substantive, as well as technical, mean-
ing. In the earnings context, for example, a pure location shift would occur
if every income were multiplied by the same factor, e.g., if every earner re-
ceived the same cost of living adjustment. The entire earnings distribution
would then be moved up (or down) on the dollar scale, but the underlying
shape of the distribution would remain constant. The median earner’s per-
centage increase (or decrease) in this case would summarize the experience
of the entire workforce. A shape shift, by contrast, would occur if earners
were redistributed along the earnings scale, keeping the location constant.
The “declining middle class” scenario provides one example of such a redis-
tribution, with earners moving from the middle of the distribution into the
upper and lower tails. But other scenarios are also possible, with growth
occurring in the upper tail (a pattern consistent with job upgrading), the
lower tail (a pattern consistent with a declining real minimum wage), or
the middle of the distribution (a pattern consistent with a more egalitar-
ian restructuring of wages). In all of these cases, the change in the median
earner’s income would not necessarily represent the experience of earners
in other sections of the distribution.

Simple changes in location and shape are easy to identify in the relative
density display. Two examples using simulated data are shown in the panels
of Figure 3.1. The top two panels show the impact of a location shift,
first as a PDF overlay, then as the relative density. The distribution for
the comparison group is left-shifted relative to the reference group, but it
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d. Relative Density for Shape Shift

Fig. 3.1. Location and shape shifts in a hypothetical distribution. Panels a and b
are the effect of a location shift on the PDF and relative PDF, respectively. Panels
c and d are the effect of shape shifts on the PDF and relative PDF, respectively.
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has the same shape. The relative distribution of comparison to reference
observations in the right panel thus displays a simple monotonic decline.
At the bottom of the response scale, there are relatively more observations
in the comparison group than the reference group. The relative distribution
shows this, as it is well above 1, and the value it takes can be interpreted
to mean that comparison observations are about 4 times more likely than
reference observations to be at the bottom of the scale. At about 0.5 on
the response scale, the PDFs of the comparison and reference groups are
about equal. This is where the distributions cross on the left panel, and
where the relative distribution takes the value 1 on the right panel. From
this point on, the 40th percentile of the reference distribution, there are
more reference than comparison observations, and the relative distribution
drops below 1. The value it takes near the top of the scale, about 0.4,
indicates that comparison observations are about 60% (100(1 − 0.4)) less
likely to be at the top than reference observations. Simple location shifts
will always show a monotonically declining or inclining (if the comparison
group is right-shifted) relative density like this.

In the bottom two panels, a scale shift is depicted. Here, the compar-
ison group has a more “polarized” distribution than the reference group:
there are more comparison observations at the top and bottom of the scale,
and fewer in the middle. The relative distribution for this kind of shift
takes a simple U-shape. At the top and bottom of the scale, comparison
observations are about 2.5 times more likely than reference. In the middle,
comparison observations are about 30% less likely than reference. Simple
scale shifts will always take a parabolic shape in the relative density, U-
shaped if the comparison distribution has relatively more spread than the
reference, and inverted-U if the comparison distribution has relatively less
spread.

In both cases, the relative density provides a simple, intuitively ac-
cessible picture of the distributional difference. Location or shape shifts
operating in isolation can be quickly identified, and the impact can be ob-
served and quantified across the whole response scale. In most applications,
however, such simple shifts are unlikely to be observed. When both types
of shifts are operating, or when factors other than scale are changing in the
shape component, we need a way to separate out the various effects. The
methods for this are developed below.

It should be noted that location and shape as defined in this chapter
are atheoretic from the social science standpoint. They represent changes in
the first two moments of the distribution rather than the underlying social
process: the effect rather than the cause. The decomposition technique is
therefore a descriptive rather than an explanatory tool. Description is an
important first step in analysis, however, as it is necessary to understand
what has changed before attempting to explain why. In later chapters, we
will present methods for covariate adjustment that take the next step to-
wards explanatory modeling.
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3.1 Decomposing the relative distribution

Overall the relative distribution and its associated summary statistics are
scale-invariant, but in general this is not true for the location, scale and
other components identified through decomposition. Any form of location
shift can be used for decomposition, but the results will depend on the scale
adopted. This is because the concept of location shift is inherently scale
dependent: a multiplicative shift changes the distribution in a different way
than an additive shift. If we want to identify the effect of a location shift
and separate it from other changes in the distribution, it is necessary to
specify what scale this shift operates on. The choice of scale is application
specific, and the analyst should choose the scale according to the nature of
the data.

In the discussion below, we use an additive mean shift. This choice
highlights the similarities and differences with the decomposition of variance
in the linear model context. In many of the empirical chapters of this book,
however, we use an additive median location shift instead. The median
because population quantiles are a natural, robust and scale invariant unit
of measurement, and an additive shift because the data are transformed
to the log-scale. These and many other methods for location shifts can
be used in the decomposition approach presented below. In each case the
development is the same, with the alternative transformations replacing the
additive mean shift used in the exposition.

Reversing the reference and comparison group designations will change
the estimated effects of the location and shape shifts, and associated sum-
mary statistics, because these are defined in terms of the reference group
scale. In general, however, this will not change the ranking or nature of the
effects, and will therefore have little impact on the substantive findings.
The choice is analogous to the selection of a reference category in dummy
variable regression.

We start here by decomposing the relative distribution into location
and shape components. The approach is easily generalized to further de-
compose the shape component into pieces that represent higher moments
of the distribution. We consider these in the next section.

Let Y0L denote a random variable describing the reference group
location-adjusted to have the same mean as the comparison group. For an
additive mean shift, we define Y0L as the random variable Y0 + ρ where
ρ = µY − µY0 . The CDF of Y0L can be written as F0L(y) = F0(y − ρ). The
density corresponding to F0L is f0L(y) = f0(y −ρ). Y0L defines a hypothet-
ical group which has the location (here the mean) of the comparison group,
but the shape of the reference group.

From these three distributions – Y0, Y0L and Y – we can construct two
RDs that represent the effects of the location and shape changes. Gener-
alizing the notation of Chapter 2, let R ≡ R0 = F0(Y ) be the relative
distribution of Y to Y0. To isolate the location shift we take the RD of



3.2 Further decomposition of shape 45

Y0L to Y0, denoted R0L
0 = F0(Y0L) = F0(Y0 + ρ). R0L

0 will have a uniform
distribution when the comparison and reference groups have the same lo-
cation. To isolate the shape shift we take the RD of Y to Y0L, denoted
R0L = F0L(Y ) = F0(Y − ρ). R0L will have a uniform distribution when,
net of location shifts, the two distributions have the same shape.

This can be represented in terms of the density ratios from (2.2):

f(yr)
f0(yr)

=
f0L(yr)
f0(yr)

× f(yr)
f0L(yr)

(3.1)

or, in more heuristic terms:

overall relative
density

=
density ratio for

the location difference
× density ratio for

the shape difference
(3.2)

The graphical display of the decomposition RD densities, which we will
denote by g0, g0L

0 , and g0L, respectively, provides a useful visual summary
of the relative size and nature of the components.

Technically, these two effects form an exact decomposition of the rela-
tive distribution of Y to Y0 in the sense that R0L is the relative distribution
of R0 to R0L

0 . The density ratio for the location effect is a proper density
(i.e., it integrates to 1). The density ratio for the shape effect in general is
not, because of the scale change imposed by using f0L rather than f0 as the
reference distribution for R0L. The shape density ratio in (3.1) instead pre-
serves the cut-points, yr, so that the location and shape effects are applied
at the same value of yr.

To make the rescaling explicit, we can express the relationship between
the densities as:

g0(r) = g0L
0 (r) × g0L(p) 0 ≤ r ≤ 1, (3.3)

where p = F 0L
0 (r), the CDF of R0L

0 . Note that r is the percentile in the
reference group for a given value of the attribute, yr, and p is the percentile
in the location-adjusted group at that same value.

3.2 Further decomposition of shape

The decomposition in the previous section defined shape as the residual
differences that remain after an adjustment is made to match the locations
of the two distributions. In this section we further decompose the shape
component to pull out the difference in scale between the two distributions.
If the comparative distribution is a simple location-scale shifted version of
the reference distribution, that is, F (x) = F (x−c

s ) for some constants c and
s, then the difference between the two distributions can be parsimoniously
summarized by these two characteristics (cf., the location-scale quantile
regression models in Chapter 13). Differences that remain after a location
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and scale adjustment are now residual differences in shape. To distinguish
this definition of shape, we refer to it as residual shape. Our measure of
scale in the example here is the standard deviation. As with location, other
measures of scale can and should be used where appropriate.

Let Y0LS denote a random variable describing the reference group
location-scale adjusted to have the same mean and standard deviation
as the comparison group. Let σ(Y0) and σ(Y ) be the standard devia-
tions of the reference groups respectively, and define ν = σ(Y )/σ(Y0)
. For an additive location and scale shift, we define Y0LS as the ran-
dom variable ν(Y0 − µY0) + µY The CDF of Y0LS can be written as
F0LS(y) = F0((y −γ)/ν), where γ = µY −νµY0 . The density corresponding
to F0LS is f0LS(y) = f0((y − γ)/ν)/ν. Y0LS defines a hypothetical group
which has the location (here the mean) and the scale (here the standard
deviation) of the comparison group, but the residual shape of the reference
group.

Let R0LS
0 = F0(Y0LS) be the relative distribution of Y0LS to Y0, R0LS

0L =
F0L(Y0LS) be the relative distribution of Y0LS to Y0L and R0LS = F0LS(Y )
be the relative distribution of Y to Y0LS . The first level is the location-scale
adjustment and the second measures the additional effect of the scale above
and beyond location.

The decomposition can again be represented in terms of the density
ratios:

f(yr)
f0(yr)

=
f0L(yr)
f0(yr)

× f(yr)
f0L(yr)

=
f0L(yr)
f0(yr)

× f0LS(yr)
f0L(yr)

× f(yr)
f0LS(yr)

(3.4)

or, in more heuristic terms:

overall relative
density

=
density ratio for
difference due to

location
×

density ratio for
difference due to scale

after adjusting for location

× density ratio for
residual shape difference

(3.5)
As before, these three effects form an exact sequential decomposition of
the relative distribution of Y to Y0 in the sense that R0LS is the relative
distribution of R0 to R0LS

0 , and that R0LS
0L is the relative distribution of

R0LS
0 to R0L

0 .
The density ratio for the effect of the location difference is again a

proper density ratio because it uses f0 as the reference distribution. The
other components are in general not proper densities, but they do represent
the multiplicative increment at the right point of the outcome scale, yr. The
relative densities for all the components can again be graphically displayed.
Mathematically, the relationship between the densities is:
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g0(r) = g0L
0 (r) × g0LS

0L (p) × g0LS(q) 0 ≤ r ≤ 1,

where p = F0L(r) and q = F0LS(r). Note that r is the percentile in the
reference group for a given value of the attribute, yr, while p and q are the
percentiles in the location and location-scale adjusted group at that same
value, respectively.

This sequential approach can be extended to additional parametric
effects. If, for example, we wished to extract that component of residual
shape that was normally distributed we would define a hypothetical group
with CDF FG(y) = Φ

(
(y − µ(F ))/σ(F )

)
where Φ(·) is the CDF of a nor-

mal distribution with mean zero and standard deviation one. The residual
shape term would be decomposed into a term that measured the devia-
tion of reference group from normality and a final residual shape term that
measured the deviation of the comparison group from the normalized ref-
erence group. Generally, if it was believed that the relative CDF of the
comparison group to the location-scale adjusted reference group group was
V (p), 0 ≤ p ≤ 1, then we would define a hypothetical group with CDF
FG(y) = V

(
F0((y − γ)/ν

)
and decompose the residual shape term relative

to this distribution. Each parametric effect measures the additional impact
of the parametric term in the sequence while the final term measures the
residual shape effect. Altering the order of the parametric terms in the se-
quential decomposition will, in general, change the size of their effects, as
in any sequential decomposition. This can be informative about the joint
and individual impacts of the different terms.

Exercises

Exercise 3.1. Recall that a distribution is defined as symmetric if F0(θ−x) =
1 − F0(θ + x) for all x where θ is the median of F0. Suppose that F0
is a symmetric distribution Suppose the F (x) is a location-scale adjusted
version of F0, that is, F (x) = F0((x − θ)/θ). Will the RD be symmetric? If
so, give a proof of the result. If not, give a counter example.

Exercise 3.2. Using the CPS earnings data for men and women in 1997,
decompose the relative distribution into location, scale and residual shape
shifts. Use men as the reference distribution, the raw (untransformed) earn-
ings, an additive mean location adjustment, and a standard deviation scale
adjustment. Interpret each component. Do the patterns in the residual
shape component suggest any substantive hypotheses?

Exercise 3.3. Repeat Exercise 3.2, using women as the reference distribu-
tion. What changes and what remains the same? Do the substantive findings
change? Are patterns now visible in the display that were less visible when
men were used as the reference population?
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Exercise 3.4. Repeat Exercise 3.2, using log-earnings, an additive median
location adjustment, and an additive standard deviation scale adjustment.
Describe any differences in the substantive findings.

Exercise 3.5. Repeat Exercise 3.4, using an additive IQR scale adjustment.
Describe any differences in the substantive findings.

Exercise 3.6. Is one or the other of the location and scale adjustment alter-
natives more appropriate in this context? Explain why.
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Application: White Men’s Earnings
1967–1997

4.1 Background

Previous research has shown that the earnings of American workers went
through a series of dramatic changes over the last three decades. After
years of strong growth, real wages began to stagnate in the 1970s (Bell
and Freeman 1986), especially for workers with low education levels (Juhn
and Murphy 1993). Poverty rates began to rise, after decades of steady
contraction (Sawhill 1988), and the convergence of black to white earn-
ings slowed noticeably (Juhn, et al 1991). The trend that attracted most
attention, however, was the unprecedented growth in wage and earnings
inequality during the 1980s. Using standard measures like the Gini index,
researchers in the mid-80s documented increases on the order of 20–30%.
Good reviews of this literature can be found in Levy and Murnane (1992)
and Danziger and Gottschalk (1996). Much research has since been done
to identify the origins of these large and rapid shifts. A number of factors
appear to have contributed, including demographic changes (for contrast-
ing views, see Dooley and Gottschalk 1982; Schrammel 1998; Welch 1979),
industrial shifts (Danziger and Gottschalk 1993; Harrison and Bluestone
1988; Kosters and Ross 1987; Rosenthal 1985), technological changes that
penalize workers with less education (there is more theory than evidence
to support this, cf., Howell, et al 1998 for a critical review of the litera-
ture), changes in international trade and the “globalization’ of access to a
low-wage workforce (Sassen 1988; Wood 1994), the decline of worker’s insti-
tutional protections like unions and the minimum wage (Card and Krueger
1995; DiNardo, et al 1996), and the reorganization of work and production
at the firm level (Belous 1989; Cappelli 1995; Harrison 1994).

While much insight has been gained from this research, a fundamen-
tal question remains unanswered: Are the many changes in labor market
structure leading toward a brighter, higher wage future for American work-
ers (albeit through a bumpy transition), or are these changes producing a
permanent rise in inequality?

Those who see a brighter future typically argue that the driving force
behind these trends is a disparity between the high skill requirements of
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postindustrial jobs, and the mediocre education and training which certain
groups of workers bring to the labor market. The service economy shift,
by upgrading rewards to the educated, is increasingly leaving behind the
uneducated – especially poor women and minorities. Rising inequality thus
results from insufficient human capital, and proponents of this view call for
the institution of supply – side solutions, such as education and training
programs, to remedy the problem (Berlin and Sum 1988; Johnston and
Packer 1987). For these theorists, inequality will decline once supply catches
up with demand.

Those who are less optimistic about the future argue that the shift to a
service-based economy has produced an increasingly polarized job distribu-
tion: an upper tier of jobs with high wages, security, and mobility opportu-
nities; a bottom tier of dead-end, low skill, often temporary and part-time
jobs with low pay and security; and a dissipating middle range. Ultimately,
they argue, the problem lies with the type of jobs being generated by in-
dustrial restructuring. Supply-side policies that emphasize education and
training cannot overcome the increasingly polarized structure of demand,
though they may alleviate the plight of those at the very bottom, i.e., the
“underclass” (Auletta 1982; Harrison and Bluestone 1988; Sassen 1988).
From this perspective, the increases in inequality are seen as relatively per-
manent, and unlikely to change unless the course of industrial restructuring
is changed.

The two theses imply quite different trends in empirical inequality. The
first implies an upgrading of the wage distribution: growth of jobs in the
upper tail of the distribution, initially leaving behind a stagnant segment
of unskilled jobs and workers in the lower tail, but eventually resulting
in better wages and jobs for all. The second implies a steady, increasing
polarization of the wage distribution: workers moving toward high- and
low-wage jobs, away from the middle, generating a U-shaped distribution
relative to the baseline.

These two patterns are quite distinct, and it should be a straightfor-
ward task to identify which is supported by the data. Empirical investi-
gation, however, has been handicapped by methods that do not provide
access to full distributional information. As a result, it has been difficult
at times to gain consensus even on the most basic descriptions of the pro-
cess: whether inequality has increased, the timing of distributional changes,
which groups in the population are experiencing changes, and whether the
trends are statistically significant. Relative distribution methods make this
a simple and interesting task.

4.2 Data

The data are drawn from the annual March Supplement of the U.S. Current
Population Survey (CPS) 1967 through 1997. The sample examined here
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consists of white males, aged 16-66, and excludes the self-employed, full-
time students, as well as those in the military and in farming (trends for
other race and sex groups are examined in Chapter 6). We take real annual
earnings as our income variable, defined as the income respondents reported
receiving in wage and salary before deductions during the previous year, and
deflated using the “Personal Consumption Expenditure” (PCE) deflator
(United States Department of Commerce 1997) The PCE deflator tends
to register lower levels of inflation than the “Consumer Product Index”
or (CPI), thus real wages will rise more when the PCE deflator is used.
The reported earnings were top-coded at varying levels through the years,
starting at $50,000 in 1967 and rising to $200,000 by 1997. We have imputed
values for these topcoded earnings in each year (about 0.5% of the cases)
using a Pareto distribution. The mean of these imputed values is about 1.45
times the topcode; the value traditionally assigned to topcoded earnings.

It is worth noting that several conventional proxies are used in opera-
tionalizing the hypotheses of this analysis. First, while much of the debate
is about changes in the number of jobs at different wage levels, we analyze
the number of workers at each level. This proxy is used out of necessity
since the major reliable data sets take the individual, not the job, as the
unit of analysis. Second, while theories often talk about jobs in terms of
their skill content, the analysis here is limited to earnings. This is because
the first task of any analysis is descriptive rather than explanatory. Here
we wish to provide a simple documentation of the trends in inequality. In
Chapter 8 we will examine some of the skill-based claims using statistical
extensions of the relative distribution techniques developed in the following
chapters, but direct measurement of skills is a thorny problem (see Spenner
1985). This is especially true when studying trends over time, since the
most common source of job skill measures, the Dictionary of Occupational
Titles, has made substantial changes in skill and occupational definitions
over the past two decades. Clearly, investigating the relations among skills,
education, and wages, and differences in trends for each, remains a critical
issue at both conceptual and empirical levels (see Howell and Wolff 1991).

The CPS March earnings series has been used in many studies of wage
inequality. Note, however, that annual earnings reflect both the wage of
a job or jobs (a demand side indicator) and the hours worked by the re-
spondent (a supply side indicator). Earnings provide a good picture of the
net impact of labor market changes on the living standard of workers, but
there are other measures that are better suited to other questions. A better
measure of changes in the structure of jobs would be hourly wages, which
removes the confounding effect of hours worked (Juhn and Murphy 1993;
Murphy and Welch 1992). We turn our attention to wages in Chapter 8. An
alternative measure of living standard is household earnings; as many work-
ers pool income with other household members. Household earnings can
also be used to investigate the changing contribution of husbands, wives,
and others to the family income pool (Cancian 1998). Finally, the longer



52 Chapter 4. Application: White Men’s Earnings 1967–1997

term impacts are perhaps best reflected by measures of wealth, rather than
income (Wolff 1995).

To better understand the advantages of the relative distribution frame-
work, we will compare it to more traditional methods for analyzing these
data.

4.3 Findings

Using traditional descriptive techniques, the simple task of presenting the
earnings trends over a 30-year period is more difficult than it might seem.
Capturing the key distributional changes in a parsimonious and inter-
pretable way over this long of a time series is a challenge. While PDF
overlays are a good tool for comparing two or three distributions, 30 over-
laid PDFs would be virtually impossible to decode.
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Fig. 4.1. The Gini index for annual earnings: 1967–1997.

One standard approach would be to summarize the distributional in-
formation into the Gini index and plot the Gini series over time. This plot
is shown in Figure 4.1. The Gini series conveys the clear message that in-
equality has risen over the last 30 years, and that the rates of change have
varied. In particular there seems to be a dramatic rise in inequality in the
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last three years, 1995–1997. The plot conveys little information, however,
on the questions of upgrading versus downgrading that are central to the
alternative hypotheses we wish to examine. In addition, the interpretation
of the Gini index series is complicated by the possibility that the underlying
Lorenz curves may be crossing. Plotting all 30 Lorenz curves would solve
this in principle, but in practice such a plot, like the overlaid PDFs, would
be nearly impossible to read.

Perhaps the best traditional display in this context is the running box-
plot, shown in Figure 4.2. This plot provides a compact summary of the
yearly earnings distributions on a single scale, and a quick scan of the dis-
play permits a relatively accurate comparison of level, scale, and skewness.
The boxes do a good job of presenting the information in the interquartile
range of the distribution, but provide less useable detail in the tails of the
distribution. Note that, in contrast to the Gini series, the boxplots do not
suggest a dramatic rise in inequality in the last three years. The Gini index,
like the Lorenz curve, is more likely to be affected by outliers in the tail of
the distribution. The boxplot, and the relative distribution graphs, because
they are based on quantiles, are less sensitive to outliers.
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Fig. 4.2. Running boxplot of the annual earnings distribution for white men:
1967–1997.

In the relative distribution framework, we can use the decile time series
plot to display these data. This plot is presented in Figure 4.3. The display
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Fig. 4.3. The relative deciles for white men’s earnings: 1967–1997.

has many advantages. Like the running boxplots, the relative deciles provide
a visual image that is quickly scanned and easily understood, with much
distributional detail preserved. Like the Gini series, the level of inequality is
represented directly, so that key substantive information is visually acces-
sible. In contrast to both of these plots, however, the relative deciles code
comparative, rather than raw, distributional information. Here, the series
displays the change from the baseline year, 1967. Every 10th year is shaded
to give a sense of the progression of changes over time. One could instead
highlight recession years or other years of interest. While both the boxplots
and the relative distribution are based on quantiles, the decile RDs are bet-
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ter at revealing the detail in the tails of the distribution. In this application,
the tails are where the action is.

Several trends are apparent from the decile series in Figure 4.3. The
early changes in the earnings distribution are marked by a general upshift-
ing in wages: the density of earners in the top decile doubled over the first
decade or so, while the density of earners in the bottom decile fell by nearly
50%. This is the image of a “rising tide that lifts all boats.” By the 1980s,
however, the changes begin to be driven by growth in the lower tail: the
relative density in the bottom deciles rises back to its original level, while
the relative density in the upper deciles stagnates. Lower tail growth con-
tinues as the dominant trend through the 1990s. The net result is a strong
polarization in real earnings by the end of the 30-year period. As the series
represents changes relative to 1967, the interpretation of the trend is quite
striking: the growing density in the bottom deciles during the later years
not only wiped out all of the gains these low-earning men made during the
1970s, it actually reversed them.

To get a more compact picture of the timing and nature of these chang-
ing trends, we can break the 30-year period into 3 decades, and compare
the changes across the decades. Using traditional tools, one might plot the
PDF overlay for 1967, 1977, 1987, and 1997, or the Lorenz curves for these
years. These two displays are shown in the two panels of Figure 4.4. Several
aspects of the earnings trend are apparent from these figures: real wages
grew, then declined over this period, and the 1997 earnings distribution is
more dispersed than any of the earlier years (the fatter tails and smaller
peak are quite marked in the PDF overlay). The Lorenz curves are per-
fectly ordered, indicating a consistent trend of rising inequality over the
three decades. The largest growth appears to come in the last decade.

Neither of these displays provides much information on the relative
impact of location and shape changes over each decade. They also do not
convey whether the upper and lower tails of the distibution are growing at
the same rate, or for the same reasons (i.e., location or shape driven). This
is what relative distribution methods are particularly good at pulling out
of the data.

In the relative distribution framework, we can plot the relative PDFs
for each decade. This plot is shown in Figure 4.5. In contrast to the 30-year
decile series, which takes 1967 as the reference distribution for all years,
each panel here takes the beginning year of the decade for the reference
distribution and the end year of the decade for the comparison. This dis-
play therefore highlights the changes that took place within each decade.
The differences in these changes are striking. The early 1970s were clearly
marked by a strong upshifting in earnings, the 1980s by nearly symmetric
polarization, and the 1990s by an earnings downshift, with only the top
decile escaping the trend. While the shape of the RDs clearly points to the
dominant trend for each decade – location shifts in the 1970s and 1990s,
and shape shifts in the 1980s – the dominant trend may be masking some
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of the more subtle changes. To see this, one can plot the location- and
shape-adjusted RDs.

The relative impact of location and shape shifts to the overall changes
in each decade can be seen in Figure 4.6. We have used an additive median
shift here for location adjustment because we are working with log-wages.
Each row in this display represents a component of the change. The top row
shows the overall change by decade (the same as that shown in Figure 4.5),
the middle shows the effect of the median shift (the shape-adjusted RD),
and the bottom shows the effect of the shape shift (the median–adjusted
RD). The displays again highlight the distinctiveness of the earnings trends
in each decade. The median upshift in real earnings during the 1970s was
clearly the dominant factor during that decade, as expected. But there was
also a small polarization trend that was not evident in the overall RD. This
suggests that while the great majority of white men experienced growth in
their real earnings during this period, some were already beginning to fall
behind. It was not just those at the very bottom either; relative growth
can be seen in each of the three lowest deciles. By the 1980s, the growth
in real earnings came to a complete halt – the RD for the effect of the
location shift is flat, indicating that if there had been no change in the
shape of the earnings distribution during this decade, there would have
been no change at all. Earnings polarization, by contrast, picked up speed
during this decade. The strongest effects were in the top and bottom deciles,
indicating that more men were now being left farther behind, wiping out
any gains they might have seen in the previous decade. At the same time,
a nearly equal fraction had joined the ranks of those whose earnings put
them in the top 10% at the decade’s beginning. In the 1990s, median real
wages deteriorated. One can see the downshift clearly in the location panel.
It is not as strong an effect as the upshift in the 1970s, but it is clearly
in the opposite direction. The fraction of men whose earnings would have
placed them in the bottom reference decile rose again, but this was now
largely due to the general earnings downshift, rather than to polarization.
Polarization did play a role during this decade, however, making it possible
for those who joined the top decile to hold on to their gains while everyone
else was losing. In contrast to the message conveyed by the Lorenz curves in
Figure 4.5, the largest growth in polarization is shown here to have occurred
during the middle decade, not the final one.

4.4 Discussion

The story told by these graphs is the “Great U-Turn” predicted by Harri-
son and Bluestone in 1988: real wages rose, stagnated, and then fell, while
earnings inequality grew throughout the period. Those at the bottom of
the distribution were hit the hardest, with both falling real earnings and
growing inequality combining to push them farther behind at the end of
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60 Chapter 4. Application: White Men’s Earnings 1967–1997

the 1990s than they had been 30 years earlier. Those at the top made
great gains in the 1970s by riding the egalitarian tide, but held on to these
gains over the next two decades by staking out the top of an increasingly
unequal distribution. The evidence gives little support to the supply-side
advocates. Their best decade was the 1970s, when real wages grew, sug-
gesting a shift to the higher wage postindustrial job structure of the future,
and the small echo of polarization suggested a segment of the workforce
whose rising earnings were not keeping pace with the others. These, per-
haps, were the candidates for human capital investment. But it is hard to
reconcile the supply-side argument with the stagnant – and then falling
– real wages of the next two decades. The earners in the top decile were
the only group that even held steady during this period. Everyone else lost
ground. Other studies have estimated that three-quarters of the increase
in inequality during this period was due to the fall in real earnings at the
bottom of the distribution (Gottschalk 1997; Topel 1997). The one constant
trend over all three decades was the growth in inequality, small at first, but
later the dominant trend. This empirical pattern is more consistent with the
alternative thesis: that a polarization in the structure of demand is leaving
a permanent legacy of inequality.

Exercises

Exercise 4.1. Calculate the usual summary statistics for the distribution of
earnings in 1967 (e.g., mean, median, standard deviation and interquartile
range). Repeat the process for earnings in 1997. Based on these summaries,
write a brief comparison of the two distributions.

Exercise 4.2. Calculate the Gini indices for the log-earnings in 1967. Are
they the same as the values in Figure 4.1? If they are the same, explain
why. If they differ, which of the two scales is more appropriate for this
application?

Exercise 4.3. Calculate Theil’s index for the earnings for each year from
1967 to 1997. Create a plot similar to Figure 4.1. How correlated are the in-
dices of inequality? Construct a linear regression of the Gini index based on
Theil’s index. Are the usual assumptions of linear regression satisfied? If ap-
propriate, modify the model. Identify years where the relationship between
the two indices deviates from the norm. By looking at the distributions for
those years, explain why they differ.

Exercise 4.4. A third index of inequality is the ratio between the 90th and
10th percentiles of the distribution. Repeat Exercise 4.2 using this measure.
As an additional tool for addressing the questions, build a regression model
for the Gini index based on both the percentile distance and Theil’s index.
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Exercise 4.5. Why are the PDFs in Figure 4.4 so rough? While increasing
the degree of smoothing will reduce the roughness, is it the right thing to
do in this situation? Discuss.

Exercise 4.6. Describe the pattern in mean earnings in Figure 4.2. Describe
the pattern in scale and any apparent pattern in skewness. Are the dis-
tributions becoming less symmetric over time? What do the numbers and
locations of the outliers indicate about the symmetry in the tails of the
distributions?

Exercise 4.7. The reference distribution in Figure 4.3 is 1967 earnings. How
different will Figure 4.3 appear if 1968 is used instead? How will it look if
the final year (1997) is used. Discuss how any changes effect the substantive
conclusions.

Exercise 4.8. Calculate the RD of 1967 to 1977. How does it compare to the
first panel in Figure 4.5? Calculate the RD of 1977 to 1987 and compare it
to the second panel. Do these “reverse” RDs provide the same information
as the originals?

Exercise 4.9. Suppose that location was defined as a multiplicative median
shift in Figure 4.6 rather than an additive median shift. Would the figure
differ? When would the multiplicative median shift be more appropriate?

Exercise 4.10. Recreate Figure 4.6, pulling out both scale and location in the
decomposition. How much of the shape effect is due to the scale difference?
Do the residual shape differences suggest any substantive hypotheses?
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Chapter 5

Summary Measures

5.1 Motivation

While graphical displays are a key part of the relative distribution frame-
work, summary measures remain an important tool for the comparison of
distributional change. A good summary statistic makes it possible to pro-
vide a simple and precise answer to a substantive question such as “has
inequality in wage profiles grown significantly over the past 20 years?” or
“has the upgrading in wage-gains been matched or exceeded by the down-
grading?” The relative distribution provides a general framework for defin-
ing a wide and flexible range of summary measures. The generality of this
framework is due to the fact that the relative distribution captures all of
the information that is necessary and sufficient for strongly scale-invariant
comparison.

Summary measures based on the relative distribution are robust to
both outliers and to deviations from assumptions. This robustness follows
from two properties of the relative distribution: the rescaling of the compari-
son distribution to the reference distribution, and the absence of parametric
assumptions. Rescaling limits the impact of outliers. Outliers in either the
reference or comparison distribution are not necessarily outliers in terms
of the relative distribution, and the rescaling maps the original units of
both distributions to a rank measure (i.e., [0, 1]) moderating the influence
of abnormal values. As a result, summary measures based on the relative
distribution are less likely to be influenced by problem cases. The absence
of parametric assumptions means there are fewer assumptions to violate.
The relative distribution, as well as the decomposition techniques, and nat-
ural summary measures in this framework are fully nonparametric. They
require minimal assumptions about the underlying distributions – either
in terms of the individual distributions or in terms of their relationship
to one another. This actually distinguishes the relative distribution meth-
ods from other nonparametric approaches, most of which implicitly assume
that the reference and comparison distributions have a well defined rela-
tionship to each other (e.g., are simply location shifted versions of each
other) (Lehmann 1975).

63
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In the next section we discuss the construction of measures of distri-
butional divergence based on the relative distribution. We then discuss the
decomposition of these measures to determine the contributions of location,
scale and shape.

5.2 Measuring distributional divergence

The study of measures of the “closeness” of two distributions has a long
history (Adhikari and Joshi 1956; Ali and Silvey 1966). There are a multi-
tude of different measures, each motivated by the the application for which
it was developed. Some of these are based on appeals to underlying sta-
tistical principles and some are ad hoc. Each has the common property of
increasing as the distributions become more dissimilar. The measures differ
in their scale and the type of deviation between the distributions that has
the greatest influence. Ali and Silvey (1966) argue that it is reasonable to
restrict measures of divergence to functions of the relative density, at least
when the objective is to distinguish the two distributions on the basis of
observation. This argument is based on the fact that the relative CDF is
a sufficient statistic for the problem of comparison. We shall also examine
measures that can be expressed purely in terms of the relative density and
without separate reference to the underlying distributions.

Ali and Silvey define four basic properties that any measure of diver-
gence should have. First, the measure should be well defined for all distribu-
tions. Second, the measure should be minimized when the two distributions
are equal. Third, the measure should not increase when the data are ag-
gregated into groups. And fourth, changes in a parameter should affect the
measure of divergence in the same direction as the likelihood.

Based on these considerations they propose the following class of mea-
sures of divergence:

Dφ(F ; F0) =
∫ 1

0
φ

(
g(r)

)
dr ,

where φ is any continuous convex function on (0,∞). This class has also
been proposed by Csiszár (1978). He refers to it as directed divergence
measures or f–divergences. This is a very wide class that contains most
commonly used measures, each corresponding to a particular choice of the
weight function φ. Many of these are summarized in Table 5.1.



5.2 Measuring distributional divergence 65

Table 5.1. Measures of divergence and their corresponding φ-functions

φ(p) Divergence Measure

(p − 1) log(p) Jeffrey’s or J-divergence
− log(p) Kullback’s directed divergence
p log(p) Kullback-Leibler divergence

1
2 (

√
p − 1)2 Kolmogorov’s measure of distance

Hellinger divergence
1
2 |p − 1| Kolmogorov’s variation distance

L1 divergence
−p1−λ Chernoff’s measure of discriminatory

information, 0 < λ < 1
1 − pλ Generalized Bhattacharya measure, 0 < λ < 1

[pλ + p1−λ]/(λ − 1) Divergence of degree λ, λ �= 1
(p − 1)2 Chi-squared divergence. Kagan’s measure

[pλ − 1]/λ(λ + 1) Power weighted divergence λ �= 0, −1

Rao (1982) studies a number of these measures and their applications
in statistics.

While this is a wide class, it does not contain every reasonable measure
of divergence. The median of the relative distribution and its interquartile
range are two examples that would not be included. In the final section of
this chapter we will consider a measure of polarization that is also not in
this class. The justification for such measures is that they seek to capture
special features of the divergence, rather than the overall dissimilarity of
the distributions.

An additional property of measures that would be useful for our pur-
poses is that they be decomposable in a way consistent with the decomposi-
tions we have developed for the relative density. This, unfortunately, is not
generally possible. None of the measures in Table 5.1 is directly additively
decomposable in the sense that

Dφ(F ; F0) = Dφ(F0L; F0) + Dφ(F ; F0L).

The problem arises in the rescaling of the second component, a point that
was discussed in Section 3.1. Recall the relative density decomposition in
(3.3):

g0(r) = g0L
0 (r) × g0L(p) 0 ≤ r ≤ 1,

where p = F 0L
0 (r). Had the argument for the final term been r instead

of p, the divergence for g0(r) would have a simple decomposition into the
two components for some measures. With the rescaling, however, there is
no direct way to separate the integral for the total divergence into the two
components for any measure.
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Another way to see this is to think of the triangle formed by the three
distributions F , F0, and F0L in the space of distributions. The deviance
from F to F0 will in general be less than the sum of the deviances of F0L to
F0 and F to F0L. Substantively, this means that the two component shifts
may be operating in such a way as to counteract each other, so the effect of
each separately may be more than the joint effect. While the components
may be summable for particular distributions, there is a set of distributions
for each directed divergence for which a direct decomposition is not possible.

As with the relative density, we will need to rescale one divergence
component to make decomposition possible. This will generally mean that
the components do not sum to the value for the overall divergence. The
Kullback-Leibler measure (Kullback 1968), however, preserves the interpre-
tation of the divergence for each component, and this gives it an advantage
over the other measures.

5.3 Two measures of distributional divergence

The choice of measure, and its interpretation, should be application specific.
The choice depends on the character of the difference between the distribu-
tions that the measure should be sensitive to. Here we consider two omnibus
choices that are in wide use: chi-squared divergence and Kullback-Leibler
divergence.

The chi-squared divergence is defined by

Dχ(F ; F0) =
∫ ∞

−∞

(
(f(x) − f0(x))2

f0(x)

)
dx =

∫ 1

0

(
g(r) − 1

)2

dr.

It is also called Pearson’s φ2 measure. For a detailed description, see Lan-
caster (1969). The measure represents the squared distance between the two
densities normed by the prevalence of the reference group. This is clearer
in the second expression, where it is simply the squared deviation of the
relative density from the uniform density. Thus it weights deviations from
uniformity by the square of their magnitude, similar to the weighting used
by the variance and least-squares linear regression estimates.

The chi-squared divergence has been studied by Eubank, et al (1987).
They use it as the basis for a test for the equality of the two distributions
(Dχ(F ; F0) = 0). It can also used to test other hypotheses of interest such
as symmetry of a distribution and goodness-of-fit to data. We treat this
topic in Section 10.2.2.

Perhaps the most commonly used measure of the divergence between
two distributions is the Kullback-Leibler divergence defined by:

D(F ; F0) =
∫ ∞

−∞
log
(

f(x)
f0(x)

)
dF (x) =

∫ 1

0
log
(
g(r)

)
g(r) dr.
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D(F ; F0) is also known as the information number, discrimination function,
and “distance.”

The links between the Kullback-Leibler divergence and the relative dis-
tribution has been studied by Mielniczuk (1992) and Parzen (1994). The
expression on the right-hand side of the equation is just the (differential)
negative entropy of the relative density (Shannon 1948). Entropy is also a
widely used measure of the dispersion of a distribution (Theil and Laitinen
1980). In this context we can interpret D(F ; F0) as the expected information
for discriminating g from a uniform distribution based on a single observa-
tion from R. For a detailed discussion of this measure, see Soofi (1994). We
will use this measure as the basis for the decomposition summaries below.

5.4 Effect summary statistics

Recall from Chapter 3 that F0L is the CDF of the location-adjusted ref-
erence group. In this section, we develop a summary measure that plays a
role similar to the partial R2 in traditional linear modeling, and provides
an answer to the question: “How much does the location shift contribute
to the difference between the two distributions?”

Summarizing the effect of location and shape changes on the overall
relative distribution requires that we choose one of the measures of the over-
all distributional difference. The Kullback-Leibler divergence has a simple
interpretation in terms of the relative distribution, and it is decomposable
into the location, shape, and other components of interest, so we will work
with it here.

The most direct way to summarize the contributions of location and
shape is to compare the entropies of the three components of the decom-
position in (3.3): D(F ; F0), D(F0L; F0), and D(F ; F0L). The first measures
the overall divergence between the comparison and reference groups. The
second measures the divergence between the the location-adjusted refer-
ence group and the reference group. This divergence directly summarizes
the effect of a location shift on the distributional divergence. If the over-
all divergence is entirely due to a location shift then this component will
equal the overall divergence D(F ; F0). The third measure is the divergence
between the comparison group and the location-adjusted reference group.
This measures the divergence due to shape differences. If the overall diver-
gence is entirely due to a location shift, then this component will be zero.
If there is no deviation due to location, then this component will equal the
overall divergence D(F ; F0).

As discussed above, these entropies will not decompose directly. We
can, however, use (3.1) to show

D(F ; F0) = DY (F0L; F0) + D(F ; F0L) (5.1)

where
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DY (F0L; F0) =
∫ 1

0
log
(

gL
0 (r)

)
g(r) dr,

is a cross-entropy interpretable as the expected information for discriminat-
ing gL

0 from a uniform distribution based on a single observation from R.
The relative sizes of these terms directly indicate the relative contributions
of location and shape to the overall difference between the distributions.

This divergence decomposition can be extended to the location, spread
and shape relative density decomposition in Chapter 3. Here, as there, the
order in which the successive components are applied in the decomposition
matters. In particular the divergence effect of spread will depend on the
definition of the location adjustment. If the spread adjustment is applied
before the location adjustment, a completely different decomposition of the
overall divergence will result.

5.5 Measures motivated by hypothesis testing

Consider testing the hypothesis of equality between the reference and com-
parison distributions. Formally we consider the null hypothesis H0 : F (y) =
F0(y) ∀y, where both F and F0 are unknown. Parametric tests assume that
both distributions belong to a family of distributions indexed by a (usu-
ally finite dimensional) parameter. Here we focus on nonparametric tests
that assume the distributions are members of a class of distributions that
cannot be indexed by a finite dimensional parameter. The properties of
tests depend on the assumptions made about how the distributions differ.
Alternatives to the null hypothesis can be expressed in the general form:
H1 : F (y) = G(F0(y)) ∀y, where G is the relative CDF. If the null hypoth-
esis is true, then the relative distribution will be uniform, and so this test
can be thought of as testing uniformity of g. The alternative hypothesis can
be made specific by placing restrictions on g. For example, we can consider
the location alternatives that assume F (y) = F0(y+ρ) for some unspecified
ρ and continuous F0. This specifies that G(p) = F0(F−1

0 (p) + ρ) for some
unspecified ρ and continuous F0. Another commonly used alternative family
is the scale alternatives, which assume F (y) = F0(y/ρ) for some unspecified
ρ > 0 and continuous F0. This specifies that G(p) = F0(F−1

0 (p)/ρ).
Each specification of the alternatives can be thought of as a specifica-

tion of the relative distribution, and each test can be thought of as choosing
a divergence measure sensitive to the deviations specified by the alterna-
tive. In this sense, each test defines an implicit divergence measure. We
give some commonly used measures below and consider inference for them
in Chapter 10. Lehmann (1986) reviews much of the extensive literature on
this topic.

Chernoff and Savage (1958) defined a useful class of divergence mea-
sures motivated by this testing situation. To be consistent with the standard



5.6 Measuring distributional polarization 69

notation we will use the reference group formed by pooling the comparison
and usual reference group (See Section 2.3). Let H(y) = λF (y)+(1−λ)F0(y)
be the CDF of the pooled reference group and GP be the relative CDF of F
to H. Denote the PDF of R̃ = H(Y ) by gp. Consider the class of measures:

DCS(F ; F0) =
∫

J

(
H(y)

)
dF (y) =

∫ 1

0
J(r)gp(r)dr = E

[
J(R̃)

]
,

where J(r) is called a score function on [0, 1]. The role of the score function
is to weight different deviations from the uniform distribution. It can em-
phasize the tails or the slope of the relative distribution. The choice clearly
depends on the alternative hypothesis, and different choices lead to differ-
ent measures. One of the reasons this divergence measure is commonly used
is because it is a function only of the relative data and has the form of a
simple expectation. In practice, the score function is assumed to be non-
constant and to be reasonably smooth. Specifically it must have derivatives
that satisfy:

|J (k)(r)| ≤ K|r(1 − r)|−k− 1
2+δ

for some δ > 0, K > 0, and k = 0, 1, 2.
We can also consider measures motivated by well known goodness-of-fit

tests. For example, the Cramer-von Mises test:∫ 1

0
|GP(p) − p|2dp,

the Anderson-Darling test:∫ 1

0

|GP(p) − p|2
p(1 − p)

dp,

and the Kolmogorov-Smirnov test:

sup
0≤p≤1

|GP(p) − p|.

In Section 10.2 we consider inference for DCS(F ; F0) as a means of
conducting these tests.

5.6 Measuring distributional polarization

An important question in economic applications is whether one distribution
is more unequal than another. This is a more specific shape-related ques-
tion than those considered above: “To what extent does the shape difference
between the two distributions take the form of rising (or declining) polar-
ization?” Distributional polarization is of particular interest in the study
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of inequality, because it captures a discrepancy in outcomes that is hidden
when only trends in location are examined.

Most research on the distribution of wages and income uses one or
more of the four scale-invariant measures of inequality: the coefficient of
variation, the Gini index, Theil’s index, and the variance of logarithms.
These measures differ in a number of respects (cf., Kakwani 1980, pp. 63–
95), e.g., the weight given to transfers in different parts of the distribution,
but can be interpreted within a unified framework (Firebaugh 1999). For
data grouped into income categories there are simple expressions for lower-
and upper-bound estimates of the population values and more complicated
expressions for more precise estimates (Kakwani 1980, pp. 96–125). Under
fairly strong parametric assumptions about the income distribution, sta-
tistical inference for the ungrouped data can be based on the asymptotic
distribution of the maximum likelihood estimator.

None of these measures, however, is designed to distinguish between
growth in the upper and lower tails. Even if the measures register increasing
inequality over time, one cannot distinguish a polarization of the distribu-
tion (increases in both tails) from upgrading (increases in the upper tail),
downgrading (increases in lower tail). Since much of the substantive de-
bate often turns on this level of detail, rather than on the extent of overall
increases, these standard summary indices are of limited use.

The polarization index defined here and its decomposition provide a
flexible and sensitive method for measuring the relative density in the center
and the tails of the distribution. It plays the same role as the difference in
Gini indices, coefficients of variation, or variances of log-values in measuring
interdistributional inequality (cf., Grove and Hannum 1986), but it can be
decomposed to compare the growth in the upper and lower tails. Because
the polarization index is based on the relative distribution, it provides a
simple link between what is observed in the graphical display and what is
measured by the numerical summary.

5.6.1 The median relative polarization index

Isolating differences in distributional shape requires that differences in loca-
tion be removed. To do this, we will focus on the location matched compo-
nent of the relative distribution (g0L). Measures based on this component
isolate aspects of interdistributional inequality that are not due to loca-
tion shifts. For example, if one distribution is more polarized than another,
we would expect a U-shaped, location-adjusted relative distribution. If the
distributions differ only in their level, then the location-adjusted relative
distribution would be approximately uniform. As discussed in Chapter 3,
location can be adjusted to equalize the medians, means, or other measures
of central tendency between the two distributions. The index we develop
here is based on median adjustment.
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Ideally, we would like a statistic that measures the deviations of the
relative distribution from the uniform distribution – as the uniform rela-
tive density represents distributional equivalence – and one that emphasizes
the deviations in both the upper and lower tails. This is not unlike a stan-
dard variance measure, E(X − µ)2. In the nonparametric context, it is more
natural to consider more robust measures of spread, such as the median ab-
solute deviation. The measure we develop is closely related to this. Recall
from Chapter 3 that the median-matched relative distribution of Y to Y0
is given by R0L = F0(Y − ρ), where ρ = Q(1

2 ) − Q0( 1
2 ), the difference be-

tween the median of Y and the median of Y0. Q is the quantile function,
defined in Section 2.2. Because the medians of the two distributions have
been matched, the median of R0L is 1

2 , and our measure of polarization
will reflect this. Define the median relative polarization index (MRP) of Y
relative to Y0 as:

MRP(F ; F0) = 4E
[
| R0L − 1

2
|
]

− 1.

The MRP is then the mean absolute deviation around the median of the
location-adjusted relative distribution, scaled to produce an index that
varies between -1 and 1. If R0L has a density g0L (we suppress ρ), then
MRP(F ; F0) can be reexpressed as:

MRP(F ; F0) = 4
∫ 1

0
| r − 1

2
| g0L(r) dr − 1

This expression makes it more clear how the measure weights the value of
the relative distribution, g0L(r), by the distance from the center, | r − 1

2 |,
thereby emphasizing the mass in the upper and lower tails more strongly
than the mass in the center. Given the scaling, a value of zero represents no
differences in distributional shape; positive values represent more polariza-
tion (increases in the tails of the distribution); and negative values represent
less polarization (convergence towards the center of the distribution). If the
only difference between F and F0 is location (that is, F0(y) = F (y + ρ) for
some ρ), then g0L is the uniform distribution, and MRP(F ; F0) is zero, indi-
cating that none of the differences between F and F0 are due to differences
in distributional shape.

The MRP has several useful characteristics. First, it is symmetric in
the sense that MRP(F ; F0) = −MRP(F0; F ). This means that the index is
effectively invariant to whether F or F0 is chosen as the reference distribu-
tion. Second, if the two distributions have the same median it is invariant to
monotone transformations of the distributions: if h(·) is a monotone func-
tion on the support of Y0, then the MRP of h(Y ) to h(Y0) is equal to the
MRP of Y to Y0. This means that the index will take the same value when
applied, for example, to the logged data as when applied to the raw data
(when a multiplicative location shift is used for the latter). For a more de-
tailed discussion of scale invariance, see Section 2.1. Third, the MRP can
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be interpreted in terms of a proportional shift of mass in the distribution
from more central to less central values. A net change in mass, δp, a dis-
tance d towards the tails of the distribution (measured on the unit interval),
will produce an MRP of 4dδp. A value of 0.1, for example, is equivalent to
a 10% population shift from the center of the distribution to the upper
and lower quartiles. Finally, the MRP is decomposable along the scale of
y. This makes it possible to compare the contribution of each section of
the distribution to the overall polarization. A natural decomposition is the
contributions made by components above and below the median of g(r),
and we define this decomposition in the next section.

5.6.2 Decomposing the median relative polarization index

Often we would also like to decompose the overall polarization into the
contributions from the lower and upper tails of the distributions.

We define the lower (upper) polarization index (LRP) (URP) by:

LRP(F ; F0) = 4E
[
| R0L − 1

2
|
∣∣∣∣ R0L ≤ 1

2

]
− 1,

URP(F ; F0) = 4E
[
| R0L − 1

2
|
∣∣∣∣ R0L >

1
2

]
− 1.

These indices decompose the overall polarization index in the sense that:

MRP(F ; F0) =
1
2
LRP(F ; F0) +

1
2
URP(F ; F0). (5.2)

The lower (upper) index is the contribution to the median index of the
relative distribution below (above) its median. The two components can be
reexpressed as:

LRP(F ; F0) = 8
∫ 1

2

0
| r − 1

2
| g0L(r) dr − 1

URP(F ; F0) = 8
∫ 1

1
2

| r − 1
2

| g0L(r) dr − 1.

The upper and lower indices have properties similar to the MRP: they
vary between -1 and 1, have similar interpretations, and are symmetric
and invariant to monotonic transformations. Positive values represent more
polarization, i.e., increases in the tail of the distribution; negative values
represent less polarization, i.e., convergence towards the center of the dis-
tribution. If the shape component of the relative distribution is uniform
below (above) the median, then the lower (upper) index will be zero.

The decomposition (5.2) makes it possible to answer questions that
commonly arise in distributional comparison. For example, is wage upgrad-
ing more pronounced than wage downgrading? Note that by matching lo-
cation, the overall density of relative earnings is made equal above and
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below the median. Thus the measure here is not addressing the question of
whether median wages have risen or fallen (thus, whether wage upgrading is
more prevalent than wage downgrading). Such location shifts have already
been removed. The measures instead capture whether the residual changes
have been more extreme above or below the median. Using the upper and
lower indices, one can observe whether the increase is coming from sym-
metric growth in both tails of the distribution, or whether one tail is denser
than the other.

Background material

A framework for the construction of summary measures based on orthogonal
series expansions of the relative density has been developed by Eubank, et
al (1987). This work presents a powerful and unifying framework for testing
hypotheses about the differences between distributions using the coefficients
of the expansion, but the summary measures provide indirect, rather than
direct, measures of location and shape effects. These measures are discussed
in depth in Chapter 10. The summary measures we present in this chapter
differ both in motivation and substance.

Exercises

Exercise 5.1. Take an example where two distributions differ by a location
shift and simple shape change (say, URP=LRP). Draw the PDF overlays
for the two distributions, and sketch out the relative density g(r). Explain
why the estimates of the effect summary statistics in Section 5.4 will depend
on the order of the location and shape adjustments.

Exercise 5.2. Compare the standard measures of distributional spread, the
variance and the mean absolute deviation, with the MRP measure. What
are the similarities? What are the differences? What does the MRP capture
that comparing the standard measures from two distributions does not?

Exercise 5.3. Sketch up the following examples using PDF overlays and
the relative density g(r): (a) a positive location shift plus URP > LRP;
(b) no location shift plus LRP < URP; (c) a negative location shift plus
URP=LRP. Identify the areas on the relative density graph that should be
equal.

Exercise 5.4. Show that the MRP can be reexpressed as:

MRP(F ; F0) = 1 + 8
∫ 1

2

0
G0L(r) dr − 4

∫ 1

0
G0L(r) dr ,
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where G0L is the CDF of the location-adjusted relative distribution. This
form can be used as the definition in the situation that the densities of the
distributions do not exist. This will be very useful for discrete distributions
(e.g., job tenure data, or grouped earnings data) – See Chapter 13.

Exercise 5.5. Suppose Y0 ∼ lognormal(µ0, σ
2
0) and Y ∼ lognormal(µ, σ2).

Show that
LRP(F0; F ) = 1 − 4

π
arctan

[σ0

σ

]
.

Exercise 5.6. Show that the LRP polarization can be expressed in a form
useful for calculation:

LRP(F ; F0) = 8
∫ 1

2

0
G0L(r) dr − 1

= 8
∫ ξ0

1
2

0
F (y)f0(y + ρ) dy − 1,

where GLO is the CDF of XLO. Show that the URP index can be similarly
reexpressed as:

URP(F ; F0) = 3 − 8
∫ 1

1
2

G0L(r) dr

= 3 − 8
∫ ∞

ξ0
1
2

F (y)f0(y + ρ) dy.



Chapter 6

Application: Earnings by Race and
Sex: 1967–1997

6.1 Background

In Chapter 4, we saw that white men’s earnings displayed several distinct
shifts over the course of the last three decades. While upgrading was the
dominant earnings trend during the 1970s, wages stagnated during the
1980s, and began to fall during the 1990s. During all three decades, earnings
grew more polarized. The net impact was a dramatic growth in earnings
inequality, with the fraction of men in the top and bottom relative deciles
nearly doubling. A sequence of location and shape changes were taking
place in the earnings distribution for white men, and the summary mea-
sures introduced in Chapter 5 will be used in this Chapter to provide a
succinct picture of these changes.

In addition, we will compare these changes to the changes in earnings
experienced by other groups of workers. If one thought that all workers
shared the same shifting economic profile as white men, the analysis could
instead turn to more detailed studies of the processes that generated these
patterns. But the cumulative body of work in stratification and labor eco-
nomics has made clear that labor market processes, in particular earnings
determination, differ significantly by race and sex (Blau 1998; Marini 1989;
Smith, et al 1989). Given the strong shape shifts that we observed in white
men’s wages during this period, it is likely that mean wage gaps do not
tell the whole story. Economic changes have probably affected the distribu-
tion of earnings within as well as between groups, with different levels of
upgrading, downgrading and polarization.

To compare earnings distributions across groups, the relative distribu-
tion can be defined in a number of ways. The most important choice is which
reference distribution to use, e.g., the overall earnings distribution, the dis-
tribution for a particular group such as white males, or the group-specific
1967 distributions. Each of these answers a different question about trends
in inequality; the first two choices emphasize the between-group changes,
while the latter emphasizes the within-group changes. Understanding the
within-group changes turns out to be a necessary first step. To begin di-
rectly by comparing each group’s earnings distribution to either the entire

75
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labor force or to a specific reference group makes interpretation difficult.
An observed upgrading in the earnings of workers in the comparison group
could stem from shifts in their own earnings, shifts in earnings of the com-
parison group(s), or a combination of changes in both groups. Without the
prior step of performing separate within-group analyses, these processes are
confounded and the sources of change cannot be identified. We therefore
start by examining the within-group changes, forming the relative distri-
bution time series for each group using its own 1967 distribution as the
reference. This makes it possible to get a clear picture of the distributional
shifts within each group, and to compare the pattern of shifts between
them.

6.2 Data

The data used here are again the March Uniform Series of the Current
Population Survey, for the years 1967 to 1997, and the sample restrictions
are the same as those used in Chapter 4: full-time, year-round workers aged
16-65, not in school, the military, or farming. We now include white women,
black men, and black women, as well as white men. We have chosen to use
the term “black” throughout the Chapter rather than African American,
because the data set used in the analysis, the CPS, requested respondents
to identify their race using this label. The size of the resulting sample
analyzed here for the 30-year series is over a million; the number in each
year is on the order of 30,000. For the analyses broken down by race and
sex, the typical sample sizes are about 20,000 for white males, 10,000 for
white females, and 1500–2,000 for black males and females.

6.3 Findings

The entropy and polarization summaries for the changes in white men’s
earnings are plotted in Figure 6.1. The summaries are calculated on a yearly
basis here, so we can now observe the changes within the decades, as well
as between them. Like the relative decile graph in Figure 4.3, the measures
in Figure 6.1 use 1967 as the reference year for calculating the whole series.
This permits the total change from 1967 to be represented. The decade-
specific changes, such as those displayed by Figure 4.5, can still be recovered
by comparing the summary values at the beginning and end of each decade.

The first panel of Figure 6.1 shows the annual value of the location and
shape entropy summaries. These represent the amount of the overall change
in the earnings distribution since 1967 that is generated by the location and
shape shifts respectively in each year. They do not show the direction of the
change – e.g., whether the median is shifting up or down – but if we know
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Fig. 6.1. Entropy and polarization summaries by year. Panel (a) shows the en-
tropy summaries by year. Panel (b) shows the polarization summaries by year.
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the initial direction from the relative density plots, then we can infer the
direction here. The range of the y-axis in both panels has been chosen to
be consistent with the later figures for the other groups. Both the location
and shape entropies have approximately the same scale, so their relative
size is directly interpretable.

The magnitude of the upshifting, stagnation, and downshifting of the
median wage is clear in the location series. The direction – up, then down –
we know from looking at the relative density displays in Chapter 4. Because
1967 is the reference throughout the series, the magnitude of the observed
changes have a direct interpretation: by 1995, the median real wage had
fallen nearly back to where it started in 1967, reversing the gains of the
1970s. There is some evidence that median wages started to climb again in
the final two years, but given the volatility shown throughout the series,
this may simply be noise. In contrast to the flat location shift density for
the middle decade shown in Figure 4.6, we can now observe the volatility in
the year-to-year changes over this decade. The location entropies for 1977
and 1987 are virtually identical, however, so the net effect for the decade is
zero.

In contrast to the location series, the shape series shows a steady up-
ward rise. As with the location entropy, the shape entropy does not rep-
resent the direction of the shape change from 1967, just the magnitude.
The monotonic rise in the series indicates that the direction of change was
consistent throughout the period, and we know from the RD displays in
Chapter 4 that the trend in polarization was positive. In this case, the net
growth in polarization by decade shown in the bottom row of Figure 4.5
apparently does not mask any volatility in the year-to-year changes. By
1990, changes in shape of the earnings distribution had become the major
contributer to the overall change since 1967. The downward trend observed
in the last years here may be more meaningful, as there is little evidence
of volatility in the preceding years of the series. So perhaps the trends
observed from 1995–1997 herald the beginnings of a real change.

The second panel of Figure 6.1 shows the annual relative polarization
indices. These indices track changes in the shape of the distribution only,
and they code the direction as well as the magnitude of the change. The
MRP index represents the overall growth or decline in inequality from 1967,
and the rising trend here indicates a strong increase in inequality that be-
comes significant by the early 1970s. The lower and upper indices represent
the portion of the median index that is generated by polarization in earn-
ings below and above the median respectively. For most of the period, the
lower index is the larger of the two, indicating that downgrading in earnings
was more pronounced than upgrading. But it is worth looking at the trends
as well as the levels in these two indices. Polarization in the upper tail of
the distribution displays no real trend before 1980, while polarization in the
lower tail rises steeply. During the 1980s, the growth in each index is nearly
the same, even though the level is still higher for the lower index given its
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rise in the decade before. By the late 1980s, however, polarization in the
lower tail begins to stabilize, while polarization in the upper tail begins to
rise more steeply. The net result by the early 1990s is a distribution with
nearly perfectly symmetric polarization in each tail. Because this period
was also characterized by downshifting in the median wage, the net effect
of the two trends – growing polarization in the upper tail and a falling me-
dian wage – is that the earners at the top of the distribution experienced
no real gain, they just held on to their position while everyone else lost
ground.

In sum, nearly all of the earnings gains made by white men during the
1970s had been erased by the 1990s. The only consistent trend over this
time was the growth in inequality which, while often less noticeable in any
single period when compared to the large swings in median earnings, qui-
etly became the major component of change in the earnings distribution.
Behind these net shifts, however, was a volatile set of competing trends.
Growing inequality during the 1970s was largely driven by losses experi-
enced among workers earning below the median, but the plight of these
workers was mostly alleviated by strong gains in median real wages during
this period. During the 1980s stagnation in median earnings, coupled with
growing polarization both above and below the median, hit the least advan-
taged workers the hardest. By the 1990s, the falling median earnings and
growing polarization in the upper tail of the earnings distribution combined
to hit all but the most advantaged workers. They experienced no gains, but
were at least protected from the losses. There is some evidence that this
trend may be changing in the final two years, 1995–1997.

We now turn to the other demographic groups to see how their distri-
butions changed over this period. Just for calibration, we start by plotting
the median earnings ratios for each group in Figure 6.2. The lines represent
Qt( 1

2 )/Q67( 1
2 ) within each group over time. They can therefore be used to

compare the relative progress of each group. Note that the groups did not
start at the same level. The common starting value of 1.0 reflects the fact
that each group is being compared to their own initial value in 1967. Bear-
ing this in mind, the trends in the figure are quite interesting. White men
are at the bottom of the pile, at least in terms of median wage gains. They
start out nearly 40% higher than the other groups, so their advantage is
not eliminated by the end of the period, but their relative advantage has
clearly eroded. The trends for black men are fairly similar, though their
period of wage growth during the 1970s produces relatively more gains and
lasts somewhat longer. Still, both groups of men face stagnant wages from
about 1980 on. The two groups of women, by contrast, both continue to ex-
perience robust wage growth over most of the years of the series. The gains
for black women are particularly striking, though this is largely because
their initial wage deficit was so severe.

In Figure 6.3, we turn to the decade-specific overall relative densities
for each group (compare to Figure 4.5 for white men). The 1970s display a
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Fig. 6.2. Median earnings ratio series by group.

trend for all groups similar to that seen among white men, dominated by
upshifting in median earnings. While the general trend is similar across the
groups, there are also some interesting differences to note. For white women,
the upward shift is fairly monotonic, net of a little sawtoothing across the
deciles. For black men, the extremes are where we find the biggest differ-
ences. About 80% of those in the bottom decile of the earnings distribution
had climbed above it by the end of the decade, and the fraction whose
earnings would have put them in the original top decile more than doubled.
For black women, earnings in the bottom original decile have virtually dis-
appeared by the end of the decade. Their RD curve is steep and monotonic,
suggesting that this group made the largest gains of all – at least relative to
their original position. Whether black women’s gains are larger or smaller
than the gains made by other groups is not possible to gauge from this
set of RDs. For that, it would be necessary to construct the between-group
RD.

In the 1980s there is again an overall similarity with the pattern ob-
served for white men: the strong gains in median earnings have disappeared
and polarization is now quite visible. But some differences from the white
male pattern can also be observed, as both groups of women continued to
experience some limited upshifting during this decade. None of the three
groups experienced the downshifting we saw among white men in the 1990s.
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Fig. 6.3. Decade-specific overall relative densities by group.
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Pulling out the impact of location and shape shifts in these distribu-
tions from a visual inspection of the overall RDs is somewhat tricky. Recall
how completely the location shift masked the polarization of white men’s
earnings in the 1970s. In that case, we examined the RD decomposition
graphs to help understand the contribution of each component (see Figure
4.6). A similar approach here would require 27 plots. We could fit them
on three pages, so this is not an impossible display, but we will take this
opportunity to see if the summary statistics provide a the necessary infor-
mation to tease apart the location and shape changes in a more succinct
fashion. The reader can judge in this case whether the summaries provide
enough information to tell the story.

The location and shape entropy summaries for each group are plotted
in Figure 6.4. As we might have expected, the location entropies are dra-
matically larger for all of these groups than they were for white men, and
they remain the dominant component of the overall change throughout the
period. While the general magnitude of the location shifts is comparable for
these groups, the timing and sequence differs. For white women, there are
two periods of growth: 1967–1975 and 1983–1990. The latter is the stronger
one, a picture that doesn’t quite square with the image obtained from the
decade-specific overall RDs in Figure 6.3. There, the 1980s appeared to be
a period of limited upshifting, at least relative to the 1970s. The difference
between these two images is largely due to the role played by the shape
shift during this period. This is partly observable in the shape entropy se-
ries in Figure 6.4, but will become much clearer in the polarization indices
graphed in Figure 6.5. What can be seen in Figure 6.4 is a steadily rising
shape entropy series, much like that seen for white men. Here, as there, this
is indicative of growing inequality within the group. At the very end of the
series, it would appear that another burst of wage growth has begun.

For black men, there are two distinct patterns: a period of strong gains
in median wages from 1967–1974, and a period of volatile, but effectively
stagnant, earnings after that time. This is consistent with the picture es-
tablished by the overall RD graphs, which suggest that the 1970s was the
strongest period of earnings growth. As the location shift stabilizes in the
early 1980s, the shape shift begins.

For black women, the early 1970s are also a period of strong median
gains, but the growth slows during the late 1970s, picks up again during
the early 1980s and then stagnates during the 1990s. The shape changes
in the black women’s earnings distribution are larger than those seen in
any other group, but it is not clear from this figure whether they point
to growing or declining inequality. What can be seen is that the trend is
largely monotonic until about 1980, and then begins to reverse direction.
As with white women, however, the final years of the series again suggest
strong wage growth, and stable polarization.

The polarization indices for each group are plotted in Figure 6.5. The
differences among the groups are quite dramatic. For the first time, we see
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Fig. 6.4. Entropy summaries for location and shape changes in earnings: 1967–1997.
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the indices become negative, indicating that for some periods the earnings
distribution for each of these groups is actually becoming more equal than
it was in 1967 – there is convergence, rather than polarization in the relative
earnings.

The story for white women is perhaps the simplest: a short period
of equalization, followed by a steady growth in inequality after 1980. In
the late 1970s, the LRP becomes significantly negative, indicating that the
lower tail of the earnings distribution is growing closer to the median. The
upper tail is stable during this period. In the early years of the 1980s, the
lower tail quickly repolarizes, and from the mid to late 1980s both the
lower and upper index are growing at the same rate. By the early 1990s
polarization stabilizes, but in the final years the upper index rises again
while the lower index falls slightly.

For black men, the story is somewhat similar. The convergence in the
1970s is apparent in both tails, however, and the lower tail begins to polarize
by the mid 1970s, earlier than for white women. From 1980 on, there is
steady growth in the URP, indicating strong polarization in the upper tail
of the distribution. The LRP, by contrast, stabilizes around 1985. This is
quite different than the trend we observed for white men, where the lower
tail polarization began early, and led from 1980 on.

For black women, whose shape entropy was the strongest of all the
groups, the pattern is dramatically different. Here, all of the indices show
negative polarization for most of the observation period. The steepest drops
are in the first decade and are led by contractions in the lower tail of the
distribution. This is largely the effect of black women’s movement out of
domestic labor. At the turn of the first decade, the level is fairly stable for
all three indices, though the lower tail contracts and then repolarizes. By
the mid 1980s, however, polarization begins to rise, with equal contributions
in trend from both tails. By the 90s, the lower tail has stabilized, while the
upper tail continues to polarize, indicating that those at the bottom of the
distribution are keeping pace with the middle, while those at the top are
drawing away. If we had begun the series in 1980, the MRP would have
become significant by about 1985.

In summary, all three groups experienced greater earnings gains during
this period than did white men, particularly the two groups of women. The
strongest period of wage growth came in the 1970s, and in contrast to
white men, some of the largest gains were made by those at the bottom of
the distribution. This was more than a rising tide lifting all boats; it was
a period in which some of the severest earnings inequities were reduced,
particularly for black men and women. The 1980s continued to be a period
of strong earnings growth for both groups of women, but during this decade
inequality also began to rise. This meant that those near the bottom made
no progress, but they also did not lose their earlier gains. For black men,
however, median earnings stagnated and inequality grew, so those at the
bottom actually lost some of the gains from the previous decade. By the



86 Chapter 6. Application: Earnings by Race and Sex: 1967–1997

1990s all of the groups faced sluggish wage growth and rising inequality.
But faster growth in the upper tail than the lower meant that this was still
mostly a “good news” story.

6.4 Discussion

Direct comparisons between the race and sex groups would be the logical
next step, as we have now established how the earnings distributions have
shifted within these groups. For example, using white men’s earnings to
define the original reference distribution in each year, one could form the
relative distribution using women’s or black workers’ earnings. This would
provide information on the dispersion of other worker’s earnings relative
to white men’s for a particular year, as well as over time. An example
can be found in Bernhardt, et al (1995). Alternatively, the distribution of
the entire workforce could be taken as the starting reference point. This
would be the “pooled comparison density” defined by Parzen (1992) and
discussed in Section 2.4.1. The picture one gains is then of different types of
workers moving around the overall distribution of earnings. Either approach
would provide distributional comparisons that convey substantially more
information than the usual differences in average wages between blacks and
whites or men and women.

Taking a more explanatory tack, the baseline and relative distribu-
tions could be defined in terms of industries. This would provide a direct
method of investigating how the shift from manufacturing to service in-
dustries, and the reorganization of work and production within industries,
has affected earnings inequality within and between groups. This approach
could be used to look at some of key controversies in the restructuring
debate, such as whether service industries have generated more high-wage
jobs or “McJobs”, whether the trends in earnings inequality vary across
sectors and over time, and whether the impact of restructuring has varied
across groups. Relative distribution methods offer a more sensitive method
for identifying which sections of the earnings distribution are changing, and
as such, provide an indirect test of the underlying causal processes and a
guide for future research.

While the tools provided by relative distribution methods are more
sensitive and informative than other current methods for analyzing sample
survey data, these tools can not replace qualitative studies. In the example
above, qualitative work will ultimately be needed to establish the causal
importance of industrial restructuring for earnings inequality. We need a
better understanding of how firms have changed their production processes
and therefore the skill levels they require. We need to identify the conse-
quences of these changes for wage hierarchies and segmentation. And we
need to know if the survival of firms in the postindustrial economy is de-
pendent upon the continued creation of low-wage jobs. In answering these
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questions, one must directly confront the problem of independently measur-
ing the skill content of jobs (demand) and workers’ skills (supply). Neither
of these tasks is trivial.

Exercises

Exercise 6.1. Verify the median earnings ratios by race/sex given in Figure
6.2. Plot the ratio of the median earnings ratio of each group to the white
men’s ratio. Describe the patterns you see.

Exercise 6.2. Calculate the Gini indices for earnings in 1967, 1977, 1987
and 1997 for for each race/sex group. Summarize the image of inequality
provided by the differences in Gini indices across time. How does it compare
to the conclusions given in the chapter?

Exercise 6.3. Construct the relative distribution of white women’s to white
men’s wages in 1967, 1977 1987 and 1997. Describe the changes you observe
in the relative density graph. Apply the location/shape decomposition to
1967 and 1997, and calculate the entropy and polarization statistics for each
year. Summarize your findings.

Exercise 6.4. Continuing on with Exercise 6.3, calculate and plot the yearly
entropy summaries and polarization indices for the 1967–1997 period. Sum-
marize the changes in the relative distribution of women’s to men’s wages
over the period. Are there any aspects of the change that are more visi-
ble in the full index series than in the decade comparisons of the previous
exercise?

Exercise 6.5. Repeat Exercises 6.3 and 6.4, using black men as the compar-
ison population.

Exercise 6.6. Repeat Exercises 6.3 and 6.4, using white women as the ref-
erence population, and black women as the comparison population.

Exercise 6.7. Repeat Exercises 6.3 and 6.4, using the pooled population
of white men and white women as the reference population. How does
this change the interpretation of the plots and summary statistics? Does it
change your understanding of the kinds of changes that have taken place in
the earnings distributions for these two groups? Is the pooled comparison
easier or more difficult to understand than the direct contrast in Exercise
6.3? reference population, and black women as the comparison population.
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Chapter 7

Adjustment for Covariates

To this point we have focused on comparing the distributions of a single
variable between two populations. Often there are covariates measured on
the individuals which vary systematically by population, and the impact
of these covariates is of interest. In the regression setting, it is natural to
explore how the outcome for an individual depends on these covariates.
In the relative distribution setting, there is an added dimension because
distributional impacts are of interest, and these can take two forms. The
first is a compositional shift in the covariates from one population to the
other. For example, we might be interested in comparing the distribution of
earnings for the population of workers in 1967 to that in 1987. We know that
the sex composition of the working population changed over this period,
and we want to quantify the impact of this change on the distribution of
earnings. The second kind of effect is a change in the relationship between
the covariate and the response variable. From our example, we also know
that the conditional distributions of earnings by sex changed over this
period (from Chapter 6), so that even if the sex composition of the working
population had been stable, the overall earnings distribution would have
changed.

If only the covariate composition changed, or only the covariate-
response relation changed, then the source of the changes in the relative
distribution could be immediately identified, but this rarely happens in
practice. As with location and shape shifts, both types of covariate effects
often change simultaneously, and we need a way to separate out the effects.
The approach developed below is similar in principle to the location and
shape decomposition, in that it constructs a counter-factual distribution to
represent each shift in isolation. By adjusting the reference population to
have the same covariate composition as the comparison population, we can
answer questions like: “How would the earnings distribution have looked
if there had been no changes in the sex composition of workers?” And we
can interpret the residual differences in the relative distribution in terms
of a change in the covariate-response relationship. In addition, we can go
on to apply the location and shape decomposition to each of the covariate
components. This makes it possible to nest the question we asked earlier

89
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– “How did median and shape changes combine to produce the changing
earnings for women?” – into the overall analysis.

The construction of the counter-factual distribution and its use for
unconditional comparison is the topic of this chapter.

7.1 Compositional adjustment

In this section, we discuss the construction of a counter-factual distribution
for the response variable in the reference population that is composition-
adjusted to have the same distribution of the covariates as comparison pop-
ulation. For simplicity we will first discuss the situation where we have a
single covariate that is categorical. The extensions to continuous covariates
is give at the end of the section and the extension to multivariate covariates
is considered in Section 7.4.

The basic approach is quite intuitive, and relies on the simple rule for
relating conditional and unconditional probabilities:

P (Y = y) =
∑

z

P (Y = y|Z = z)P (Z = z),

where the sum is over the outcome space of Z. The two components we
seek in our decomposition are essentially the two terms on the right-hand
side of this equation.

Let (Y0, Z0) and (Y, Z) denote random vectors describing the reference
and comparison populations. As before, Y0 and Y represent the variable
we wish to compare across the two populations. We will call it the re-
sponse variable here. Z0 and Z represent the values of the covariate. We
assume that the supports of Z0 and Z are both {1, 2, . . . K}. Let {π0

k}K
k=1

be the probability mass function of Z0 and {πk}K
k=1 be the probability mass

function of Z. These probability mass functions represent the population
composition with respect to the covariate. For conditional comparisons of
the response we can consider the densities of Y0 given that Z0 = k:

fY0|Z0(y |k) k = 1, . . . , K

and the densities of Y given that Z = k:

fY |Z(y |k) k = 1, . . . , K.

These densities represent the covariate-response relationship. The marginal
densities of Y0 and Y can be written as

f0(y) ≡
K∑

k=1

π0
kfY0|Z0(y |k) = Eπ0

[
fY0|Z0(y |Z0)

]
(7.1)

and
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f(y) ≡
K∑

k=1

πkfY |Z(y |k) = Eπ

[
fY |Z(y |Z)

]
, (7.2)

respectively. These formulas express the overall distribution of the response
as a weighted average of the distributions given the covariate where the
weights are the proportions of the population with that value of the covari-
ate. This representation makes it clear how the covariate affects the overall
distribution.

Consider the situation where the conditional distributions of the re-
sponse are the same for each value of the covariate, that is, fY0|Z0(y |k) =
fY |Z(y |k), k = 1, . . . , K. Thus the subgroups defined by the covariate have
identical distributions of the response and the relative distributions for each
group across the two populations will each be uniform. The two populations
are thus equivalent given the covariate value. The marginal density of Y0
can be written as

f0(y) =
K∑

k=1

π0
kfY |Z(y |k).

Comparing this to (7.2), we can see that any differences between f(y) and
f0(y) are now due to π0

k and πk, the compositions of the covariate in each
population.

Consider now the alternative situation where the probability mass
function of the covariate is the same in each population, that is, π0

k =
πk, k = 1, . . . , K. Then the marginal density of Y0 can be written as

f0(y) =
K∑

k=1

πkfY0|Z0(y |k).

Now any differences between f(y) and f0(y) in (7.2) are a result of the
differences in the conditional densities fY0|Z0(y |k) and fY |Z(y |k), k =
1, . . . , K. These represent differences in the covariate-response relationship
between the two populations.

We can construct a counter-factual distribution for the compositional
difference using these ideas. We define the distribution of Y0 composition-
adjusted to Y to be:

f0C(y) ≡
K∑

k=1

πkfY0|Z0(y |k) (7.3)

Comparing (7.3) to (7.1) and (7.2) we see that the density f0C(y) cor-
responds to a counter-factual population with the covariate composition
of the comparison population and the covariate-response relationship of
the reference population. Comparisons of f0C(y) to f(y) hold the popula-
tion composition constant, and therefore isolate differences in the covariate-
response relationship. By contrast, f0(y) and f0C(y) have the same
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covariate-response relationship and comparisons between them isolate the
impact of the compositional shifts.

Note that we could instead define f0C by adjusting the comparison
population to have the same marginal covariate composition as the refer-
ence population. The choice is unlikely to affect how we interpret the basic
trends, but it does have some subtle implications for interpretation when
we get to the stage of constructing the relative distribution components.
We will return to this issue then.

The extension to continuous covariates is straightforward. Suppose that
the covariate Z is continuous with density fZ(z) z ∈ IR. The
composition-adjusted f0C can be defined similarly to (7.3):

f0C(y) ≡ EfZ

[
fY0|Z0(y |Z)

]
=
∫

fZ(z)fY0|Z0(y |z)dz. (7.4)

The composition-adjusted distribution has the same interpretation as in
the discrete case. In both situations we will denote the CDF corresponding
to f0C by F0C and use Y0C to denote a random variable randomly sampled
from F0C .

The composition-adjusted f0C can be reexpressed as:

f0C(y) =
∫ 1

0
gZ(r)fY0|Z0

(
y |QZ0(r)

)
dr, (7.5)

where gZ(r) is the relative PDF of Z to Z0 and QZ0(r) is the quantile
function of Z0. Recalling that

f0(y) =
∫ 1

0
fY0|Z0

(
y |QZ0(r)

)
dr,

this formulation makes it clear that the composition-adjusted distribution
is a weighted version of the original distribution where the weighting is
precisely the relative density of the covariate. A similar formulation exists
when the covariate is discrete (Exercise 7.6).

Equation (7.5) suggests how a sample from the composition-adjusted
distribution can be manufactured in practice. The values from the reference
sample can be reweighted based directly on the relative distribution of Z to
Z0 to produce a synthetic sample with the correct properties (see Exercise
7.7).

7.2 Comparison of composition-adjusted distributions

Using the composition-adjusted response distribution, we can decompose
the overall relative distribution into a component that represents the ef-
fect of changes in the marginal distribution of the covariate (the compo-
sition effect), and a component that represents the residual changes. The
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method is similar to that used in Chapter 3: relative distributions of the
composition-adjusted to the reference and comparison populations isolate
the composition and residual effects respectively.

From the three distributions – Y0, Y0C , and Y – we can construct two
relative distributions that represent the effect of the covariate composition
and effect of residual changes. To isolate the composition effect, we take the
relative distribution of Y0C to Y0, denoted R0C

0 = F0C(Y ). R0C
0 will have a

uniform distribution when the comparison and reference populations have
the same marginal covariate distribution. To isolate the residual effect we
take the relative distribution of Y to Y0C , denoted R0C = F (Y0C). R0C will
have a uniform distribution when the conditional response distributions are
the same in both populations.

The decomposition can be represented in terms of the density ratios:

f(yr)
f0(yr)

=
f0C(yr)
f0(yr)

× f(yr)
f0C(yr)

(7.6)

or, in more heuristic terms:

overall relative
density

=
density ratio for

the compositional effect
× density ratio for

the residual effect
(7.7)

These two effects form a decomposition of the relative distribution of Y to
Y0 in the same sense as the median/shape decomposition from Chapter 3.
If R0 is the relative distribution of Y to Y0, then R0C can be defined as the
relative distribution of R0C

0 to R0.
As before, the first density ratio is a proper density, while the second in

general is not due to the scale change (see the discussion in Chapter 3 for
clarification). The graphical display of the three relative densities, which
we will denote by g0, g0C

0 , and g0C , respectively, provide a useful visual
summary of the relative size and nature of the components.

It is interesting to consider how the interpretation of these relative den-
sities would change if we define f0C by adjusting the comparison population
back to have the same marginal covariate composition as the reference pop-
ulation. For example, take the case when the the comparison population is
formed by observing the reference population at a later time point. Under
the definition in (7.3), the composition effect in (7.6) is obtained by tak-
ing the old distribution and moving the population composition forward
in time, while the alternative definition obtains it by taking the new dis-
tribution and moving the composition backward in time. With respect to
the covariate-response relationship, the definition in (7.3) identifies this by
comparing the conditional response using the new population composition,
while the alternative compares it using the old composition. Thus, if we re-
ally want to use the language, “if only this component had changed” from
the reference to the comparison distribution, we can do so to refer to the
composition effect if we use (7.3), as the residual effect reflects only addi-
tional changes in the response given that the composition changed. By the
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same token, if we use the alternative definition, the residual effect represents
what would have happened if only the conditional response distribution had
changed, and the composition effect reflects any additional changes given
that the conditional response distribution changed.

This suggests an alternative approach to the decomposition that would
define the composition and residual effects as shifts from the reference dis-
tribution, and a third effect that represents the interaction between them.
This will be left as an exercise for the reader.

While the decomposition above identifies the net effect of a change
in covariate composition, holding all other factors constant, this may not
always be the appropriate substantive choice. For example, an increase in
the number of women in the workforce might affect the conditional distri-
bution of earnings for men. This could happen if women were perfect but
less expensive substitutes for men, and their increased supply drove down
the wages employers were willing to pay. In this case, the “composition ef-
fect” as identified here would underestimate the true effect of the increasing
share of women in the workforce.

7.3 Further decomposition by location/shape

Once the relative density has been composition-adjusted, one can exam-
ine both the composition and residual components for location and shape
changes. As the residual component represents the changes in the condi-
tional response distribution, the location shift in this component captures
traditional changes in the “returns” to the covariate, and plays a role similar
to the change in a regression coefficient for that covariate. The shape shift
in this component captures additional changes in the covariate-response
relationship that are often hidden when other methods are used.

Continuing with our hypothetical example, suppose the sex composi-
tion effect on the change in overall earnings is found to be large. A loca-
tion/shape analysis might then go on to show that the composition effect
was primarily a location shift – with the rising proportion of women earners
dragging the median earnings down – while the residual was both location-
shifted and more polarized. The location shift in this context would repre-
sent changes in the gender wage gap – the covariate-response relationship.
Polarization would suggest that once changes in the median wage gap were
netted out, there was a U-shaped relative distribution of women’s to men’s
earnings, indicating that women’s earnings were polarizing more rapidly
than men’s. This kind of analysis can provide a rich description of the
interrelated distributional changes, which in turn can help to inform and
focus a theoretical debate by clearly identifying what needs to be explained.
Combining composition adjustment with location/shape decomposition is
a straight forward sequential application of the preceding techniques.
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7.4 Adjusting for multiple covariates

The construction of the counter-factual distribution for a single covariate
was considered in Section 7.1. In this section we extend the approach to
multiple covariates, both continuous and discrete. The principle is similar,
and relies on decomposing the chain of conditional and marginal proba-
bilities. Now, however, the dependence among the covariates will make it
necessary to address the question of how to decompose the total difference
into unique effects for each covariate. As in the regression setting, there is
more than one way to do this.

Let Z0 be the multivariate values of the covariates for the reference
population and Z be the corresponding values for the comparison popula-
tion. Let (Y0, Z0) and (Y, Z) denote random vectors describing the reference
and comparison populations. As before, Y0 and Y are the attributes we wish
to compare. Let fZ(z) and fZ0(z) be the joint densities of Z0 and Z, re-
spectively. If some of the components are discrete then the corresponding
components of the densities are probability mass function. These distribu-
tions represent the population composition with respect to the covariates.
For conditional comparisons of the response we can again consider the den-
sities of Y0 given that Z0 = z :

fY0(y |Z0 = z)

and the densities of Y given that Z = z :

fY |Z(y |Z0 = z).

These (univariate) densities represent the covariate-response relationship.
These distributions have the same roles as their single covariate counter-
parts do in Section 7.1

We may still define the distribution of Y0 composition-adjusted to Y
to be the expected covariate-response relationship over the comparison co-
variate distribution:

f0C(y) ≡ EfZ

[
fY0|Z0(y |Z)

]
.

If all the components of the covariate are continuous, then the expectation
is a multivariate integral similar to (7.4). If some of the components of the
covariate are discrete then the corresponding components of the expecta-
tion are sums similar to (7.3). The composition-adjusted distribution is, of
course, continuous and univariate. It can be interpreted and used in the
same way as in the single covariate case.

As an example, consider the situation where we have two continuous
covariates Z1 and Z2. Let Z0 = (Z1

0 , Z2
0 ) and Z = (Z1, Z2). The joint effect

of Z1 and Z2 is:
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f12
0C(y) ≡ EfZ

[
fY0|Z0(y |Z)

]
=
∫ ∫

fZ(z1, z2)fY0|Z0(y |z1, z2) dz1dz2

=
∫ ∫

fZ2|Z1(z2|z1)fZ1(z1)fY0|Z0(y |z1, z2) dz1dz2,

(7.8)

where fZ(z1, z2) is the marginal distribution of Z; fZ2|Z1(z2|z1) is the dis-
tribution of Z2 given Z1; and fZ1(z1) is the marginal distribution of Z1 all
in the comparison population. For the reference population, fY0|Z0(y |z1, z2)
is the distribution of Y0 given Z0 = (z1, z2).

Sequential Adjustment

The composition-adjusted distribution adjusts the response jointly for
the differences in all the covariates. The individual compositional effects
of each variable can be investigated by analyzing the composition-adjusted
distribution for that variable alone. It may be of interest to determine the
contribution of each variable to the joint composition effect. Conceptually
this is analogous to the situation in multiple linear regression where we
wish to determine the effect of each predictor variable on the target vari-
able. There, and here, there will not necessarily be a unique decomposition
of the joint effect, unless one is willing to specify the order in which the co-
variates are applied. It is possible to define sequential effects that uniquely
decompose the sum, but, in general, the order of the sequence will matter.

For the above two continuous covariate situation, the distribution of
Y0 Z1-composition-adjusted to Y is

f1
0C(y) ≡ EfZ1

[
fY0|Z1

0
(y |Z1)

]
=
∫

fZ1(z1)fY0|Z0
1
(y |z1) dz1

=
∫ ∫

fZ2
0 |Z1

0
(z2|z1)fZ1(z1)fY0|Z0(y |z1, z2) dz1dz2,

(7.9)

where fZ2
0 |Z1

0
(z2|z1) is the distribution of Z2

0 given Z1
0 in the reference

population.
Suppose we wish to determine the compositional effect of Z2 after

the compositional effect of Z1 has been taken into account. The compo-
sitional effect of Z2 will not be Y0 Z2-composition-adjusted to Y due to
the dependencies between the two covariates. Comparing this expression
for Y0 Z1-composition-adjusted to Y to (7.8) we can see that the effect
of the composition adjustment for the second covariate, above and beyond
the first, is to replace fZ2

0 |Z1
0
(z2|z1) with fZ2|Z1(z2|z1). If the conditional

distributions of the second covariate given the first are the same in both



7.4 Adjusting for multiple covariates 97

populations, the second variable will have no compositional effect in ad-
dition to the first. This will hold even if the marginal distributions of the
second covariate differ between the populations.

The decomposition in (7.2) can be extended to this situation. Let Y 12
0C

be a random variable with density f12
0C in (7.8) and CDF F 12

0C , while Y 1
0C be

a random variable with density f1
0C in (7.9) and CDF F 1

0C . The composi-
tional effect of Z1 can be represented by the relative distribution of Y 1

0C to
Y0, denoted R1

0 = F0(Y 1
0C). R1

0 will have a uniform distribution when the
comparison and reference populations have the same marginal distribution
of Z1. The compositional effect of Z2 in addition to Z1 can be represented
by the relative distribution of Y 12

0C to Y 1
0C , denoted R12

1 = F 1
0C(Y 12

0C). R12
1

will have a uniform distribution when the comparison and reference popu-
lations have the same conditional distribution of Z2 given Z1. Finally, to
isolate the residual change we take the relative distribution of Y to Y 12

0C ,
denoted R12 = F 12

0C(Y ). R12 will have a uniform distribution when the
conditional response distributions are the same in both populations.

Let R0 be distributed as the relative distribution of Y to Y0. The
decomposition can be represented in terms of the density ratios:

f(yr)
f0(yr)

=
f1
0C(yr)
f0(yr)

× f(yr)
f1
0C(yr)

=
f1
0C(yr)
f0(yr)

× f12
0C(yr)

f1
0C(yr)

× f(yr)
f12
0C(yr)

(7.10)

or, in more heuristic terms:

overall relative
density

=
density ratio for

compositional effect of
Z1

×
density ratio for

compositional effect of
Z2 given Z1

× density ratio for
the residual effect

(7.11)
These three effects form a sequential decomposition of the relative distri-
bution of Y to Y0 in the sense that R12 is the relative distribution of R0 to
R12

0 , and that R12
1 is the relative distribution of R12

0 to R1
0. The first level

is the joint adjustment and the second measures the additional effect of the
second covariate.

The density ratio for the compositional effect of Z1 is a proper density
while the others in general are not (see the discussion in Chapter 3).

Mathematically, the relationship between the densities is:

g0(r) = g1
0(r)×g12

1 (p)×g12(q) where p = F 1
0C(r) q = F 12

0C(r), 0 ≤ r ≤ 1,

where r is the percentile in the reference population for a given value of the
attribute, yr, while p and q are the percentiles in the first and joint covariate
composition-adjusted population at that same value, respectively.



98 Chapter 7. Adjustment for Covariates

This sequential approach can be extended to an arbitrary number of
covariates in a straightforward way. Each compositional effect term mea-
sures the additional compositional effect of the covariate in the sequence
while the final term measures the residual effect. Altering the order of the
variables in the sequence can be informative about their relative effects,
and in particular, one can examine the “unique” effect of each covariate by
placing it last in the sequence.

Block Adjustment

In many applications the covariates will form a hierarchy where vari-
ables at each level of the hierarchy are grouped together as a block. One
simple example of this is where a number of the covariates are control
variables and the others are covariates of primary substantive interest. We
would like to interpret the effects of the second group after the composi-
tional effects of the variables in the first set have been adjusted for. This
can be achieved in the same manner as the sequential decomposition in
the previous section. We again denote the complete set of covariates by
Z0 = (Z1

0 , Z2
0 ) and Z = (Z1, Z2). The set of covariates is split into two sub-

sets (Z1 and Z2), representing the primary and secondary level of variables.
The compositional effects can be applied in the sequential manner of the
previous section, with the set of variables (Z1) being adjusted for first and
the second set (Z2) being applied subsequently. The joint and sequential
expressions (7.8) and (7.9) respectively still hold, although now they are
multivariate adjustments and not necessarily single variable adjustments.
The decomposition formulas also hold. For example in the example of con-
trol and interest variables the heuristic decomposition is:

overall relative
density =

density ratio for
compositional effect
of control variables

×
density ratio for

compositional effect of
variables of interest

adjusted for the controls

×
density ratio for

the residual effect

If there are multiple hierarchies of variables, this approach can be applied
in a sequential manner.

7.5 Categorical contrasts

For categorical covariates adjustment can also proceed as described above.
In this context, however, it is often of interest to compare the groups de-
fined by the covariate directly, rather than treating the covariate as a control
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variable and adjusting to eliminate its compositional effects. For example,
consider dividing a sample into two groups, those with a high school de-
gree or less and those with one or more years of college. To analyze the
impact of a change in the distribution of education on the distribution of
wages, one can use either the adjustment approach described above, or a
contrast approach. Using the compositional adjustment approach, the im-
pact of the educational change on the distribution of wages is isolated, but
the differences in the wage distributions between the two groups are not
directly observed. Using the categorical contrast approach, the two wage
distributions are instead explicitly compared; forming the relative wage
distribution for the two groups and using all of the methods described in
previous chapters (e.g., location/shape decomposition, entropy and polar-
ization indices, etc.). The contrast approach, however, does not explicitly
identify a composition “effect”. Used together, adjustment and contrast
methods can provide a detailed picture of the role of a categorical covariate
in distributional change.

Exercises
Exercise 7.1. Create a decomposition along the lines of (7.6) that would
define the composition and residual effects as shifts from the reference dis-
tribution, and a third effect that represents the interaction between them.

Exercise 7.2. The composition adjustment given in Section 7.1 need not
be the reference distribution composition-adjusted to the comparison dis-
tribution, but could be the comparison distribution composition-adjusted
to the reference distribution. Describe circumstances where this would be
more appropriate than the definition given in (7.3).

Exercise 7.3. The composition adjustment given in Section 7.1 need not
be made relative to either the comparison or reference distributions, but
could be made relative to a third standard. For example, the population
distribution of the covariate could be know from census or registry data.
Alternatively, the covariate distribution could be the result of a popula-
tion projection. Under these circumstances both reference and comparison
distributions could be composition-adjusted to the standard. Discuss the
advantages and disadvantages of this choice.

Exercise 7.4. The composition-adjusted distribution can be estimated us-
ing Monte-Carlo methods. Consider resampling with replacement from the
reference sample stratified by the covariate with weights proportional to
the relative PDF of the covariate distribution. Show that this is equivalent
to resampling directly from the composition-adjusted distribution given
in (7.3). As the size of the resample can be made arbitrarily large, the
composition-adjusted distribution can be reconstructed with any desired
accuracy.
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Exercise 7.5. Consider again the distribution of earnings in 1967 and
1997 analyzed in Chapter 6. While the analysis there disaggregated by
race/gender groups, it is of interest to see how changes in the proportions
within race/gender groups have effected the population earnings distribu-
tion. Use the resampling algorithm described in Exercise 7.3 to composition
adjust the 1967 earnings distribution to the 1997 distribution. Calculate
the relative distribution of of 1997 earnings to the composition adjust 1967
earnings. Calculate the relative distribution of of 1997 to 1967 earnings,
and plot the two relative distribution on the same graph. Did population
composition changes have a big effect?

Exercise 7.6. This exercise uses the definition of a discrete relative distribu-
tion given in Chapter 11. As in Section 7.1, let (Y0, Z0) and (Y, Z) denote
random vectors describing the reference and comparison populations. Here
Y0 and Y represent the response variables, and Z0 and Z represent the
values of a discrete covariate. Derive an expression for the distribution of
Y0 composition-adjusted to Y involving the discrete relative density of Z
to Z0.

Exercise 7.7. Let Y01, Y02, . . . , Y0n be a sample from the reference popula-
tion, with sampling weights w01, w02, . . . , w0n. Let gZ(r) be the relative den-
sity of a covariate in the comparison population to the reference population.
Consider the new weights v0i = w0igZ(QZ0

(
Y0i)
)

where QZ0(r) is the quan-
tile function of Z0. Show that Y01, Y02, . . . , Y0n with weights v01, v02, . . . , v0n

is a sample from the reference population composition-adjusted to the com-
parison population for the covariate.



Chapter 8

Application: Comparing Wage
Mobility in Two Eras

8.1 Background

Much research has been done on the trend of growing wage inequality in the
United States (for reviews see Karoly (1993), Levy and Murnane (1992),
and Danziger and Gottschalk (1993; 1996). One of the important questions
to emerge in this research concerns the issue of lifetime wage mobility: To
what extent does the observed cross-sectional growth in wage inequality
translate into growing polarization in the distribution of lifetime wage tra-
jectories? If workers’ lifetime wage mobility is high, then the cross-sectional
trends are less worrisome Some have argued, for example, that there is
simply more volatility in wages now, perhaps due to more frequent job
changes, but that the long-term trajectories of workers’ wages are no more
polarized than before (Gottschalk and Moffit 1994; Stevens 1996). On the
other hand, there is evidence that restructuring strategies at the firm level
are dismantling internal labor markets and may be permanently changing
the distribution of economic opportunities (Cappelli 1995; Harrison 1994).
When firms replace on-the-job training and promotion with external hir-
ing, or substitute temporary workers at the bottom of the job hierarchy, the
traditional routes to career mobility are disrupted, especially for low-skill
workers. If these are the forces driving the cross-sectional wage polarization,
wage trajectories may become more polarized, with some workers increas-
ingly stuck in a series of low wage marginalized jobs, while others experience
“winner take all” wage gains. This scenario suggests permanent changes in
the distribution of mobility and the emergence of a more rigidly segmented
labor market.

8.2 Data

The longitudinal panels of the National Longitudinal Survey (NLS) data
provide an opportunity to investigate these questions by comparing the
wage growth profiles over time. The data we use here come from two cohorts

101
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of the NLS, one initiated in 1966, the other in 1979. We will refer to these as
the original and recent cohorts respectively. Both cohorts are 14–21 years
old at the start of the survey and are followed for 16 years (through 1981
for the original cohort, and 1994 for the recent). For exposition here we
restrict the examples to white males.

To examine the question of wage mobility, we analyze the growth pro-
file of “permanent wages.” Wages can be thought of as having a permanent
and a transitory component, where the permanent component represents a
smooth underlying age-earnings profile, net of the transitory shocks caused
by such things as school-to-work transitions and job changes. Permanent
wages are generally estimated using a mixed effects model: the effects of age
on earnings are specified with fixed effects to capture the population average
and random effects to capture population profile heterogeneity. The residual
from the predicted profiles is defined as the transitory wage variance (for
examples, cf., Gottschalk and Moffitt (1994), Haider (1997) Bernhardt, et al
(1999), and Baker (1997)). This specification posits a unique age-earnings
profile for each person. We will be working with the distributions of es-
timated permanent log-wage gains for each cohort. The gains are defined
as the difference between the (constant dollar) estimated permanent log
hourly wage at the beginning and end of each respondent’s age profile. We
will refer to these more simply as “wage gains” below. Given the age range
in the cohort and the years of observation, the wage gain is specified over an
18-year period, as respondents age from 16 to 34 years old. Further details
on the model and estimation are presented in Appendix C.

8.3 Findings

Table 8.1 presents the usual summary statistics, and Figure 8.1 shows the
PDF overlays (panel a) and Lorenz curves (panel b). For the Gini and
Lorenz measures, we have had to code negative wage gains to 0. There
are a handful of negative values in the original cohort, and a much larger
number (7% of all cases) in the recent cohort. These values indicate a loss
in real wages over the observation period. Neither the Gini nor the Lorenz
curve can handle negative values – something that limits their usefulness
in this context. Relative distribution methods do not share this limitation.

Several aspects of the relative wage growth in the two cohorts are ap-
parent from these figures and tables: the recent cohort experienced smaller
average wage gains and these gains were more variable. While the frequency
of high wage gains was comparable for the two cohorts, the frequency of low
wage gains was much greater for the recent cohort (this is visible primarily
in the PDF overlay). The Lorenz curve for the recent cohort lies uniformly
below that of the original cohort, indicating that there is more inequality
in the distribution of recent wage gains.
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Table 8.1. Summary statistics for the permanent wages gains in the two cohorts.

Summary Original Recent
Statistic Cohort Cohort

Sample size 1834 2103
Mean 1.085 0.878
Standard deviation 0.483 0.618
Interquartile range 0.549 0.789
Gini index 0.236 0.364

The key theoretical questions are hinted at but not easily quantified
using the standard measures here. How well is the difference captured by
a simple location shift? Is there evidence of growing polarization? Are the
upper and lower tails of the distribution changing in similar ways? What is
the role played by covariates like education? Relative distribution methods
are well suited to these questions.

Figure 8.2 shows the relative CDF and PDF for the distribution of wage
growth in the two NLS cohorts. The bottom axis is labeled in population
quantiles and the top axis in (rescaled) log-wage gains. The differences in
wage growth experienced by the two cohorts in the relative CDF panel are
easily described using the horizontal and vertical gridlines. At the median
of the original cohort wage growth, r = 0.5, the wage gain can be read from
upper axis F−1

0 (0.5) = 1.1, about $3.00. The relative CDF at this point is
G(r) = 0.63, which means that 63% of the recent cohort experienced lower
gains than this. The median wage gain (F−1(0.5)) for the recent cohort can
be read off of the right axis at G(r) = 0.5, and it is roughly 0.85, about
$2.30. About 70% of the original cohort had higher gains than this. We can
also see that 27% of the recent cohorts wage gains are in the bottom decile
of the original cohort distribution, the divergence between the two cohorts
is greatest in the second and third deciles, and the proportions for the two
cohorts converge above the 90th percentile.

The second panel shows the relative PDF of the wage growth, recent to
original cohort. Compared to the relative CDF, the relative PDF provides
a more intuitive display for many people: values above 1 represent more
density in the recent distribution; values below 1 represent less, and the
actual value is the multiplicative factor more (or less). This graph makes
it clear that the biggest difference between the two cohorts is at the very
bottom of the distribution: nearly three times as many recent wage gains
fell into the bottom decile defined by the original cohort. By contrast, the
frequency of wage gains in the middle of the distribution has fallen by 30%-
40% for the recent cohort. The smallest discrepancy is at the highest levels
of wage growth, although the recent cohort is still somewhat less likely to
achieve such gains. For example, the relative density at the 85th percentile
of original cohort wage growth (F−1

0 (r) = 1.5, a wage gain of about $4.50)
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Fig. 8.1. The distributions of permanent wage growth in the original and recent
NLS cohorts. (a) The PDFs for each cohort; (b) The Lorenz curves of these PDFs.
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Fig. 8.2. The relative distribution of permanent wage growth in the original and
recent NLS cohorts: (a) the relative CDF; (b) the relative PDF. The relative
deciles are superimposed on the smooth density estimate. The upper and right
axes are labeled in permanent log-wage gains.
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is about 0.8. So 20% fewer recent cohort earners attained this level of wage
growth.

8.2.1 Location and shape decompositions

Figure 8.3 presents the median and shape decomposition of the relative
distribution of wage gains. The first panel represents the overall relative
density (and is the same as Figure 8.3b). The second panel represents the
effect of the median shift in the wage gains between the two cohorts –
representing what the relative density would have looked like if there had
been no change in distributional shape. The effects of the median shift are
quite large. This alone would have placed nearly 70% of the recent wage
gains in the bottom half of the original cohort distribution and virtually
eliminated the gains in the top decile. Note, however, that neither tail of
the observed RD is well reproduced by the median shift. The bottom decile
of panel (b) is about 2.0, well below the value of 2.7 observed in the actual
data, and the upper deciles are also substantially lower than observed. These
differences are explained by the shape effects presented in panel (c), which
are also quite large. Even without the lower median, the greater dispersion
of wage gains in the recent cohort would have led to relatively more low-
growth earners, and this effect is concentrated in the bottom decile. The
polarization hollows out the middle of the wage gain distribution, with a
cumulative loss of nearly a third of recent earners in deciles 3 through 8.
At the top of the distribution, however, the growing spread in recent wage
gains works in the opposite direction from the location shift: operating by
itself, it would have increased the number of wage gains in the upper decile
by more than 50%. In sum, the losses experienced by the recent cohort are
produced by both lower median gains and polarization, while the higher
wage gains are exclusively due to polarization.

The entropy summary is given on top of each figure, and the full set
of summary statistics is presented in Table 8.2. The overall entropy for
the change in wage growth between the two cohorts is 0.159. The location
shift accounts for 65% of the total change, and the shape shift for 37%.
The two numbers do not sum exactly to 100 because of the rescaling in
the location-adjusted density ratio (see Section 3.1). The MRP index for
the shape change displayed in panel (c) is 0.183 (95% CI 0.148–0.218). For
comparison, two normal distributions with the same MRP would have a
standard deviation ratio of 1.34. The size and sign of the estimate confirm
the impression left by the graphical display: there has been a significant
growth in permanent wage inequality between the two cohorts. The lower
and upper polarization estimates indicate that both tails of the distribu-
tion are significantly positively polarized. The lower index is slightly larger,
indicating greater polarization in the lower tail of the distribution than in
the upper tail.
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 entropy= 0.1 
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Fig. 8.3. Location/Shape decomposition of the relative distribution of permanent wage growth in the recent and
original NLS cohorts. (a) the (unadjusted) relative density of wage growth; (b) the effect of the median difference in
wage growth between the cohorts; (c) The median-adjusted relative density of wage growth (the effect of changes in
distributional shape).
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Table 8.2. Summary statistics for the location/shape decomposition of the rela-
tive distribution of wage growth: recent to original NLS cohort

Statistic Estimate 95% CI p–value

Entropy: overall change 0.159 0.119 – 0.198 0.000
median shift effect 0.104 0.062 – 0.146 0.000
shape shift effect 0.059 0.033 – 0.084 0.000

percent due to median 65.4% 46.6 – 84.2 0.000
percent due to shape 37.1 24.0 – 50.2 0.000

Polarization (MRP) 0.183 0.148 – 0.219 0.000
lower tail (LRP) 0.190 0.120 – 0.261 0.000
upper tail (URP) 0.176 0.105 – 0.247 0.000

The educational composition of the two NLS cohorts may have changed,
and education is an influential covariate for wages. We can use the covari-
ate adjustment technique to determine whether differences in the education
profile between the two cohorts explain some of the observed changes in rel-
ative wage gains.

Figure 8.4 displays the relative distribution of final observed education
in the two cohorts. Final education is measured as the number of years of
schooling achieved in the last panel of the study, and is bottom-coded at
8 and top-coded at 18%. Note that this measurment scale is shown on the
top axis. Neither cohort has many respondents with less than 12 years of
education, so the RD is quite variable at this end of the scale. For example,
the fraction of the original cohort with 10 years of education is about 2%,
while the fraction in the recent cohort is about 3%, so the relative distri-
bution is about 1.5. The fraction reporting a terminal high school degree
can be seen in the first long horizontal section of the graph. Reading across
the bottom axis one can see that this represents about 30% of the original
cohort, while the RD value of 1.4 signifies that the relative fraction in the
recent cohort is about 40% larger. There are relatively fewer respondents
in the recent cohort reporting more than 12 years of schooling, with the
fraction reporting a college degree is down by about 15%. Overall, the re-
cent cohort appears to have a slightly downshifted education distribution.
This may seem somewhat counterintuitive, but there are two reasons for
the lower education levels in the recent cohort. The first reflects a real pop-
ulation trend. The rate of college attendance and completion peaked in the
early 1970s, coinciding with the years of the Vietnam War draft, and raising
the educational attainment of the original cohort. The second is an artifact
of the sample. The original cohort had a higher rate of attrition than the
recent cohort (26% and 8% respectively), and attrition was more likely to
occur among the less educated.
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Fig. 8.4. The relative distribution of education for the recent to the original
cohort. The upper axis is labeled by final education.

8.2.2 Covariate decompositions

Figure 8.5 graphically represents the adjustment of the relative distribution
for education composition changes. Panel (a) shows the (unadjusted) rela-
tive density of wage gains (same as Figure 8.2b); panel (b) represents the ed-
ucation composition effects, and panel (c) represents the education-adjusted
relative density of wage gains – that is, the expected relative density of wage
gains had the education profiles of the two cohorts been identical.

Figure 8.5(b) is very close to a uniform distribution. The implication
is that the difference in education composition between the two cohorts
had little effect on the observed relative distribution of wage growth. The
reduction in high wage gains seen in the first panel is associated with this
compositional change, but the massive observed growth in the bottom decile
is not. Figure 8.5(c) represents the education-adjusted relative wage gain
distribution. In the absence of major compositional effects, the adjusted dis-
tribution is not much different than the original distribution. The graphical
perception is confirmed by the entropy statistics: the entropy of the resid-
ual RD is 0.150, 94% of the total. Confidence intervals and p-values for the
entropy statistics are given in Table 8.3.
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(b) Education effect
 entropy= 0.00909
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(c) Education-adjusted RD
 entropy =  0.15

Fig. 8.5. Adjusting the relative distribution of permanent wage growth for changes in the education composition
between the two cohorts. (a) The (unadjusted) relative density of wage growth; (b) the effect of changes in the
education profile between the cohorts; (c) the education-adjusted relative density of wage growth.
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Table 8.3. Entropy summaries for the education composition adjustment of wage
gains: recent to original NLS cohort

Entropy Estimate 95% CI p-value

Overall change 0.159 0.119–0.198 0.000
education composition effect 0.009 0.003–0.005 0.004
composition–adjusted effect 0.150 0.110–0.189 0.000

Education composition percent 5.7% 4.5–6.9 0.004
Composition–adjusted percent 94.3 86.3–102.3 0.000

Once the relative density has been composition adjusted, one can ex-
amine both the composition and residual components for location and shape
changes. As a hypothetical example, suppose the education composition ef-
fect in Figure 8.5 had been large. A location/shape analysis might then go
on to show that the composition effect was primarily a location shift, while
the residual was both location shifted and more polarized. Location shifts
in the residual component capture the impact of the changing “returns” to
education that are often the focus of regression-based wage analyses. Shape
shifts go beyond this to represent changes in the dispersion of conditional
returns that are typically ignored by regression-based models. This kind
of analysis can provide a rich description of the interrelated distributional
changes, which in turn can help to inform and focus a theoretical debate
by clearly identifying what needs to be explained. Combining composi-
tional adjustment with location/shape decomposition is straightforward,
and given the lack of compositional effect found in the analysis above, we
will not pursue this example further.

8.2.3 Categorical contrasts

In the literature on the growth in cross-sectional inequality, a consistent
finding is that the wage premium for a college education has risen sub-
stantially (Juhn and Murphy 1993; Katz and Murphy 1992). While the
college-educated are not doing uniformly better than they had in previous
cohorts – those with low education are doing relatively worse on almost all
measures: wages, job stability (Farber 1997), benefits (Farber 1996), and
employment (DiPrete 1993). A natural question is whether this penalty can
also be found in wage growth profiles, and what kinds of location and shape
shifts are at work.

Figure 8.6 compares the distributions of wage gains for the two educa-
tion groups, as density overlays (a and c) and as relative densities, recent
to original cohort (b and d). Panels (a) and (b) compare the wage gains
for the high school-educated across the two cohorts. The downshifting of
wage gains for the recent cohort is quite apparent. Three times as many
earners in the recent cohort experience wage gains in the bottom decile of
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the original cohort, and there are 20–50% fewer wage gains in any of the
deciles above the median. The relative distribution for this group is dom-
inated by the location shift, as the relative density is nearly monotonic in
its decrease. Panels (c) and (d) show the corresponding distributions for
the college-educated. For this group, the change between the two cohorts
is less pronounced, and takes a different form. The relative frequency of
both low and high wage gains increases for the recent cohort, though low
wage gains still predominate. About twice as many recent wage gains fell
in the bottom decile of the original distribution, but the fraction falling in
the highest decile also rose by nearly 20%. Overall, the relative distribution
for the college-educated exhibits modest polarization and little evidence of
a location shift.

Table 8.4. Summary statistics for cohort relative distributions by education

Measure High School College

Median ratio (unlogged) 0.77 1.00
Entropy 0.295 0.077

median shift effect 0.254 0.000
shape shift effect 0.041 0.077

Polarization (MRP) 0.17 0.19
lower tail (LRP) 0.22 0.29
upper tail (URP) 0.12 0.09

The summary statistics for these patterns are presented in Table 8.4.
The median ratio (based on the unlogged wage gains) shows a 23% loss
in real wage gains for the high school group, while the college group held
steady. The entropy summary suggests that the overall change experienced
by the high school group was three to four times as large as that experi-
enced by the college group. While the median shift explained about 86%
of the total change for the high school group, all of the change for the col-
lege group was due to changes in distributional shape. For both groups, the
shape change took the form of growing inequality – as the MRP is signif-
icantly greater than 0 – with greater polarization in the lower tail of the
distribution. The similarity in the magnitude of overall polarization was
not evident from the graphical displays. For the college group, however, the
polarization in the lower tail was much more extreme, because the index
for the lower tail is over twice as large as that for the upper. This pattern is
visible in the relative density panel in panel (d) of Figure 8.6: in the absence
of a median shift, the panel is effectively displaying the shape shift.

To compare the two groups directly, we can compare the two RDs
in Figure 8.6. Note that by first comparing the two groups within each
cohort, we are effectively controlling for the compositional differences be-
tween cohorts, but the composition effect remains implicit. The patterns are
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Fig. 8.6. The PDF overlays and cohort relative distributions of permanent wage
growth for high school- and college-educated workers in the NLS. (a) Wage gain
PDFs for workers with high school or less education in each cohort; (b) cohort
relative distribution (R:O) for those with high school or less education; (c) wage
gain PDFs for workers with some college education in each cohort; (d) cohort
relative distribution (R:O) for those with some college education. A decile bar
chart is superimposed on the relative density estimates. The upper and right
axes are labeled in permanent log-wage gains.
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summarized in Table 8.5 The first column indicates the decile of the col-
lege level wage gains. The second and third columns of the table represent
the relative deciles (high school:college) for the original and recent cohorts
(Figures 8.6, panels (b) and (d) respectively). The last column shows the
difference, and represents how the high school group fared relative to the
college group from one cohort to the next. In the bottom decile of the college
wage gain distribution, for example, the fraction of high school earners rose
from 19% to 25% between the two cohorts. Glancing down the last column
of this table, we can see that high school earners fared worse in general:
their relative fraction increased in almost every decile below the median
and decreased in every decile above. These changes were produced by the
combination of median and shape shifts in the high school and college RDs,
and the relative impact of each shift can be identified.

Table 8.5. Decile relative distributions of high school to college educated: recent
and original NLS cohorts

Original Recent Change
Decile Cohort Cohort in Decile

1 19.3 24.8 5.5
2 14.3 18.8 4.5
3 16.8 16.5 -0.3
4 8.7 13.0 4.3
5 10.2 11.5 1.2
6 10.8 6.5 -4.3
7 8.4 4.3 -4.0
8 5.1 2.4 -2.6
9 3.9 1.2 -2.7

10 2.5 1.0 -1.5

How much did the location and shape shifts in each groups’ distribution
contribute to the overall change in their relative positions? A natural way to
answer this question would be to compare the observed changes in column
4 to the changes that would have occurred if only the medians (or shapes)
had changed. This suggests a decomposition into the “marginal effects” of
each change.

Let Hm
s and Cm

s denote the distribution of wage gains for the high
school and college groups respectively, with the median adjusted to the
mth cohort, and the shape (or conditional distribution of returns) from
the sth cohort. For example, Hr

o is Ho
o , the original high school wage gain

distribution, adjusted to have the same median as the recent cohort. Let
g(H : C) denote the relative density of wage gains for high school to college
educated workers. Then the marginal effects of the median shift from the
original relative density can be defined as

g(Hr
o : Cr

o ) − g(Ho
o : Co

o ).
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As with the location shift in the residual component of the compositional
adjustment, the relative median shift here captures the effects of the change
in median returns to education between the two cohorts. If both groups had
experienced the same median gains, then their relative positions would be
unchanged, and the quantity above would take the uniform value of zero.
The marginal effect of the shape change in the high school distribution can
be defined similarly as:

g(Ho
r : Co

o ) − g(Ho
o : Co

o ),

and the marginal effect of the shape change in the college distribution as:

g(Ho
o : Co

r ) − g(Ho
o : Co

o ). (8.1)

Each of these effects compares the original relative density, g(Ho
o : Co

o ),
to the hypothetical density that would have been produced by a change in
the specific distributional component alone.

The effects do not sum to the total difference shown in the last column
of Table 8.5 because they do not occur independently. The difference be-
tween the sum of these effects and the total change can be interpreted as an
interaction effect. The effect of each distributional change depends on the
others: if the median shift has moved a substantial fraction of workers out
of a decile, then the shape shifts will be operating on a smaller base and
will move a correspondingly smaller fraction of workers out of that decile
(or into another) than they would have in the absence of a median shift.
This interaction among the effects makes a unique decomposition of the
total change into the three components ambiguous, unless one is willing to
specify the order in which the effects are applied. The principle is the same
as that involved in decomposing the explained variance in the linear model
context when the covariates are correlated. Here, as there, it is possible to
define sequential effects that uniquely decompose the sum, but, in general,
the order of the sequence will matter.

For comparison, we will obtain an exhaustive decomposition by defin-
ing the effects sequentially, specifying first the relative median shift:

g(Hr
o : Cr

o ) − g(Ho
o : Co

o ),

then the shape change in the college distribution:

g(Hr
o : Cr

r ) − g(Hr
o : Cr

o ),

and the shape change in the high school distribution:

g(Hr
r : Cr

r ) − g(Hr
o : Cr

r ). (8.2)

These effects do sum to the total change shown in Table 8.5. The sequential
order seems reasonable in this case: median effects are in some sense more
fundamental than shape effects, and changes in the reference distribution
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Fig. 8.7. Sources of the change in the cohort relative distribution of wage gains by education level. (a) The marginal
effects as defined by (8.1); (b) the sequential effects as defined by (8.2).
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(the college-educated here) can be seen as more fundamental than changes
in the comparison distribution. The relative median shift is the same in
(8.1) and (8.2).

Figure 8.7 presents the two decompositions side by side. Panel (a) rep-
resents the marginal effects as defined by (8.1), and panel (b) the sequential
effects as defined by (8.2) The solid bars show the total change from Table
8.5. Each of the lines represents one of the three components in the decom-
position. The interaction effect is not plotted in the first panel, but it is
quite large in some deciles: {-4.7, -0.9, 4.2, -3.9, 2.4, 2.0, 1.5, -2.1, -1.5, and
0.9}

Qualitatively, the two decompositions show the same picture: the rela-
tive median shift tends to be the most influential contributor to the overall
pattern. This reproduces the key finding from recent regression-based anal-
yses that the education premium is having a large effect on wage changes.
As we have seen here, the premium is not rising for the college-educated,
but falling for the high school-educated.

The median effect is clearly modified by the shape changes, however,
and this is something that would be missed by regression-based analyses.
Particularly in the bottom decile, the relative median downshift alone would
have produced nearly double the number of low wage gains for the high
school-educated, but the strong polarization in the lower tail of the college
group’s distribution virtually nullified that shift. The net result looks much
like the effect due to the modest polarization in the high school distribution:
5–7% more high school-educated workers in the lowest decile of the college
earners’ wage gains. Much of the growth in the remaining deciles below the
median appears to have been generated by the polarization in the college
wage gains: as college earners moved out of this section of the distribution,
the relative fraction of high school earners increased. For the upper deciles
the losses appear to be driven by the median shift, but dampened by the
shape change in the high school distribution. Recalling the summary polar-
ization indices shown in Table 8.4, we can see that the modest polarization
in the upper tail of the high school educated distribution, and the lack of
polarization in the upper tail of the college-educated distribution, helped
to offset the high school group’s losses in the upper deciles.

Exercises
Exercise 8.1. The model for the permanent wages described in Appendix
C has individual-specific quadratic equations. That is, for each respondent,
the profile is represented as:

yit = b0i + b1iaget + b2iage2
t ,

where yit is the log of real (PCE-deflated) permanent wages for respondent
i at time t. Each of the coefficients b0i, b1i, and b2i represent a combina-
tion of the fixed and random effects for the lifecycle growth in wages. This
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is sometimes called the “full-profile heterogeneity” model. Consider an al-
ternative model for the permanent wages where only the intercept b0i is
individual-specific (i.e., random). This assumes that the individual profiles
only differ in overall level, but not in trend or shape. Show that the dif-
ference in permanent wage gains between two individuals is equal to their
difference in intercepts.

Exercise 8.2. Fit the model for permanent wages with only the intercept
random (See Exercise 8.1). Use it to estimate the permanent wage gains
for individuals. Compare the results of the intercept-only model to the full-
profile heterogeneity model for both cohorts.

Exercise 8.3. Repeat the analyses in the chapter using permanent wages
estimated under the model with only the intercept random. Do the conclu-
sions of the analysis change?

Exercise 8.4. The permanent wage model with individual-specific inter-
cept and slope is intermediate between the intercept only model and the
quadratic model used in the chapter. Fit the model for permanent wages
with intercept and slope random (See Exercise 8.1). Use it to estimate the
permanent wage gains for individuals. Compare the results from this model
to the full-profile heterogeneity results.

Exercise 8.5. Repeat the analysis in the chapter using permanent wages es-
timated under the model with both the intercept and slope random. Com-
pare the results to those obtained from Exercise 8.3 and the full-profile
heterogeneity model.

Exercise 8.6. The complement of the permanent wages are the transient
wage residuals. These are defined as εit, the difference between the observed
log-wages and the permanent wages for respondent i at time t. Under the
model, they are independent of transient wage effects at other time points
and other respondents. They can be estimated by the difference between
the observed log-wages and the estimated permanent wages. Estimate the
transient wage effects for the original and recent cohorts. Give a statistical
summary of their properties separately for each cohort.

Exercise 8.7. Calculate the relative distribution of transient wage effects
from the recent cohort to those in the original cohort. Will there be a
location effect? Compare the transient wage effects from the two cohorts
using the relative distribution and other numerical summaries.

Exercise 8.8. The covariate decomposition in Section 8.3 adjusts for com-
positional differences in education. Age is another important determanent
of wage. Would you suggest compositionally adjusting for age differences
between the two cohorts? Give reasons why it should, or should not, be an
important factor in this analysis. Complete a covariate decomposition using
age similar to that in Section 8.3. Does it support your intuition about the
effect of age?



Exercises 119

Exercise 8.9. Another important determinant of wage is industry. Us-
ing national data (obtainable from the Bureau of Labor Statistics, series
EES00000001, at http://www.bls.gov/top20.html) compare the change
in the industrial composition of jobs over the period that these two cohorts
were followed. The NLS respondents work in a range of industries, and may
change industries over the observation period. Discuss how you would ad-
just for the changing mix of industries in each cohort, given the longitudinal
nature of the surveys.

Exercise 8.10. What other covariates might be important to control for?
Describe how you would interpret a compostional adjustment for these
variables. Describe how you would interpret a categorical contrast.
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Chapter 9

Inference for the Relative
Distribution

In this chapter we address the estimation of the relative CDF, PDF, and
Lorenz PDF based on survey data. The technical level of this chapter is
higher than others in the book, but the ideas are quite intuitive. For those
needing an introduction to the more technical concepts, Chapters 1-3 in Si-
monoff (1996) provide the necessary background. The more detailed results
and proofs are given in Appendix D.

The estimation of univariate CDFs and PDFs has been extensively
studied. See Silverman (1986), Scott (1992), and Simonoff (1996) for com-
prehensive descriptions of both the underlying theory and practice. This
literature focuses almost exclusively on the situation where a single ran-
dom sample from the distribution of interest is available. Results from this
literature are directly applicable to the relative distribution context if the
reference distribution is assumed to be known (see Section 2.3). In the more
general case, where we have random samples from both the reference and
comparison distribution (and the reference distribution is not known), we
must turn to the literature on two-sample estimation, and this is much less
extensive.

We first consider in Section 9.1 the situation where the reference dis-
tribution is known and the comparison distribution is estimated. This sit-
uation is closely allied to the usual one-sample situation. We consider a
number of approaches to density estimation that also can be applied fruit-
fully to the two-sample situation. In Section 9.2 we consider the situation
where both the reference and the comparison distributions are unknown.
Insight can be gained into the process by considering the two-sample rank
statistics. Estimators for both the relative CDF and PDF are developed
that parallel those in the one-sample situation. In Section 9.3 inference for
a reference group formed by pooling the comparison and reference groups
is considered. In Section 9.4 the important situation where the observations
are censored is studied as a generalization of the case where the values are
completely observed. In Section 9.5 we consider the case, common in survey
samples, where the observations have associated weights. In Section 9.6, we
use the results in the previous sections to derive confidence intervals and
confidence bands for the relative CDF and PDF.

121
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In this chapter we do not explicitly consider the situation where both
the comparison and reference distributions are known to be members of
parametric families of densities. The estimation of parametric densities has
been extensively studied - see Rice (1995). In Section 9.2.3.4, however,
we consider the situation where the relative distribution is known to be a
member of a parametric family.

9.1 Estimation when the reference distribution is
known

As we noted in Section 2.4, there are some situations when the reference
distribution is known or prespecified. In this section we assume that the
reference CDF, F0, is known and the data on the comparison population
arises from a sample survey. That is, we assume that we have a sample
Y1, Y2, . . . , Ym that is independently and identically distributed from the
population distribution F. In reality the sample is drawn from a large but
finite population. The approach taken here assumes that there is some un-
derlying process that generates the finite population, and that the process
has distribution F. There are a number of perspectives on this issue that
lead to distinct inference about the relative distribution. In particular we
could consider random sampling from a finite and fixed population. A dis-
cussion of these issues in the context of inequality measures is given in
Nyg̊ard and Sandström (1989). The situation where the observations have
sample weights is considered in Section 9.5.

One naive approach to estimating the relative distribution is to esti-
mate F and f and use the formulae in Section 2 to determine estimates of
the relative CDF and PDF. In this two step process, one first estimates the
distribution of the comparison population and then uses this to estimate
the relative distribution. As the support and behavior of the comparison
population will vary from problem to problem, here we will focus on the
direct estimation of the relative distribution (See Exercise 9.1).

Based on the sample, we can define the relative data (Section 2.2):

Rj = F0(Yj) j = 1, . . . , m. (9.1)

We will assume in this section that F0 is absolutely continuous (i.e., is
continuous and not extremely rough – see Section 2.1). As the sample is
independently and identically distributed drawn from the CDF F, the rel-
ative data are independently and identically distributed drawn from the
CDF G. Thus we can directly apply CDF and PDF estimation methods to
the relative data on the support [0, 1].
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9.1.1 Estimation of the relative cumulative distribution function

The natural estimator of the relative CDF is the empirical cumulative dis-
tribution function, denoted by Gm(r) and defined to be the proportion of
the relative data that do not exceed the value r ∈ [0, 1]. This function is
also called the empirical distribution function and the sample distribution
function. It can be represented mathematically as

Gm(r) =
1
m

m∑
j=1

I(Rj ≤ r)

where
I(S) =

{ 1 if the event S is true
0 otherwise

is the indicator function. Note that Gm(r) is a step function of r with jumps
of 1/m at the ordered values of the relative data. In addition, for a fixed
but otherwise arbitrary value of r, Gm(r) is itself a random variable. Our
main interest in Gm(r) is as an estimator of G(r). The exact distribution of
mGm(r) is binomial with m trials and probability of success G(r) (Exercise
9.2).

This result makes it easy to determine the behavior of Gm(r) for large
samples. From the central limit theorem (Kelly 1994) the asymptotic behav-
ior of Gm(r) can be described: as the sample size increases, the distribution
of Gm(r) approaches that of a normal distribution with expected value G(r)
and variance G(r)[1 − G(r)]/m. Mathematically this can be written:

Theorem. For each value of 0 < r < 1, Gm(r) is a consistent estimator of
G(r). The sequence Gm(r), m = 1, 2, . . . , is also asymptotically normal:

Gm(r) ∼ AN
{

G(r),
G(r)(1 − G(r))

m

}
0 < r < 1 (9.2)

as m → ∞.

The notation is described more formally in the Background material.
This result shows that there is convergence for each value of r individually.
One commonly used measure of the global closeness of Gm(r) to G(r) is
the Kolmogorov-Smirnov distance

Dm = sup
0<r<1

|Gm(r) − G(r)|.

The convergence of Gm(r) to G(r) occurs simultaneously for all r in the
sense that Dm converges to zero with probability one, that is,
P [limm→∞ Dm = 0] = 1. This result suggests that for large sample sizes
the deviation between Gm(r) and G(r) will be small for all r. There is



124 Chapter 9. Inference for the Relative Distribution

much known about the distribution of Dm and related quantities – see, for
example, Serfling (1980).

The relative distribution of Y0 to Y is G−1(p), the quantile function of
G. The natural estimator G−1(p) is the pth quantile of the sample distri-
bution function Gm(r) defined by

G−1
m (p) = inf{r : Gm(r) ≥ p}.

The properties of G−1
m (p) as an estimator of G−1(p) are similar to those of

Gm(r) as an estimator of G(r). In particular, similar to (9.2), we have:

Theorem. Assume that 0 < p < 1 and let λp = F−1
0 (p). Suppose both F0(y)

and F (y) possess densities (f0(y) and f(y), respectively) in a neighborhood
of λp, and f0(y), f(y) are positive and continuous at λp. Then the density
g(r) of G(r) exists at r = p and,

G−1
m (p) ∼ AN

{
G−1(p),

p(1 − p)
mg2(G−1(p))

}
(9.3)

as m → ∞.

Finally consider the complementary situation when the comparison
distribution is known, while the reference distribution must be estimated
from a sample. Using the above inverse relationship, the natural estimators
of G−1(p) and G(r) are

G̃−1
n (p) =

1
n

n∑
i=1

I
[
F (Y0i) ≤ p

]
and

G̃n(r) = inf{p : G̃−1
n (p) ≥ r},

respectively. The above result can then be reformulated:

Theorem. Assume that 0 < r < 1 and let λr = F−1(r). Suppose both F0(y)
and F (y) possess densities (f0(y) and f(y), respectively) in a neighborhood
of λr, and f0(y), f(y) are positive and continuous at λr. Then

G̃n(r) ∼ AN
{

G(r),
r(1 − r)g2(r)

n

}
(9.4)

as n → ∞.

Although the estimators described in this section are well studied they
do have the drawback that they are step functions, while G(r) is usually
continuous and much smoother. This suggests that alternative estimators
exist that may better reflect the properties of G(r). In particular, if we had
a smooth estimator of g(r), ĝ(r) say, we could estimate G(r) by

∫ r

0 ĝ(p)dp.
We shall briefly review such estimators for the PDF in the next section.
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9.1.2 Estimation of the relative probability density function

9.1.2.1 Estimation using a histogram.
As the relative PDF is the derivative of the relative CDF, it will tend

to be less smooth than the CDF and often more difficult to estimate. In
this section we briefly review some approaches. For a detailed discussion
see Simonoff (1996), Chapter 2, whom we follow. The relationship between
the PDF and CDF given in equation (2.1) suggests splitting up [0, 1] into
K equisized intervals each with width h = 1/K. If the number of intervals
is large enough, then each interval will be small and we can consider an
estimator of the form:

ĝ(r) =
Gm(bj+1) − Gm(bj)

h
, x ∈ (bj , bj+1], (9.5)

where bj = (j−1)/K, j = 1, . . . , K+1 and (bj , bj+1] defines the boundaries
of the jth interval. This is the familiar histogram estimator of g(r). The
advantages of the histogram in this setting are ease of interpretability and
convenient construction with most statistical packages. For example, if K =
10, then each interval on the horizontal axis corresponds to a decile of the
reference distribution. A graph of the decile histogram estimator for the
standardized residuals from the purchasing power parity model (discussed
in Section 2.3) is given in Figure 9.1. We can see that the estimate for the
third decile is about 2.4, indicating there are 2.4 times as many standardized
residuals in the third decile of the standard normal distribution as we would
expect by chance if the regression assumptions were satisfied. The fifth
decile has only 30% of the expected number of residuals. This estimate
should be compared to that of Figure 2.5.

How can we evaluate ĝ(r) as an estimator of g(r)? It is natural to
consider the squared error, SE(r) = [ĝ(r) − g(r)]2, and its expected value
(mean squared error), MSE(r) = Eg [ĝ(r) − g(r)]2. If we wish to measure
global accuracy over the full interval [0, 1], we can consider the integrated
squared error,

ISE =
∫ 1

0
[ĝ(u) − g(u)]2 du,

and its expected value, mean integrated squared error (MISE). We can mea-
sure these for any sample size and K, but here will consider the asymptotic
behavior when the sample size m → ∞. As we get more data we should in-
crease the number of intervals to capture the detailed structure of g(r) but
do so slower than the sample size increases to reduce the variability of ĝ(r)
within each interval. Based on the binomial distribution for mGm(r) and
(9.5), the distribution of mĝ(r) is binomial with m trials and probability of
success G(bj+1) − G(bj) where x ∈ (bj , bj+1). Simonoff (1996) shows that
if the interval width h → 0, and mh → ∞, as m → ∞ and g(r) is smooth
enough (g′(r) is absolutely continuous and square integrable), then
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Bias [ĝ(r)] ≡ Eg [ĝ(r)] − g(r)

=
1
2
g′(r) [h − 2(r − bj)] + O

(
h2) , r ∈ (bj , bj+1], (9.6)

while the variance is

Var [ĝ(r)] =
g(r)
mh

+ O
(
m−1) . (9.7)

If the relative distribution is uniform then the bias is exactly zero and the
variance is (1 − h)/(hm).
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Fig. 9.1. Histogram of the relative distribution of standardized residuals for the
Purchasing Power Parity data.

Combining the squared bias and variance yields the mean squared er-
ror,

MSE [ĝ(r)] = Var [ĝ(r)] + Bias2 [ĝ(r)]

=
g(r)
mh

+
g′(r)2

4
[ h − 2(r − bj)]

2

+ O
(
m−1)+ O

(
h3) .

Finally, integrating over each interval, and then summing interval by
interval, gives
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MISE =
1

mh
+

h2R(g′)
12

+ O
(
m−1)+ O

(
h3) , (9.8)

where

R(v) =
∫ ∞

−∞
[v(x)]2dx.

If the relative distribution is uniform then the MISE is (1 − h)/(hm). We
will write AMISE to represent the asymptotic MISE (that is, the leading
two terms in the expansion of MISE). The minimization of MISE requires
explicitly balancing bias and variance through the choice of the number
of bins, or equivalently h = 1/K. For the uniform distribution the choice
h = K = 1 minimizes the MISE. This choice, however, is unrealistically
smooth and so not useful in general. For non-uniform relative distributions,
the minimizer of AMISE is easily determined as

h0 =
[

6
R(g′)

]1/3

m−1/3.

In practice, we need to specify a particular non-uniform g to operationalize
this rule. A reasonable candidate is a beta distribution with shape param-
eters (2,2) which is normal-looking and leads to the rule:

h0 = 0.7937m−1/3.

Many rules-of-thumb have been suggested that are similar to:

h0 = 2IQRm−1/3,

where IQR is an estimate of the interquartile range of the distribution. If
we use a distribution of normal shape but with the spread of the uniform
we get the rule h0 = m−1/3. See Simonoff (1996) for a discussion of these
issues.

9.1.2.2 Kernel density estimation.
The histogram estimator has the drawback in that it is a step-function

and does not adapt to the shape of the relative density. This means that
it may not be as close to the actual relative density as is practically possi-
ble, undersmoothing or oversmoothing by some nontrivial degree. We can
improve on this by considering estimators of the form:

gm(r) =
1

mh

m∑
j=1

K

(
r − Rj

h

)
, (9.9)

where K(·) is a function satisfying∫ 1

−1
K(u)du = 1,

∫ 1

−1
uK(u)du = 0,

∫ 1

−1
u2K(u)du = σ2

K > 0. (9.10)
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This is called a kernel density estimator and K(·) is called a (bounded)
kernel function. The estimator can be thought of as a generalization of the
histogram estimator with each point r being estimated separately as the
center of its own interval and the kernel being used to place more weight
closer to the observations Rj . To reflect our belief that the underlying
relative density is smooth, we will assume that g is uniformly continuous
and g′′′ is square integrable. As for the histogram we can consider the
properties of the estimator as the sample size increases and the “bandwidth”
h decreases. If h → 0 with mh → ∞ as m → ∞, then by Taylor Series
expansions (Silverman 1986):

Bias[gm(r)] =
1
2
h2σ2

Kg′′(r) + O(h4
m)

and
Var[gm(r)] =

g(r)R(K)
mh

+ O(m−1).

The advantage of the kernel density estimator can be seen in the bias term.
It is now of size h2 rather than h.

Theorem. Assume that 0 < r < 1, and suppose both F0(y) and F (y) possess
densities (f0(y) and f(y), respectively) that are smooth (enough so that g is
uniformly continuous). Let K(·) be a twice continuously differentiable kernel
function (satisfying (9.10)) and vanishing outside some bounded interval.
For each bandwidth sequence {hm} with hm → 0 with mhm → ∞, m/n →
κ2 < ∞ we then have

gm(r) ∼ AN
{

g(r) +
1
2
h2σ2

Kg′′(r),
g(r)R(K)

mhm
.

}

If the bandwidth approaches zero quickly the bias in gm(r) gets small
relative to the standard deviation of gm(r). We can then (asymptotically)
ignore the bias term:

Theorem. Under the same conditions as the previous result, suppose the
bandwidth sequence {hm} with hm → 0 with mh3

m → ∞, mh5
m → 0, m/n →

κ2 < ∞. Then

gm(r) ∼ AN
{

g(r),
g(r)R(K)

mhm
.

}

To operationalize the estimator, we need to choose a kernel function
and an estimator for the bandwidth. The choice for the kernel function de-
pends on properties of the (unknown) g. Fortunately there are many choices
that appear to work similarly well (Simonoff 1996). In our applications we
use the biweight, which has the mathematical form
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15
16

(1 − u2)2 − 1 ≤ u ≤ 1

and zero otherwise. To choose the bandwidth, we again balance the average
mean squared error over the interval. The asymptotic MISE can be shown
to be:

R(K)
mh

+
1
4
h4σ4

KR(g′′).

The form of the bandwidth h to minimize the asymptotic MISE is

h0R =
[

R(K)
σ4

KR(g′′)

]1/5

m−1/5. (9.11)

Note that h0R does not satisfy the conditions of the previous theorem, as it
approaches zero too slowly. If h0R or another O(m−1/5) bandwidth sequence
is used the bias of gm(r) will need to be accounted for in confidence intervals
based on these asymptotic approximations to the distribution of gm(r).

Choosing a bandwidth in practice requires an estimate of R(g′′). The
most popular approach is the one by Sheather and Jones (1991), which
estimates R(g′′) by R(ĝ′′) where ĝ′′ is a smoothed estimator of g′′. Simonoff
(1996) discusses this estimator and the many other choices.

While kernel density estimators are very common, they have a sig-
nificant weakness for estimating the relative density: edge (or boundary)
effects. The form of the estimator generates downward bias for r < h and
values greater than 1 − h, unless the relative density is zero there. Intu-
itively this is because the estimator does not recognize the boundaries of
the interval. It acts as if the relative density is zero outside the interval [0, 1]
while it is in fact undefined there. There are ways to remove this bias by
using a special kernel function called a boundary kernel (Gasser and Müller
1979). We will discuss these in Section 9.2.3.2 and will also consider other
estimators that do not have this drawback.

Figure 9.2 graphs the kernel density estimator of the Purchasing Power
Parity standardized residuals using the Sheather-Jones bandwidth choice
of h = 0.816. Also on the figure is an estimator that does not suffer from
boundary bias. We will consider it in the next section. Although the esti-
mators differ close to the boundaries their behavior in the interior of the
region is similar.

9.1.2.3 Regression based density estimation.
In this section we consider an estimator for the relative density based

on a regression view point. For a detailed discussion, see Fan and Gijbels
(1996), whom we follow. From (9.6) and (9.7) we can see that the histogram
estimator satisfies:

Eg [ĝ(r)] ≈ g(r) Var [ĝ(r)] ≈ g(r)
mh

.
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Fig. 9.2. Nonparametric estimates of the relative density of standardized resid-
uals for the Purchasing Power Parity data.

We see that the histogram estimator has mean g(r), nonhomogeneous vari-
ance g(r)/(mh). Thus we can think of the histogram estimator as sup-
plying the raw “data” for a regression of {ĝ(rj)}K

j=1 on {rj}K
j=1, where

rj = (j − 1
2 )/K are the centers of the intervals. We note that the joint

distribution of the {mĝ(rj)}K
j=1 is multinomial, so that the individual val-

ues are approximately independent for large K. We can model each value
as a Poisson random variable with a nonparametric mean. This approach
is described in Simonoff (1998) and Loader (1999). These models produce
a smooth and non-negative mean function estimate m̂P (r), 0 < r < 1. A
density estimator can be obtained by normalization:

ĝP (r) =
m̂P (r)∫ 1

0 m̂P (r)dr
.

If software for nonparametric Poisson regression is not available a cruder ap-
proach can be based on nonparametric least-squares regression. The idea is
to approximately homogenize the variances by transforming the histogram
estimator using a variance-stabilizing transformation (Anscombe 1948):
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y(rj) = 2

√
mĝ(rj) +

3
8

j = 1, . . . , K.

We can then fit a nonparametric regression curve to the transformed
data {y(rj), rj}K

j=1 and produce a smooth mean function estimate m̂(r), 0 <
r < 1. First the mean function estimate is back-transformed:

ĝT (r) =
[
m̂(r)2

4
− 3

8

]
to get to the original scale. The back-transformed mean curve cannot be
used directly as an estimator of the relative density as it may be negative
for some values of r and may not integrate to unity. However we can obtain
a density estimator by truncation and normalization:

ĝR(r) =

{
ĝT (r)∫ 1

0
ĝT (r)I(ĝT (r)>0)dr

ĝT (r) > 0

0 otherwise
.

To apply these approaches in practice we need to choose a nonparamet-
ric regression estimator. Two popular approaches are smoothing splines
and local polynomial estimators. The smoothing spline approach is to fit a
function through the scatter plot that balances goodness-of-fit to the points
with the smoothness of the fit. The approach can also be viewed as break-
ing up the unit interval into segments and fitting low degree polynomials
piecewise to each segment. The polynomials are chosen to match derivatives
where they intersect at the boundaries of the segments so as to produce a
function that is smooth. The local polynomial estimators can be regarded
as a generalization of linear regression to allow for local nonlinearity in the
mean function. For a discussion of these, see Simonoff (1996) and Fan and
Gijbels (1996). For most of the application in this book we use Poisson
regression based on a local quadratic estimator. This can be regarded as
an extension of generalized linear regression to allow for local nonlinear-
ity in the mean function. It is easy to interpret and is adaptable to more
sophisticated situations.

Figure 9.2 graphs the Poisson local-quadratic density estimator of the
Purchasing Power Parity standardized residuals. As with the kernel esti-
mator, a bandwidth is required to specify the interval width over which
the mean curve is approximately linear. We choose the value that mini-
mizes the corrected Akaike Information Criterion proposed by Hurvich, et
al (1998). They show that the criterion works well in practice and is easy
to implement. The value chosen here is h = 0.55. Note that this should
not be directly compared with the kernel bandwidth because the local-
quadratic smoother is already using the smooth histogram estimates, and
hence should be smaller. An advantage of the local-quadratic density esti-
mator is that it does not suffer from the boundary bias of the kernel estima-
tor. However the variance of the estimator near the boundary is much larger
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than in the interior as there is less data close to the boundary that can be
used. See Simonoff (1996), Section 5.3 for a way to choose the bandwidth
for the variance-stabilized approach.

9.1.2.4 Exponential family based density estimation.
The final approach we will consider for estimating the relative density

will be based on approximating it by using a member of a family of densi-
ties. The idea is to specify a large and flexible family of densities and use the
maximum likelihood estimate within that family as the density estimator.
While this introduces a parametric approach to the estimation process, the
form of the parametric assumptions used here are substantially more flexi-
ble than those typically encountered in parametric methods. In particular,
our approach makes use of basis functions, rather than a single functional
form. In the resulting estimation process, the standard tradeoff between
parametric assumptions and flexibility sacrifices less flexibility than usual.

Suppose we believed that the relative density was a member of a family
of densities that were indexed by a parameter θ. For example we could
consider the beta family:

gθ(r) =
1

B(θ)
rθ1−1(1 − r)θ2−1 0 < r < 1.

where θ = (θ1, θ2) > 0 and B(θ) is the beta function:

B(θ) =
Γ (θ1)Γ (θ2)
Γ (θ1 + θ2)

.

Based on the relative data, R1, . . . , Rm the log-likelihood for θ is

L(θ; R1 = r1, . . . , Rm = rm) ≡ log
(

P (R1 = r1, . . . , Rm = rm)
)

=
m∑

j=1

log
(

P (Rj = rj)
)

=
m∑

j=1

log gθ(rj)

.

This can then be maximized as a function of θ for given values of R1 =
r1, . . . , Rm = rm. If θ̂ are the values that maximize the log-likelihood, and
hence likelihood, then the corresponding density gθ̂(r) is the maximum
likelihood estimator of g(r) within this family. The maximum value can
often be found explicitly or as a solution to a simple expression. However in
many cases, such as this one, the solution must be found using a numerical
optimization routine.

This likelihood based approach has many advantages. It is often possi-
ble to prove that the estimate almost always exists and is unique. Because
the estimator is obtained within a regular maximum likelihood framework,
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much is known about its properties. For example, standard errors, conver-
gence rates, and asymptotic distributions are well known (Brown 1986). A
disadvantage of this approach is the assumption that the relative density
is actually a member of this family. While the beta family is commonly
used in statistical applications it does not capture the wide range of possi-
ble shapes that the relative density might have. What is needed is a much
wider family that retains the computational and interpretative advantages
of the beta family.

Consider an exponential family of densities of the form:

gθ(r) = g0(r) exp
{ K∑

k=1

θkφk(r) − ΨK(θ)
}

0 < r < 1. (9.12)

where θ = (θ1, . . . , θK) ∈ Θ = {θ ∈ IRK : ΨK(θ) < ∞}. Here g0(r) is a
reference distribution, often taken to be the uniform density on [0, 1]. The
function ΨK(θ) is the normalizing value so that each density integrates to
one:

ΨK(θ) = log
{∫ 1

0
g0(r) exp

{ K∑
k=1

θkφk(r)dr

}}
.

At the heart of the family are the basis functions {φk(r)}K
k=1, which are

any bounded and linear independent functions such that

SK ≡ span{1, {φk(r)}K
k=1}

is a linear space. See Brown (1986) for an extended description of the prop-
erties of such families. Three common choices for the basis functions are
polynomials, trigonometric series, and spline bases.

The beta family is an exponential family with K = 2. It can be repre-
sented in the above form by writing φ1(r) = log(r), φ2(r) = log(1 − r), and
ΨK(θ) = − log B(θ). However, note that these two basis functions are not
bounded nor independent and so are not formally in this family.

We can approximate g(r) within this class by the maximum likelihood
estimate. Based on the relative data, R1, . . . , Rm the log-likelihood for θ is

L(θ; R1 = r1, . . . , Rm = rm)

=
m∑

j=1

log gθ(rj)

=
m∑

j=1

log g0(rj) + m

K∑
k=1

θkφ̄k(r1, . . . , rm) − mΨK(θ),

where

φ̄k(r1, . . . , rm) =
1
m

m∑
j=1

φk(rj) k = 1, . . . , K.
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The relative data appear in the likelihood only through the statistics
{φ̄k}K

k=1 and so they are sufficient statistics for θ. The log-likelihood is
strictly concave and so the MLE is unique if it exists (Brown 1986). The
gradient of the log-likelihood is

S(θ; R1 = r1, . . . , Rm = rm) ≡
[
∂L(θ; R1 = r1, . . . , Rm = rm)

∂θk

]
=
[
mφ̄k(r1, . . . , rm) − mEθ

(
φk(R1)

)]
.

where

Eθ

[
φk(R1)

] ≡
∫ 1

0
φk(r)gθ(r)dr.

If θ̂ are the values that maximize the log-likelihood, then gθ̂(r) is the unique
density within the family that satisfies:

Eθ̂

[
φk(R1)

]
= φ̄k(R1, . . . , Rm) k = 1, . . . , K.

These K “moment” conditions can often be solved explicitly or can produce
greatly simplified equations. Let

H(θ) =
[
∂2ΨK(θ)
∂θi∂θj

]
=
[∫ 1

0
φi(r)φj(r)gθ(r)dr −

∫ 1

0
φi(r)gθ(r)dr

∫ 1

0
φj(r)gθ(r)dr

]
be the hessian matrix of ΨK(θ). The information matrix for the relative
data is then I(θ) = −mH(θ). Thus a Newton-Raphson algorithm can be
used to find θ̂ in any case.

The statistical properties of the estimator θ̂ depend on what we assume
about the relative density. In the simplest case the relative density is a
member of the exponential family, so that the goal is to identify the correct
member. The properties of the MLE can be summarized as:

Theorem. Suppose that g(r) = gθ0(r) for some θ0 ∈ Θ. Then

θ̂ ∼ AN
{
θ0, I

−1(θ0)
}

0 < r < 1

as m → ∞.

This relation can be used to determine confidence intervals and bands
for g(r) as well as quantities derived from it (see Section 10.3 for the appli-
cation to polarization statistics).

Interestingly there is much that can be said about the estimator if it
is not in the exponential family. First consider the expected log-likelihood
for a single observation R1 :
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ER1

[L(θ; R1)
] ≡
∫ 1

0
log[gθ(r)]g(r)dr

=
∫ 1

0
log[

g(r)
gθ(r)

]g(r)dr +
∫ 1

0
log[g(r)]g(r)dr

= − D(g; gθ) + I(g).

where D(g; gθ) is the Kullback-Leibler divergence between g and gθ, and
I(g) = D(F ; F0) is the entropy of the relative density (See Section 5.3).
Suppose θ∗ is the value in Θ that maximizes the expected log-likelihood.
Then θ∗ can be thought of as the MLE for an infinite sample size. Based
on the above equation, we see that θ∗ also minimizes the Kullback-Leibler
divergence, so that we can also think of it as the member of the exponential
family closest to the relative density. Of course, if the relative density is
actually a member of the exponential family then gθ∗(r) = g(r) and the two
densities coincide. Furthermore we can interpret the difference between the
two densities as the model misspecification, that is, the degree to which the
exponential family model fails to capture the actual relative density. This
relationship can be further quantified by:

D(g; gθ̂) = D(g; gθ∗) + D(gθ∗ ; gθ̂)

This indicates that the divergence between the true relative density and
the MLE can be decomposed into two components. The first measures the
model misspecification and the second the model uncertainty. As the sample
size increases the divergence between the MLE and the best the MLE can
be (θ∗) decreases to zero. Stone (1989) and Barron and Sheu (1991) discuss
the rates of convergence of these and related quantities. Statistically, we
can be more specific about the size of the model uncertainty via:

Theorem. Suppose θ∗ is the value in Θ that maximizes the expected log-
likelihood. Then the MLE satisfies

θ̂ ∼ AN
{
θ∗, I−1(θ∗)J(θ∗)I−1(θ∗)

}
0 < r < 1

as m → ∞.

Thus θ̂ approaches the closest member of the exponential family to
the relative density. J(θ∗) ≡ Var[S(θ∗; R1 = r1, . . . , Rm = rm)] can be esti-
mated by m times the sample covariance matrix of G(θ̂; R1), . . . , G(θ̂; Rm)
where

G(θ; R = r) ≡
[
∂ log gθ(r)

∂θk

]
=
[
φk(r) − Eθ

(
φk(R)

)]
.

Based on the expected likelihood, gθ∗(r) is the unique density within the
family that satisfies:
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Eθ∗
[
φk(R1)

]
= Eg

[
φk(R1)

]
k = 1, . . . , K.

Thus we can view the MLE as the solution to these equations when the ex-
pectation on the right-hand side is replaced by the average over the relative
data.

The issue of the assessment of model misspecification is a difficult one
as it is tied to the issue of model uncertainty. The total uncertainty in an es-
timator is a combination of model uncertainty and model misspecification.
Most statistical approaches typically only take into account the model un-
certainty when they assess the overall uncertainty. In general complicated
model families (e.g., semiparametric, local polynomial) have smaller model
misspecification while simple model families (e.g., beta) have smaller model
uncertainty. One approach to measuring model uncertainty is to nest a given
model family in a more complicated one. Then the model uncertainty of
the simple models can be assessed as the divergence of the closest member
of the simple family from the closest member of the more complicated fam-
ilies. Of course, this is a measure relative to the more complicated family
rather than to the actual relative density.

The analysis of model misspecification described in this section as-
sumes that the basis functions are prespecified. However most exponen-
tial family models choose the basis functions in a data-adaptive manner.
This effectively increases the size of the modeling family in a way that
improves its flexibility, but makes it difficult to quantify its complexity.
When approaches to density estimation involve flexible parametric models,
exploratory data analysis, model building, and diagnostics, labels such as
“parametric,” “nonparametric,” and “data adaptive” are less meaningful.

The asymptotic normality results (9.2) and (9.3) can be extended to
the estimates of the relative CDF (Gθ̂) and quantile function (G−1

θ̂
). See

Stone and Koo (1986).
Like the local regression estimates, exponential family estimates do not

suffer from boundary bias. In addition, if the choice of basis is data-driven,
then the approach adapts locally to the behavior of the density. Figure 9.3
graphs two exponential family density estimates of the Purchasing Power
Parity standardized residuals. The first uses K = 6 basis functions. It is
much more peaked than the local-linear and kernel density estimates of
Figure 9.2, and smoother in the upper tail. The second uses K = 10 basis
functions and is much more wiggly in the upper tail, but retains the sharp
peak in the second and third deciles.

As a practical matter both the form and number of basis functions
must be chosen. A basis that results in a cubic spline has been advocated
(Kooperberg and Stone 1991, and the references therein; Stone, et al 1997).
Stone (1990) refers to the corresponding family of densities as the log-spline
exponential family. A cubic spline is a function that is a piecewise cubic
polynomial on any subinterval defined by adjacent “knots”; has continuous
second derivatives; and has a third derivative that is a step function with
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Fig. 9.3. Exponential family estimates of the relative density of standardized
residuals for the Purchasing Power Parity data.

jumps at the knots. If the knots are taken to be the location of the relative
data these these are called cubic B-splines. In general the number and loca-
tion of the knots determine the basis, and there may be more appropriate
choices than the data values. These choices are roughly equivalent to the
choices of kernel function and bandwidth in kernel density estimation.

Stone, et al (1997) describe an algorithm to search through a wide
range of bases and select the basis that maximizes a modification of the
likelihood that penalizes more complicated models. However the statistical
properties of this search process are unclear, and claims about the optimal-
ity of the final choice are unwise. Although the procedure uses reasonable
statistical criteria at each stage of the process, the multiple stages obscure
their overall characteristics and make them intractable to statistical anal-
ysis. In particular, the standard measures of model uncertainty (e.g., stan-
dard errors) derived above are not valid because they do not incorporate
the uncertainty in the model search process that will tend to underestimate
the true uncertainties.

Alternative approaches exist. Smith and Kohn (1996) develop an ap-
proach to basis selection using Bayesian ideas. George and Foster (1997) also
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develop and use an empirical Bayes approach. A fuller Bayesian approach
is developed by Denison, et al (1998). They define prior distributions for
the components of the model, including the number and form of the basis
functions. These papers focus on a nonparametric regression setting. The
ideas need to be further developed to be directly applicable in this setting.

Another popular way to choose the number of basis functions is to
modify the likelihood for fixed K to penalize more complicated models.
Consider the penalized log-likelihood, which is now a function of K and
θ1, . . . , θK :

L(θ, K; R1 = r1, . . . , Rm = rm) − 1
2
K log(n)/n.

This criterion was suggested by Schwarz (1978) and can be motivated as
an approximation to a Bayes procedure for model choice under a special
set of priors. An alternative is to use versions of the Akaike Information
Criterion (AIC) corrected for its tendency to undersmooth (Hurvich, et al
1998). Many other alternatives exist (see Haughton 1988 for a discussion).

The statistical efficiency of these model selection procedures and
the flexibility of the log-spline model relative to approaches of the same
complexity are unknown. Prime alternatives are local likelihood methods
(Loader 1999), and generalizations of the local polynomial model of the
previous section where the bandwidth is allowed to vary with the location
in the unit interval (Simonoff 1996).

In our applications we have chosen log-spline exponential families
where the number of basis functions is chosen subjectively. The procedure
of Kooperberg and Stone (1992) is used to select the form of the basis func-
tions (that is, the placement of the knots for the cubic spline within the
unit interval).

For the example in Figure 9.3, their procedure chooses K = 6 basis
functions and four knots at 0.16, 0.22, 0.28, and 0.50. The location of these
knots near the peak reflect that the density is judged to be changing more
quickly there. The other estimator with K = 10 was chosen because the
automatic choice seems to oversmooth and lose much of the detail in the
upper tail. Such simple sensitivity analysis is a useful tool for investigating
the uncertainty due to the choice of the number of basis functions.

9.1.2.5 Orthogonal series density estimation.
Orthogonal series density estimators were suggested by Čencov (1962)

and are allied with the exponential family approach. Instead of the family
(9.12) consider the orthogonal series family of functions:

gθ(r) = g0(r) +
∞∑

k=1

θkφk(r) 0 < r < 1 (9.13)



9.1.2 Estimation of the relative probability density function 139

where θk ∈ IR. Again g0(r) is a reference distribution, often taken to be the
uniform density on [0, 1]. Here {φk(r)}∞

k=1 form a complete orthonormal ba-
sis for the space of all square integrable functions on [0, 1]. By orthonormal
we mean that ∫ 1

0
φi(r)φj(r)dr = I(j = k).

Suppose the h(r) is a square integrable function on [0, 1], that is,

|h|2 ≡
∫ 1

0
h2(r)dr < ∞.

The basis is complete if for all h(r) there exists a sequence of constants
{θk}∞

k=1 such that

|h(r) −
K∑

k=1

θkφk(r)|2 → 0 as K → ∞.

Thus a square integrable density can be represented precisely as an element
of this family. We can write

g(r) = g0(r) +
∞∑

k=1

θkφk(r) 0 < r < 1

so that

θk =
∫ 1

0
φk(r)g(r)dr = E

(
φk(R)

)
k = 1, 2, . . . . (9.15)

The natural estimates of θk use Gm in place of G :

θ̂k =
1
m

m∑
j=1

φk(Rj) k = 1, 2, . . . .

Many possible choices for the basis exist – see Tapia and Thompson (1978).
In practice the relative density is usually estimated by

ĝ(r) = g0(r) +
K∑

k=1

θ̂kφk(r) 0 < r < 1,

where the number of terms K plays the role of the smoothing parameter.
The choice of K has been studied by Wahba (1981) and Hart (1985). As m
increases, the number of terms should also increase, but at a slower rate.
Results in these papers suggest that K = O(m1/4) is the optimal rate for
a square integrable density.

Note that the estimate may be negative for some values of r. However a
truncation and normalization process such as that applied to the regression
estimator in Section 9.1.2.3 can be used. On the positive side, the estima-
tor can be reexpressed as a kernel estimator, and produces asymptotically
optimal convergence (Hall 1986).
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9.2 Estimation when both distributions are unknown

In most application contexts, the CDF of the reference distribution is also
unknown and must be estimated from sample data. As for the comparison
population, we will assume that we have a sample Y01, Y02, . . . , Y0n that
are independently and identically distributed from the population distribu-
tion F0. We also assume that the two samples are independent. In Section
9.3 we consider the situation where the reference distribution is formed by
pooling the reference and comparison groups, and we provide further com-
ments in the Background material on situations where the two samples are
dependent.

As in Section 9.1, it is natural to estimate F0(y) by the empirical
distribution function of the reference sample:

Fn0(y) =
1
n

n∑
i=1

I(Y0i ≤ y) − ∞ < y < ∞.

The results of that section can be restated in terms of Fn0 and F0 rather
than Gm and G: Fn0(y) converges uniformly to F0(y) with probability one
and is asymptotically normal. We can then consider using Fn0(y) as a sur-
rogate for F0(y) in the definition of the relative data and so define the
quasirelative data

Qj = Fn0(Yj) j = 1, . . . , m.

As Fn0(y) should be close to F0(y), we expect {Qj}m
j=1 to be close to

{Rj}m
j=1. Note that the {Qj}m

j=1 are not independent as they depend on
the {Y0i}n

i=1. However they will be close to uncorrelated as their pairwise
correlation is O(n−1). The quasirelative data have been extensively studied
(Lehmann 1953; Lin and Sukhatme 1993).

9.2.1 Properties of the quasirelative data

In this section we consider the distribution of the quasirelative data. A key
role is played by the rank transformation. Let

Tj =
n∑

i=1

I(Y0i ≤ Yj) +
m∑

l=1

I(Yl ≤ Yj)

be the rank of Yj in the combined vector {Y1, Y2, . . . , Ym, Y01, . . . , Y0n},
where for the first sum ties are broken in favor of the {Y0i}n

i=1. Let

Sj =
m∑

l=1

I(Yl ≤ Yj)

be the rank of Yj in {Y1, Y2, . . . , Ym}, where ties are broken randomly. The
quasirelative data can then be expressed as
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Qj =
1
n

(Tj − Sj) j = 1, . . . , m.

By using the concepts of invariance and sufficiency it is possible to argue
that all the statistical information in the two samples relevant to inference
for the relative distribution is in the ordered values of the quasirelative data.
For an argument in the context of nonparametric hypothesis testing, see
Fraser (1957), Section 5.3. If T(1) < T(2) < · · · < T(m) represent the ordered
T1, T2, . . . , Tm and Q(1) ≤ Q(2) ≤ · · · ≤ Q(m) the ordered quasirelative data
then

Q(j) =
1
n

(T(j) − j) j = 1, . . . , m.

The properties of the joint distribution of {Q(j)}m
j=1 can be determined

from the relative distribution alone:

P [Q(1) = q1, . . . , Q(m) = qm] =
1(

n+m
m

)E[ m∏
j=1

g(U(sj))
]
, (9.14)

where q1 ≤ . . . ≤ qm ∈ {0, 1/n, . . . , 1}. The {U(s)}n+m
s=1 are the order statis-

tics in a sample of n + m uniform [0, 1] variables and

qj =
1
n

(sj − j),

where sj < s2 < · · · < sm. It is important to note that the right-hand side
of (9.14) only depends on the relative PDF g and not on F or F0 separately.
If the relative distribution is uniform, then all

(
n+m

m

)
possible combinations

of q1 ≤ . . . ≤ qm ∈ {0, 1/n, . . . , 1} are equally likely. In particular the
marginal distribution of Qj is uniform on {0, 1/n, . . . , 1}.

The distribution of the quasirelative data has been determined for
many relative densities, most notably those corresponding to Lehmann’s
alternatives g(r) = rk/(k + 1) (Lehmann 1953). Lin and Sukhatme (1993)
consider many other choices for g that are important in power calculation
for many nonparametric two-sample tests.

While these exact results can be used to determine the characteristics
of estimates of the relative distribution, these expressions are intractable in
all but the simplest choices for the relative distribution. The developments
in the next section focus on the asymptotic distributions of estimates for
general choices.

9.2.2 Estimation of the relative cumulative distribution function

Let Fm(y) = 1
m

∑m
j=1 I(Yj ≤ y) be the empirical distribution function of

Y . In this section we will derive properties of the natural estimator of G(r)
in (2.1):

Gn,m(r) = Fm(F−1
n0 (r)) 0 < r < 1.
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Note that this can be reexpressed in terms of the empirical distribution
function of the quasirelative data:

Gn,m(r) =
1
m

m∑
j=1

I(Qj ≤ r) 0 < r < 1. (9.16)

Hsieh and Turnbull (1996) show that when g(r) is bounded on any
subinterval of [0, 1], Gn,m(r) converges to G almost surely uniformly for
0 ≤ r ≤ 1. That is, the Kolmogorov-Smirnov distance

Dn,m = sup
0<r<1

|Gn,m(r) − G(r)|

converges to zero with probability one. Thus Gn,m(r) replicates the prop-
erties of the empirical estimator when the reference distribution is known.

We now turn to the convergence of Gn,m(r) to G in distribution. In
the context of ROC curve estimation Gastwirth (1968, Theorem 3.2) proved
the following regarding the asymptotic distribution of Gn,m(r):

Theorem. Assume that 0 < r < 1, and let λr = F−1
0 (r). Suppose both F0(x)

and F (x) possess densities (f0(x) and f(x), respectively) in a neighborhood
of λr and f0(x), f(x) are positive and continuous at λr then

Gn,m(r) ∼ AN
{

G(r),
G(r)(1 − G(r))

m
+

r(1 − r)g2(r)
n

}
(9.17)

as m → ∞, m/n → κ2 < ∞.

There are now two sample sizes to consider, and we assume that they
increase at the same rate. If either sample size is fixed, this result does not
hold. Note, however, if the reference sample size increases at a slower rate
(9.4) holds, and if the comparison sample size increases at a slower rate
(9.2) holds. Thus we can view the first term as the uncertainty about G
when F0 is known and the second as the uncertainty about G when F is
known.

Hence we can interpret the additional term in the asymptotic variance
for Gn,m(r) compared to Gm(r) as the price we pay for using Fn0 as a
surrogate for the unknown F0. Note that the increase in uncertainty is the
uncertainty for estimating G via a sample from the reference distribution
when F is known (that is, equation (9.4)). It is proportional to the square of
the relative PDF, and depends only on the size of the reference sample and
the relative distribution. It does not depend on the reference or comparison
distributions individually.

Cwik and Mielniczuk (1990) develop an estimator of the relative CDF
based on integrating an estimate of the relative density. They show the
uniform strong consistency of their estimate.
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It is possible to develop the statistical properties of Gn,m(r) by viewing
it as an estimated empirical process (Shorack and Wellner 1986, Section
5.5) and generalizing the results of Durbin (1973). In this context, the
above result follows under slightly stronger conditions from a result of Hsieh
(1995) based on a strong approximation of the empirical ROC curve (his
Lemma 3). Hsieh and Turnbull (1996) generalize these results, using an
empirical process approach to show that
√

m{Gn,m(r)−G(r)} = B
(m)
1 (G(r))+λg(r)B(m)

2 (r)+o(m
1
2 log2 m) (9.18)

almost surely uniformly on any subinterval of [0, 1]. Here {B
(m)
1 (r) : 0 ≤

r ≤ 1} and {B
(m)
2 (r) : 0 ≤ r ≤ 1} are two independent Brownian bridges.

The result (9.17) follows from this stronger result.
The precise relationship between the relative CDF and ROC curves is

discussed in Li, (1996). They et al extend the above result to the situation
where the data from both comparison and references samples are possibly
censored.

In Appendix D we give a direct proof of (9.17) based on classical U-
statistic methodology.

9.2.2.1 The Asymptotic joint distribution of Gn,m(r) and Gn,m(s).
In most applications, including those in this book, we need to estimate

the relative CDF at more than one quantile. As the estimates are based
on the same data, they will be correlated. It is important to model the
joint distribution at different quantiles. The result of Hsieh and Turnbull
(1996) can be used to extend (9.17) to cover the joint distribution at a fixed
number of quantiles. The result for two points is:

Theorem. Assume that 0 < r ≤ s < 1, and let λν = F−1
0 (ν) for 0 <

ν < 1. Suppose both F0(x) and F (x) possess densities (f0(x) and f(x),
respectively) in neighborhoods of λr and λs. Assume that the densities are
positive and continuous at λr and λs then the joint distribution of Gn,m(r)
and Gn,m(s) is asymptotically normal:(

Gn,m(r)
Gn,m(s)

)
∼ AN

{(
G(r)
G(s)

)
, Σ

}
where

Σ =

(
G(r)(1−G(r))

m + r(1−r)g2(r)
n

G(r)(1−G(s))
m + r(1−s)g(r)g(s)

n
G(r)(1−G(s))

m + r(1−s)g(r)g(s)
n

G(s)(1−G(s))
m + s(1−s)g2(s)

n

)
as m → ∞, m/n → κ2 < ∞.

In the special case that F and F0 are identical, Gn,m(r), 0 < r < 1,
is a Brownian Bridge with drift r and scale 1/n + 1/m. The results in this
section will be used to calculate simultaneous confidence bands for G(r)
based on Gn,m(r) (Section 9.6).
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9.2.3 Estimation of the relative probability density function

In this section we will consider estimating the relative density g(r) based
on samples from both the reference and comparison distributions. The sit-
uation is similar to that for the relative CDF. Our approach will be to
apply the estimators developed for the relative data in Section 9.1.2 to the
quasirelative data. The motivation and application of these estimators will
be the same, but their statistical properties will be different as the refer-
ence distribution is estimated, rather than known. Here we will describe
the estimators and their statistical properties.

9.2.3.1 Estimation using a histogram.
The histogram estimator with K equisized intervals is

ĝn,m(r) =
Gn,m(bj+1) − Gm(bj)

h
, x ∈ (bj , bj+1],

where bj = (j−1)/K, j = 1, . . . , K+1 and (bj , bj+1] defines the boundaries
of the jth interval.

Mielniczuk (1992) shows this estimator is close to the estimator in (9.5)
by developing an inequality for the supremum of the distance between them.
He then observes that when m = n and relative density is bounded and
differentiable

sup
0≤r≤1

|ĝn,m(r) − g(r)| = Op(
1
h

√
log n/n + h).

See Silverman (1986) or Wand (1995) for details.

9.2.3.2 Kernel density estimation.
Motivated by (9.9), we consider the following estimator of g(r)

gn,m(r) =
1

mhm

m∑
j=1

K

(
r − Qj

hm

)
(9.19)

Cwik and Mielniczuk (1989) prove that if the bandwidth hm → 0 in the
right way as m, n → ∞, gn,m(r) converges to g(r) almost surely uniformly
for 0 ≤ r ≤ 1. That is, the global deviation sup0≤r≤1 |gn,m(r) − g(r)|
converges to zero with probability one. Li, et al (1996) prove a similar
result.

The basic asymptotic distributional property of the estimator is de-
scribed in the following result:

Theorem. Assume that 0 < r < 1, and suppose both F0(x) and F (x) possess
densities (f0(x) and f(x), respectively) that are smooth (enough so that g is
uniformly continuous). Let K(·) be a twice continuously differentiable kernel
function (satisfying (9.10)) and vanishing outside some bounded interval.
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For each bandwidth sequence {hm} with hm → 0 with mh3
m → ∞, mh5

m →
0, m/n → κ2 < ∞ we then have

gn,m(r) ∼ AN
{

g(r),
g(r)R(K)

mhm
+

g2(r)R(K)
nhm

}
. (9.20)

We remark that the result holds if f0(x) and f(x) satisfy the conditions
of the theorem in Section 9.1.2.2 and are bounded and uniformly continu-
ous. It is informative to compare the properties of this estimator to those
of the estimator (9.9) based on direct observation of R1, R2, . . . , Rm. We
can interpret the additional term in the asymptotic variance for gn,m(r)
compared to gm(r) as the price we pay for using Fn0 as a surrogate for the
unknown F0.

Alexander (1989) develops a kernel density estimator for the relative
density of Y to a pooled reference group formed by merging the comparison
and reference groups. If λ is the proportion of the pooled reference group
in the comparison group then the CDF of the pooled reference group is
H(y) = λF (y)+(1−λ)F0(y). He proposes a Gasser-Müller boundary kernel
be used to overcome the bias of the estimator close to 0 and 1. He shows
that it is a consistent estimator and is asymptotically normal when the
relative distribution is uniform.

The above result only holds for r in the interior of [0, 1]. Cwik and Miel-
niczuk (1993) develop a boundary kernel estimator that uses the method
of reflection to overcome the bias the above estimator will have at 0 and at
1 when the relative density is nonzero there. Their estimator is

gbn,m(r) =
1

mhm

m∑
j=1

K

(
r − Qj

hm
+

r + Qj

hm
+

r + Qj − 2
hm

)
The additional two terms “reflect” the data outside the two boundaries to
ensure smoothness there. They give a sketch of the proof of this result.

Theorem. Assume that 0 < r < 1 and g(r) is differentiable on [0, 1]. Let
K(·) be a three times continuously differentiable kernel function satisfying
(9.10) and vanishing outside some bounded interval. For each bandwidth
sequence {hm} with h

1/2
m log(m) → 0 with mh

5/2
m → ∞, m/n → κ2 < ∞ we

then have

gn,m(r) ∼ AN
{

E(gm(r)),
g(r)R(K)

mhm
+

g2(r)R(K)
nhm

}
. (9.21)

Here gm(r) is the kernel density estimator in Section 9.1.2.2 based on
the relative data so that
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Bias[gn,m(r)] =
1
2
h2

mσ2
Kg′′(r) + O(h4

m).

Thus the estimator has the same order of bias as the estimator based on
the relative data.

In Appendix D, we give a proof for the result (9.20) that exploits the
structural properties of the relative density. This allows us to nicely use
theory for U -statistics with estimated parameters and empirical process
ideas.

Cwik and Mielniczuk (1993) also consider how to choose the band-
width hm. If we knew the reference distribution then (9.12) would be an
appropriate choice to minimize the AMISE. However the MISE is inflated
by the second term on the variance (9.20). Cwik and Mielniczuk (1993)
show that a better choice of bandwidth is

h0Q = [1 + R(g)]1/5h0R.

To estimate this, they suggest using the plug-in method of Silverman (1986)
or the method of Sheather and Jones (1991). We use the latter in this book.
Also note that this bandwidth choice is not consistent with the bandwidth
chosen in result (9.12). There a nonasymptotically optimal bandwidth is
deliberately chosen so that the squared bias of the estimator is of smaller
order than the variance term.

Simulation results indicate that the asymptotic variance expression
used in this result is a poor approximation to the finite-sample variance of
the estimator when g(r) is not smooth (i.e., g′′′(r) has large magnitude). In
this case the other terms in the expansion (A.3) for gn,m(r) play a significant
role (even though they are asymptotically negligible). By working through
the proof of (9.20) it is possible to refine the variance estimate to give the
following:

Theorem. An expression for the variance of gn,m(r) that is more accurate
when the sample sizes are small is:

Var[gn,m(r)] ≈g(r)R(K) − hmg2(r)
mhm

+

(
g(r)

√
R(K) − hm + g′(r)R(K)

√
hmr(1 − r)

)2

nhm

as hm → 0 with mhm → ∞, m/n → κ2 < ∞ as m → ∞.

Simulation results indicate that this estimate is quite accurate, unless
n, m ≤ 30 or the relative density is very rapidly changing. This expression
can be used with the normal approximation in the calculation of (pointwise)
confidence intervals for g(r) based on gn,m(r).
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9.2.3.3 Regression-based density estimation

The regression based estimators discussed in Section 9.1.2.3 can be applied
to the quasirelative data. If a local-constant version is used then it will
have properties similar to those of the kernel density estimators discussed
above. Local-linear versions should have better performance and not require
adjustments close to the boundary. However, results about the statistical
properties of regression based estimators for the quasirelative data have
yet to be proven. The arguments in Section 9.1.2.3 and simulation results
suggest that their real-world performance is at least as good as the kernel
estimators, and they are just as easy to apply. Most of the density estimates
in this book use a Poisson local-quadratic regression estimator applied to
the quasirelative data with a bandwidth chose guided by the correct AIC
(Hurvich, et al 1998).

9.2.3.4 Exponential family based density estimation

When the reference distribution is unknown, we need to consider a model
for the joint distribution of both samples. If we retain model (9.12) for the
relative distribution then the log-likelihood is:

L(θ, F0; {Yj}m
j=1, {Y0i}n

i=1)

≡ log
(

P (Y1 = y1, . . . , Ym = Ym, iY01 = y01, . . . , Y0n = y0n, )
)

= log
(

P (R1 = F0(y1), . . . , Rm = F0(Ym), Y01 = y01, . . . , Y0n = y0n, )
)

=
m∑

j=1

log gθ(F0(yj)) +
n∑

i=1

log f0(y0i).

In this form, F0 is a nuisance parameter, as our focus is on the estimation
of gθ. One approach is to specify an exponential family model for F0 similar
to (9.12) but with the real line for support. Then the above log-likelihood
could be maximized with respect to the parameters from both models. As
an alternative, note that Fn0 is, technically, a nonparametric maximum
likelihood estimator for F0. This will remove the dependence on F0 at the
cost of ignoring some information. Ignoring constants that do not influence
θ, the log-likelihood reduces to

m∑
j=1

log gθ(Fn0(yj))
m∑

j=1

log gθ(Qj).

This can be seen as the likelihood that would result if we use the quasirel-
ative data in place of the relative data in the exponential family model
of Section 9.1.2.4. We can also motivate it as a pseudolikelihood estima-
tor based on the quasirelative data that ignores the dependence within the
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quasirelative data induced by the reference sample. The estimates can then
be determined using the procedures outlined in Section 9.1.2.4. Note, how-
ever, that the standard errors given in that section will not be exact as they
presume a model which is not exactly correct.

A third alternative is to consider the exact likelihood for the quasirel-
ative data based on (9.14). This is computationally more intensive, but
avoids the direct approximations of the other methods.

The effect of the dependence on the quasirelative data decreases as
the reference sample size increases. In practice, the estimator based on the
quasirelative data performs quite well. Note however that issues such as the
choice of the exponential family class have not been theoretically explored.

9.2.3.5 Orthogonal series density estimation

Orthogonal series density estimates can be easily applied to the two-sample
situation. As for other methods, the natural estimator is obtained by replac-
ing the relative data by the quasirelative data. If this is applied to (9.15)
the estimator of θk is:

θ̂k =
1
m

m∑
j=1

φk(Qj) k = 1, 2, . . . .

Eubank et al (1987) consider estimation of the relative density using an
orthogonal series estimator when the reference distribution is unknown.
They note that the coefficients can be reexpressed as

θk =
∫ ∞

−∞
φi(F0(y))f(x)dx k = 1, 2, . . . .

Thus if estimators of F and F0 exist they can be substituted in to esti-
mate θk and hence g(r). Under general conditions Eubank, et al prove that
the estimators are asymptotically unbiased and normal. They also give ex-
pressions for the asymptotic variance. This work is primarily interested in
estimating the relative density for use in testing hypotheses about F and
F0. We return to this topic in Chapter 10.

9.3 Estimation for a pooled reference group

In some application contexts it is better to form the reference distribution
by pooling the reference and comparison groups. As discussed in Section
2.4, this may be the best approach when the group to total comparison is
of specific interest, when one of the groups is too small to support distri-
butional estimates, or when the individual distributions of the two groups
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are nearly disjoint. This approach has been studied extensively by Parzen
and his students.

If λ is the proportion of the pooled reference group in the comparison
group then the CDF of the pooled reference group is H(y) = λF (y) + (1 −
λ)F0(y). Interest then focuses on the relative distribution of F to H. Parzen
(1977; 1992) refers to the corresponding relative distribution as the (pooled)
comparison distribution. Denote the relative CDF of F to H by GP(r) and
that of F0 to H by GQ(r). Denote the corresponding densities by gp(r) and
gq(r), respectively. If the comparison and reference distributions coincide
both gp(r) and gq(r) will correspond to uniform distributions.

We usually assume that λ is known. A typical source would be census
data. Alternatively we may consider the situation where the sample sizes
m and n reflect the population sizes, so that λn,m = m/(m+n) approaches
λ as the samples sizes increase.

Based on independent samples from both reference and comparison
groups, the natural estimator of H(y) is

Hn,m(y) = λn,mFm(y) + (1 − λn,m)Fn0(y).

Note, however, that this estimator is clearly correlated with Fm(y), the
estimator for the comparison group. Thus although we can use Fn(y) and
Hn,m(y) in each of the estimators discussed in this chapter, the results
describing their statistical properties will need to be reevaluated.

Define the pooled quasirelative data

Pj = Hn,m(Yj) =
1

n + m
Tj j = 1, . . . , m.

where Tj is the rank of Yj in {Y1, Y2, . . . , Ym, Y01, . . . , Y0n}, the combined
vector where for the first sum ties are broken in favor of the {Y0i}n

i=1 (Sec-
tion 9.2.1). Thus the pooled quasirelative data are directly related to the
quasirelative data through the relationship

P(j) =
1

n + m
(nQ(j) − j) j = 1, . . . , m.

The joint distribution of {P(j)}m
j=1 can be derived from (9.14) :

P [P(1) = p1, . . . , P(m) = pm] =
1(

n+m
m

)E[ m∏
j=1

g(U(sj))
]
.

where pj = sj/(n + m) and the {U(s)}n+m
s=1 are the order statistics in a

sample of n + m uniform [0, 1] variables with sj < s2 < · · · < sm. If the
relative distribution is uniform then all

(
n+m

m

)
possible combinations of

p1 < . . . < pm ∈ {1/(n + m), . . . , 1} are equally likely. In particular the
marginal distribution of P(j) is uniform on {1/(n + m), . . . , 1}.

Based on this relationship most of the statistical results given for the
(unpooled) relative distribution can be reformulated to cover the pooled
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situation. Estimators for GP(r) and gp(r) can be based on the pooled
quasirelative data:

GPn,m(r) =
1
m

m∑
j=1

I(Pj ≤ r) 0 < r < 1

gpn,m(r) =
1

mhm

m∑
j=1

K

(
r − Pj

hm

)
In particular, the result (9.18) can be used to show that

√
m{GPn,m(r) − GP(r)} =gp(r)B(m)

1 (GP(r)) + λgq(r)B(m)
2 (GQ(r))

+o(m
1
2 log2 m)

almost surely uniformly on any subinterval of [0, 1].

Theorem. Under the same conditions as (9.17),

GPn,m(r) ∼

AN
{

GP(r),
λgp2(r)GP(r)(1 − GP(r))

mκ2 +
gq2(r)GQ(r)(1 − GQ(r))

n

}
as m → ∞, m/n → κ2 < ∞.

Theorem. Under the same conditions as (9.20),

gpn,m(r) ∼ AN
{

gp(r),
R(K)gp(r)(1 − gp(r))

mhm

}
as m → ∞, m/n → κ2 < ∞.

The first result is proved in Aly, et al (1987) and a sketch of the proof
of the second is in Parzen (1983). Many related results concerning pooled
relative distributions are given in Alexander (1989) and Parzen (1999).

9.4 Estimation when the data are censored

Suppose we wish to compare the job stability of young men and women at
the start of their working lives. We conduct a survey and ask respondents
the length of time that they spent working for their first full-time employer.
In principle we can compare the early job stability distributions of the two
groups using the relative distribution of their measured first employment
spells. Some respondents may still be on the job at the time of the survey,
censoring their employment spells. These spells are called right censored,
because we know the start but not the end of the spell. Censoring can also
take other forms: respondents may not have had a job, so the entire spell
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is not observed; they may not recall the start date, or may only recall that
the job started in a particular year. Here we will focus on right censoring,
although the results can be extended to the other forms. See Kalbfleisch
and Prentice (1980) for an introduction to these ideas.

Let Sj and Ej be the start and end dates of the first job for respondent
j in the comparison group. Under right censoring Sj is always observed, but
Ej will not be if it occurs after the date the respondent took the survey SDj .
The employment spell is Yj = Ej − Sj and Cj = SDj − Sj is the observed
censoring time. The employment spell was observed if δj = I(Yj ≤ Cj)
is 1. The observed data for the comparison group is {Y o

j , δj}m
j=1 where

Y o
j = min(Yj , Cj) is the observed time. In general the Cj and Yj can be

dependent, but here we assume that they are independent and identically
distributed from CDFs R(y) and F (y), respectively. Let Di be the censoring
times, Y0i be the employment spells, γi be the censoring variable, and Y o

0i

be the observed times for the i = 1, . . . n person from the reference sample.
The Y0i and Di are independent with CDFs F0(y) and Ho(y), respectively.
As before the objective is estimate the relative distribution of F to F0.

Kaplan and Meier (1958) proposed the product-limit estimator of F0 :

Fn0(y) = 1 −
∏

Y o
0(i)≤y

[
n − i

n − i + 1

]γ(i)

,

where 0 ≤ Y o
0(1) ≤ Y o

0(2) ≤ · · ·Y o
0(n) are the ordered survival times, and γ(i)

is the corresponding censoring indicator. This is the generalization of the
empirical CDF to the censored case. When there is no censoring this esti-
mator reduces to the empirical CDF. If the largest observation is censored
(γ(n) = 1) the estimator is not a CDF, and so is redefined to be one for
y ≥ Y o

0(n). A similar product-limit estimator, Fm(y), can be constructed for
F.

The natural estimator of G(r) is

Gn,m(r) = Fm(F−1
n0 (r)) 0 < r < 1,

Cao, et al (1999) note that this is just the product-limit estimator of G(r)
based on the censored quasirelative data:

{Fn0(Yj), δj} j = 1, . . . , m.

Gastwirth and Wang (1988) obtained the generalization of the result
(9.17) to this setting:

Theorem. Under the same conditions as (9.17),

Gn,m(r) ∼ AN
{

G(r),
σ2(r; G; H)

m
+

σ2(r; I; H0)g2(r)
n

}
as m → ∞, m/n → κ2 < ∞. Here H(r) = R(F−1

0 (r)), H0(r) =
R0(F−1

0 (r)), I(r) = r and
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σ2(r; G; H) = (1 − G(r))2
∫ r

0

g(p)dp

(1 − G(p))2(1 − H(p))
.

Li, et al (1996) prove a similar result.
Estimates of the relative density g(r) can be based on the the censored

quasirelative data and censored versions of the density estimates discussed
in Sections 9.4. Cao, et al (1999) propose the kernel density estimator (9.19)
and show that:

Theorem. Under the same conditions as (9.20),

gn,m(r) ∼ AN
{

gp(r),
R(K)g(r)

mhm(1 − H(r))
+

R(K)g2(r)hu(r)
nhmP (δ0 = 1)(1 − H0(r))2

}
as m → ∞, m/n → κ2 < ∞. Here h(r) is the relative density of an uncen-
sored to actual reference group employment spell.

Note that when there is no censoring this reduces to (9.20).

9.5 Estimation when the data are weighted

In many circumstances the samples are obtained by probability sampling,
so that observations are drawn with unequal probabilities rather than as
a simple random sample. One common procedure is stratified sampling,
used when accurate estimates are desired for small population subgroups,
or when the variation of an attribute is much smaller within identifiable
subgroups of a group than it is between the subgroups. For example, the
employment spells of young workers tend to be shorter than those of older
workers. We could sample older workers in greater proportion than their
population proportion to obtain better estimates of the overall distribution.
Suppose the group can be partitioned into K subgroups of size N1, . . . , NK .
The population CDF is then

F0(y) =
1
N

K∑
k=1

NkFk(y)

where F0k(y) is the CDF of the kth subgroup and N = N1 + . . .+Nk is the
population size. If we sample nk individuals from the kth subgroup then
the natural estimate of the population CDF is

Fn(y) =
1
N

K∑
k=1

NkFkn(y) =
1
n

n∑
j=1

wjI(Y0j ≤ y). (9.22)

where Fkn(y) is the empirical CDF of the kth subgroup, Y0j is the obser-
vation from the j individual, n = n1 + . . . + nk, and wj = (Nk/N)/(nk/n)
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if j is in subgroup k. Each observation has associated with it wj , a sample
weight representing the population prevalence relative to the sample preva-
lence. As long as an appropriate sample frame has been established, wj can
be controlled by survey design. Under simple random sampling wj = 1. See
Thompson (1992) for an extensive treatment of approaches to sampling.

To estimate the relative distribution based on sampling with weights
the weighted empirical distribution function can be used in place of the
usual empirical distribution function. In particular, the weighted quasirel-
ative data becomes

Qj = Fn0(Yj) j = 1, . . . , m,

where Fn0 is the weighted empirical distribution function in (9.22). Note
that the weighted quasirelative data has the sample weights of the compar-
ison sample, if they were used. Hence estimates of the relative CDF and
PDF can be determined using versions of each of the methods described in
Section 9.6 for weighted data. These are straightforward and described in
the references given for each method.

9.6 Confidence intervals and confidence bands

In this section we will consider pointwise confidence intervals and simulta-
neous confidence sets for G(r) and g(r) for 0 ≤ r ≤ 1. These sets can be
constructed directly from the results of the previous sections.

If the sample size is not small (i.e., n, m > 30), we can use the normal
approximation to the exact distributions of the estimator as the basis for
the intervals. If the sample sizes are small we can use the bootstrap to
determine the sampling distribution of the estimate and the corresponding
critical values. Here we will discuss approximations to those critical values
based on the normal approximation in moderate to large samples. The
sample sizes for the referenced applications and the one considered in this
book tend to be large (e.g., 1300–3000), and the approximations will be
very close to the exact values.

9.6.1 Confidence intervals and confidence sets for G(r)

If the sample size is not small, we can use the normal approximation to
produce the distribution of the estimate as the basis for a test for a given
significance level α :

P

(
|Gn,m(r) − G(r)| ≤ zα/2 ×

√
V̂ar [Gn,m(r)]

)
→ 1 − α

as m → ∞, m/n → κ2 < ∞. Here
√

V̂ar [Gn,m(r)] is the variance estimate
obtained by replacing the relative CDF and density by their estimates in
the variance expression of (9.17).
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It is also of interest to determine confidence bands for G(r) for all
0 ≤ r ≤ 1. While Kolmogorov-Smirnov type bounds are possible, it is
more appealing to use a band width at a given point proportional to the
estimated standard deviation at that point. These have been called “equal-
precision” bands by Nair (1984), who applied them to survival functions
and Burr and Doss (1993) who applied them to the median survival in the
Cox proportional hazards model. To this end, consider the process:

Gs(r) =
G(r)√

G(r)(1−G)(r))
m + r(1−r)g2(r)

n

.

We then have:

Theorem. Under the same conditions as (9.17), and with 0 < r ≤ t < 1
then (

Gs
n,m(r)

Gs
n,m(t)

)
∼ AN

{(
Gs(r)
Gs(t)

)
, Σs

}
where

Gs
n,m(r) =

Gn,m(r)√
Gn,m(r)(1−Gn,m(r))

m + r(1−r)g2
n,m(r)

n

and Σs is the correlation matrix corresponding to Σ in (9.17).

The confidence bands can then be calculated by simulating the stochas-
tic process in the theorem where the parameters in the covariance structure
are replaced by their estimates. A value L

(n)
α can be estimated from multiple

simulations that satisfies:

Theorem. Under the same conditions as (9.17), there exists a L
(n)
α such that

P

( ∣∣∣∣ Gn,m(r) − G(r)√
Gn,m(r)(1−Gn,m(r))

m + r(1−r)g2
n,m(r)

n

∣∣∣∣ ≤ L(n)
α , 0 < r < 1

)
→ 1 − α

as m → ∞, m/n → κ2 < ∞. Thus the band

Gn,m(r) ± L(n)
α

√
Gn,m(r)(1 − Gn,m(r))

m
+

r(1 − r)g2
n,m(r)

n

has asymptotic coverage probability 1 − α.
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9.6.2 Confidence intervals and confidence sets for g(r)

The approach of the previous section can be applied to g(r) in a very
similar fashion. The pointwise bands can be based on (9.20). The confidence
intervals in this book use this approach. The simultaneous bands result
requires the extension of (9.20) to the joint distribution, which will not be
given here.

Background material

As noted in Chapter 2, Kelly (1994) provides a readable introduction to the
probability theory underlying the methods in this book. Rice (1995) is a
useful source for the mathematical statistics required. Serfling (1980) goes
into much greater depth than these two references.

The notation N(µ, σ2) is used to denote a normal (or Gaussian) dis-
tribution with mean µ and variance σ2. The standard normal distribution
discussed in Section 2.1 is N(0, 1) and the corresponding CDF is often
denoted by Φ(x),−∞ < x < ∞.

The description of asymptotic properties in Section 9.1.1 was very brief.
More formally, consider a sequence of random variables X1, X2, . . . where
the mth random variable has CDF Fm(x). Suppose X has CDF H(x). We
say that the Xm converges in distribution to X if, for each continuity point
of H(x),

lim
m→∞ Fm(x) = H(x).

This concept measures a sense in which the Xm are “cross-sectionally”
close to X when the sample size is large. It does not focus on how close a
particular sequence of Xm is to X, only the aggregate. We say that the Xm

converges with probability one to X if,

P

(
lim

m→∞ Xm = X

)
= 1.

This concept measures a sense in which the Xm are “longitudinally” close
to X when the sample size is large. If a sequence converges with probability
one, then it also converges in distribution.

We say the sequence is asymptotically normal with “mean” µm and
“variance” σ2

m > 0 if
Xm − µm

σm

converges in distribution to a standard normal distribution. In this situation
H(x) = Φ(x) and so is continuous for each −∞ < x < ∞. For additional
information see Kelly (1994) or Serfling (1980).

Standard notation concerning the convergence properties of sequences
is as follows:
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(1) Deterministic sequences: Let xn and yn be two real-valued determin-
istic (nonrandom) sequences. Then, as n → ∞,

(a) xn = O(yn) if and only if lim supn→∞ |xn/yn| < ∞,
(b) xn = o(yn) if and only if limn→∞ |xn/yn| = 0.

(2) Random sequences: Let Xn and Yn be two real-valued random se-
quences. Then, as n → ∞,

(a) Xn = Op(Yn) if and only if for all ε > 0, there exist δ and N such
that P (|Xn/Yn| > δ) < ε, for all n > N ,

(b) Xn = op(Yn) if and only if for all ε > 0, limn→∞ P (|Xn/Yn| > ε) =
0.

Simonoff (1996) has a discussion of the use of this notation. Throughout
most of this chapter we have assumed that the information on the reference
and comparison distributions are independent. A natural situation where
they are dependent is where they are both observations on the same entity.
For example, they could be earnings of the same individual at two points in
time where interest focuses on the relative earnings between the two time
points.

One viewpoint is to try to understand the bivariate distribution of the
comparison and reference value. In the spirit of the relative distribution
approach, the copula can be used as a summary of the dependence between
the two components in a manner independent of the marginal distributions
of the comparison and reference values. Joe (1997) gives a book length
treatment of this approach, and generalizes it to arbitrary multivariate
distributions. For approaches to testing independence, see also Kallenberg
and Ledwina (1999). Another viewpoint, closer to that of this book, is
that the relative distribution is of primary interest and the measuring of
the dependence is of secondary interest. Most of the methods developed in
this book can still be applied in this situation, although their statistical
properties will be modestly altered. In general the effect will be to decrease
the variance of the estimates and lead to underestimation of uncertainty of
the estimates. This area has received little attention in the existing research
literature.

Computational issues

Most of the estimation methods described in this chapter applied standard
univariate distributional estimators to the quasirelative data. The quasirel-
ative data can be determined from the rank statistics described in Section
9.2.1. We have used S-PLUS for all of the computations and figures pre-
sented in this book. SAS code is also available, from the WWW site for
this book.

Virtually any statistical package can produce fixed bin-width his-
tograms. Increasingly many contain other nonparametric CDF and density
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estimation routines. In particular, SAS Version 7.0 contains routines for
kernel density estimation and local polynomial regression that can be used
to implement the estimators in Sections 9.2.3.2 and 9.2.3.3, respectively.

Venables and Ripley (1997) gave S-PLUS code to calculate the
Sheather-Jones (1991) bandwidth for kernel density estimators.

The collection log-spline in the S directory of statlib contains S-
PLUS functions that calculate log-spline density estimates based on meth-
ods described in Kooperberg and Stone (1991).

Code for the relative density and CDF for standard packages such as
SPSS, MINITAB, SAS, and S-PLUS that uses these facilities is directly
available from the WWW site for this book. Many additional references
are given by Simonoff (1996).

Exercises

Exercise 9.1. When the reference distribution is known, the formulae in
Section 2.2 can be used to convert any estimator of F and f into an es-
timator of G or g. From an estimation viewpoint only, give three reasons
why the direct estimation of G or g is preferred. As an example, consider
the case where both the reference and comparison distributions are very
right-skewed in a similar manner.

Exercise 9.2. Show that the distribution of Gm(r) is given by

P

[
Gm(r) =

k

m

]
=
(

m

k

)
[G(r)]k[1 − G(r)]m−k k = 1, . . . , m.

Hence show that E[Gm(r)] = G(r) and Var(Gm(r)) = G(r)[1 − G(r)]/m.

Exercise 9.3. Show that the distribution of the histogram estimator of the
density is given by

P

[
ĝ(r) =

k

m

]
=
(

m

k

)
[H(r)]k[1 − H(r)]m−k k = 1, . . . , m,

where r ∈ (bj , bj+1) and H(r) = G(bj+1) − G(bj). Hence derive the expres-
sions for the bias and variance of the estimator given in (9.6) and (9.7).

Exercise 9.4. Use the definition of the quasirelative data in Section 9.2.1 to
show that

Gn,m(r) =
1
m

m∑
j=1

I(Qj ≤ r) 0 < r < 1.

Exercise 9.5. Give two examples of distributions that have supports on [0, 1]
and are exponential families of the form (9.12).
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Exercise 9.6. Consider the beta family of distributions given in Section
9.1.2.4. Suppose g is the member with θ = (1, 1). Consider the subfamily
with ΘS = {(θ1, θ2) > 0 : θ2 = θ1 + 1}. Calculate the Kullback-Leibler
divergence between g and gθ, θ ∈ ΘS . Suppose θ̂ = (0.5, 1.5). Calculate the
model misspecification and model uncertainty for this case. Determine θ∗,
the value in ΘS that maximizes the expected log-likelihood.

Exercise 9.7. What are the advantages of the exponential family formulation
in Section 9.1.2.4 over the orthogonal series formulation in Section 9.1.2.5?
Can you think of some disadvantages?

Exercise 9.8. Prove the result (9.14).

Exercise 9.9. Derive the expression (9.14) for Lehmann’s alternatives. You
may find Lehmann (1953) useful.

Exercise 9.10. Discuss the statistical properties of the weighted CDF esti-
mator Fn(y) given in (9.22). In doing so, derive a result similar to (9.2) for
this estimator.
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Inference for Summary Measures

In this chapter we develop estimators for summary measures based on the
relative distribution. The motivation for these measures is given in Chapter
5.

The first two sections present general results for summary measures of
distributional difference, based on properties of estimators of the relative
density. In Section 10.3 we introduce estimators of median relative polar-
ization index and give results on its asymptotic statistical properties. We
show that the estimator is asymptotically normal, and give refined results
when the comparison and reference distributions are equal. The computa-
tion of these asymptotic distributions requires estimates of the covariance
matrices. These are given in Section 10.4. In Section 10.5, we turn to the
lower and upper polarization indices, and give properties of the natural es-
timators of these indices. In practice, researchers are often concerned with
testing whether the polarization indices are zero against a complementary
alternative. In Section 10.6, we address this issue by developing confidence
intervals and confidence bands for the indices. In Section 10.7, we give a
general algorithm to determine confidence intervals for summary measures
based on the bootstrap. The more detailed results and proofs are given in
Appendix E.

10.1 Inference for two measures of distributional
difference

In Chapter 9 we considered estimators for the relative CDF and PDF. As
the summary measures are functions of these, one procedure to generate
the estimators is to replace occurrences of the relative CDF and PDF with
their estimators. For example, consider the directed divergence measures
given in Section 5.2. If ĝ(r) is an estimator of the relative PDF then we can
estimate these measures by:

D̂φ(F ; F0) =
∫ 1

0
φ
(
ĝ(r)

)
dr.

159
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However, the statistical properties of the estimators need to be determined.
Results exist for the two measures of distributional divergence considered in
Section 5.3. Mielniczuk (1990) estimates the chi-squared divergence based
on gbn,m(r) given in Section 9.2.3.2 and Gn,m in Section 9.2.2. He shows
that if g has a bounded second derivative the estimator is asymptotically
normal with mean Dφ(F ; F0).

Many estimators have been proposed for the Kullback-Leibler diver-
gence. As the Kullback-Leibler divergence is the entropy of the relative
distribution, most estimators can be written in the form:

D(F ; F0) ≡ D(g) =
∫ 1

0
log
(
ĝ(r)

)
ĝ(r) dr,

where ĝ(r) is an estimate of the relative density (See Section 9.2.3). Ex-
amples of estimators based on estimating g directly include kernel based
estimators (Joe 1989), log-density based estimators (Barron, et al 1992) and
other nonparametric estimators (Ebrahimi, et al 1994). In particular, Miel-
niczuk (1992) proves that if D(F ; F0) is finite and g is bounded then D(ĝ)
is strongly consistent for D(g) when ĝ is the histogram based estimator of
g given in Section 9.2.3.1. In Section 10.7 we discuss bootstrap measures
of uncertainty and confidence intervals applicable to general measures, and
D(F ; F0) in particular.

10.2 Measures motivated by hypothesis testing

In Section 5.5 we introduced some divergence measures motivated by test-
ing the null hypothesis of equality of the comparison and reference distribu-
tions when both distributions were unknown, and samples from each were
available.

One approach to testing is to consider a measure of divergence be-
tween the two distributions D(F ; F0) that is sensitive to the deviations
from the null hypothesis specified by the alternative hypothesis. The test
can be conducted by estimating the measure based on sample information
and comparing the estimate to the values we would expect from it if the
null hypothesis of equality were true. This approach is advocated by Parzen
(1979), Eubank, et al (1987), and Eubank and LaRicca (1992). They pro-
ceed by estimating the relative density and comparing a measure of its
divergence from the uniform distribution as a test statistic.

We will examine this and a number of variants of this approach in the
next section.
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10.2.1 Measures based on linear rank statistics

Consider the divergence measures proposed by Chernoff and Savage (1958)
given in Section 5.5. The natural estimator of DCS(F ; F0) replaces the CDF
of the pooled group relative distribution with the empirical version based
on the pooled relative data {R̃j}m

j=1 :

D̂CS(F ; F0) =
m∑

j=1

J(R̃j).

We can use the estimator for the pooled reference group because a measure
based on the pooled distribution is implicitly a measure of the differences
between the two separate distributions. The estimator above is an exam-
ple of a linear rank statistic (Serfling 1980). Many test statistics can be
expressed in this form. Alexander (1989) gives the following table:

Table 10.1. Common test statistics that can be expressed as linear rank statistics
in Chernoff-Savage form.

Name Score Function
Tests for Location Alternatives

Wilcoxon J(p) = p

Normal scores J(p) = Φ−1(p)
Median test J(p) = I(p < 1

2 )

Tests for Scale Alternatives
Mood test J(p) = (p − 1

2 )2

Normal scores J(p) = Φ−1(p)2

Ansari-Bradley J(p) = |p − 1
2 |

As in Section 5.5, let gp be the relative density of F to H (the pooled
CDF) and gq be the relative density of F0 to H. Then R̃ = H(Y ) and
S̃ = H(Y0) have PDFs gp and gq, respectively. Chernoff and Savage (1958)
proved that

Theorem. Suppose m, n → ∞ such that λm = n/(m + n) is bounded away
from 0 and 1. Then

D̂CS(F ; F0) ∼ AN
{

DCS(F ; F0), λ2
m

[
1
m

Var[B1(R̃)] +
1
n

Var[B2(S̃)]
]}

where
B1(r) =

∫ r

0
J ′(p)gp(p)dp

B2(r) =
∫ r

0
J ′(p)gq(p)dp.
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Alexander (1989) derives the score functions that maximize the asymp-
totic relative efficiency for location and scale alternatives. He also shows
that the Wilcoxon test is optimal if the pooled reference distribution is
logistic, and the Normal scores test is optimal for location and scale alter-
natives if the pooled reference distribution is normal.

10.2.2 Measures based on chi-squared divergence

Eubank, et al (1987), henceforth ELR, show that many hypothesis tests can
be placed in a general framework based on decomposing the chi-squared
divergence. Their approach uses the orthogonal series representation of g
given in Section 9.2.3.5. Let {φk(r)}∞

k=1 form a complete orthonormal basis
for the space of all square integrable functions on [0, 1]. They show that the
chi-squared divergence can be expressed as

Dφ(F ; F0) =
∞∑

k=1

θ2
k,

where θk are the coefficients given in (9.15). Thus the chi-squared divergence
can be decomposed into additive contributions from each of the functions
in the basis. The coefficients are therefore referred to as the components of
D̂φ(F ; F0). Each of these components measures the divergence of the com-
parison distribution from the reference distribution in a direction defined by
the corresponding basis function. By choosing difference sets of basis func-
tions we can define alternative decompositions of the overall chi-squared
divergence.

If any of the components is nonzero the null hypothesis of equality
is false. Hence ELR propose tests of subhypotheses that the individual θk

are zero. The θk can be estimated by the θ̂k given in Section 9.2.3.5. ELR
show that these estimates are asymptotically unbiased and normal. The
hypothesis test is conducted by comparing θ̂k to its asymptotic distribution
under the null hypothesis.

The power of the ELR framework is in the range of hypothesis tests
that are specific cases. Let ηk(x) be the Legendre polynomials on [−1, 1] and
let φk(p) be the normalized ηk(2p−1), 0 ≤ p ≤ 1. The first component θ1 is
a measure of the divergence of g in the direction of the location alternatives
given in Section 5.5. The estimate θ̂1 given in Section 9.2.3.5 is the Wilcoxon
rank sum. The second component θ2 is a measure of the divergence of g in
the direction of the scale alternatives given in Section 5.5. The estimate θ̂2
given in Section 9.2.3.5 is the Mood statistic. If the basis is the Hermite
polynomials then the estimates θ̂1 and θ̂2 correspond to the Normal scores
and Klotz statistics, respectively.

These identifications can be given an intuitive explanation. If the com-
parison distribution is a location shifted version of the reference distribu-
tion, then the relative density will tend to be monotone (i.e., g′(p) will not



10.2 Measures motivated by hypothesis testing 163

change sign). Hence if the first basis function is monotone, θ1 will tend to
capture location shifts. If the comparison distribution is a scale shifted ver-
sion of the reference distribution then g′(p) will tend to change sign once.
Hence if the second basis function is bowl-shaped, θ2 will tend to capture
scale shifts. For example, consider location and scale decomposition in Fig-
ure 3.1. The two relative densities strongly reflect this pattern. In general
higher oscillating basis functions will capture higher frequency departures
of the relative density from uniformity. These in turn will tend to corre-
spond to higher moment differences between the underlying distributions.
For additional discussion of this argument see Eubank, et al (1987), Section
2.3 and Alexander (1989), Section 2.3.4.

ELR focus on testing if a given set of m components are zero. For ex-
ample, tests of k = 1 and k = 2 correspond approximately to location and
scale differences between the distributions. An alternative is to consider
weighted sums of the components:

∑∞
k=0 αkθk estimated by

∑∞
k=0 αkθ̂k

where
∑∞

k=0 αkVar(θ̂k) < ∞. If αk = 1/k(k + 1) and the Legendre polyno-
mial basis is used, the estimate corresponds to the Anderson-Darling statis-
tic. If αk = 1/k2π and the sine basis φk(p) = sin(2πp) is used, the estimate
corresponds to the Cramer-von Mises statistic. These statistics involve all
components but successively down weight the higher order components.
The advantage is that the power of the statistic for any given alternative
approaches one as m, n → ∞. The disadvantage is that the power for a
given component decreases rapidly with k. Thus large sample sizes are re-
quired to reject the null if the alternative hypothesis effects only a higher
order component. If we test individual components then we will have good
small sample power for alternatives that effect those components, but have
an inconsistent test for alternatives that do not effect those components. If
we can choose a basis and the components that closely reflect the alterna-
tive hypothesis we most wish to protect against, then the compromise is a
good one. Thus the ELR framework sheds light into the nature of omnibus
test statistics versus specific test statistics. For an indepth analysis of this
issue, and an alternative framework, see Alexander (1989).

From a practical standpoint, it is sometimes difficult to choose bases
and components that are appropriate for the specific application. The ELR
approach sidesteps this issue by relying instead on generic features of the
chosen basis functions. In many contexts, however, it will be preferable to
use decompositions directly motivated by scientific theory and substantive
questions. The decompositions we have given in Chapters 3 and 7 are mo-
tivated more along these lines. They reflect emerging hypotheses about the
nature and origins of the changes in the earnings distribution, and they take
advantage of what these methods are very good at answering: the detailed
effects of location and shape changes, and the impacts of other covariates.
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10.2.3 Measures based on data-driven Neyman’s tests

An approach closely allied with the approach of Eubank, et al (1987) is
the data-driven Neyman’s test developed in Ledwina (1994). For simplicity
we consider the goodness-of-fit situation where F0 is known. To test the
null hypothesis that F is F0 she approximates the relative distribution as a
member of an exponential family given in Section 9.2.3.4. As a divergence
measure she proposed:

DK(F ; F0) =
K∑

k=1

θ2
k,

where θk is given in (9.12). The test statistic is the natural estimator of
DN (F ; F0)

D̂K(F ; F0) =
K∑

k=1

θ̄2
k.

Neyman (1937) proposed the test using the Legendre polynomial basis given
above and K fixed. Ledwina (1994) proposed to choose K in a “data-driven”
manner. Instead of a single exponential family she considers a sequence
of exponential families with the k − 1th family nested in the kth, k =
1, 2, . . . , K. The estimator she chooses maximizes the penalized likelihood
based on Schwarz’s criterion given that Section 9.2.3.4. The test statistic
is then D̂S(F ; F0) where S is the number of basis functions that minimizes
the penalized likelihood.

Ingot and Ledwina (1996) show that this test is asymptotically op-
timal in the sense of intermediate efficiency (Kallenberg 1983) for a wide
range of alternatives. They also show that non-data-driven tests such as
the Kolmogorov-Smirnov and Cramer-von Mises tests are optimal for only
a narrow class of alternatives. Ingot, et al (1998) show that the test is
asymptotically as efficient as the most powerful Neyman-Pearson test if
the level of significance tends to zero also. While these statements depend
on the choice of asymptotic framework, the practical value of the approach
is supported by extensive simulations studies reported in Ledwina (1994)
and Ledwina (1996).

10.3 Inference for the median relative polarization

The Median Relative Polarization (MRP) is defined in Section 5.6.1. Here
we focus on the estimation based on sample survey data. Let Y1, Y2, . . . , Ym

be independently and identically distributed from the distribution F and
let Y01, Y02, . . . , Y0n be independently and identically distributed from
the distribution F0. Assume the two samples are mutually independent.
Denote the empirical distribution function of Y and Y0 by Fm(y) =
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m−1∑m
j=1 I(Yj ≤ y) and Fn0(y) = n−1∑n

i=1 I(Y0i ≤ y), respectively. Here
I(·) is the indicator function. In this section we develop the properties of
M̂RP(F ; F0) ≡ MRP(Fm; Fn0), the natural estimator of MRP(F ; F0). This
estimator requires an estimator of the location shift between Y and Y0
ρ = Q( 1

2 ) − Q0( 1
2 ). The natural estimator of ρ is ρ̂ = Q̂( 1

2 ) − Q̂0( 1
2 ), the

difference between the empirical quantiles. Some insight into the estimator
can be gained by reexpressing it as:

M̂RP(F ; F0) =
4
m

m∑
j=1

∣∣∣∣Q̂j − 1
2

∣∣∣∣ − 1. (10.1)

where {Q̂1, Q̂2, . . . , Q̂m} are the location matched quasirelative data:

Q̂j = Fn0(Yj − ρ̂) j = 1, . . . , m.

This definition modifies that given for the quasirelative data in Section
9.2 so that the distributions are location matched. The expression (10.1)
follows directly from the definitions of the empirical distribution function
and some algebra. Note that the {Qj}m

j=1 are not independent as they
depend on the {Y0i}n

i=1. However, as we shall see in the next section, they
will be close to uncorrelated (their pairwise correlation is O(n−1)).

10.3.1 The asymptotic distribution of M̂RP(F ; F0)

Recall from Chapter 3 that the median-matched relative distribution of Y
to Y0 is given by R0L = F0(Y − ρ), where ρ = Q(1

2 )−Q0( 1
2 ), the difference

between the median of Y and the median of Y0. Q is the quantile function,
defined in Section 2.2. The MRP is the expectation of 4| R0L − 1

2 | − 1,
and so it is natural to expect the average based on the location matched
quasirelative data to be (asymptotically) unbiased. We have the following
description of the asymptotic distribution of M̂RP(F ; F0).

Theorem. If F0(x) and F (x) possess continuous densities satisfying f(ξ 1
2
) >

0 and f0(ξ0
1
2
) > 0, then

M̂RP(F ; F0) ∼ AN
{
MRP(F ; F0), σ2

MRP

}
as m/n → κ2 < ∞, m → ∞. The asymptotic variance is:

σ2
MRP =

16
m

Var(| R0L − 1
2

|) +
16
n

Var(|R̃0L − 1
2

|)

+
1
m

σ2(δ (ξ)) +
1
n

σ2
0(δ0(ξ)), (10.2)

where
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σ2(δ (ξ)) = 4δ2(ξ) + 2δ (ξ)
[
LRP(F ; F0) − URP(F ; F0)

]
σ2

0(δ0(ξ)) = 4δ2
0(ξ) − 2δ0(ξ)

[
LRP(F ; F0) − URP(F ; F0)

]
(10.3)

LRP(F ; F0), URP(F ; F0) are the lower and upper polarization indices
given in Section 5.6.2, and

δ0(ξ) = η(ξ 1
2
, ξ0

1
2
)/f0(ξ0

1
2
)

δ (ξ) = η(ξ 1
2
, ξ0

1
2
)/f(ξ 1

2
)

η(ξ 1
2
, ξ0

1
2
) =
∫ ∞

−∞
f(y)f0(y − ξ 1

2
+ ξ0

1
2
) dy − 2

∫ ξ 1
2

−∞
f(y)f0(y − ξ 1

2
+ ξ0

1
2
) dy.

Here R̃0L = F (Y0 + ρ) is the location matched distribution of Y0 with
respect to Y. It can be regarded as the inverse of R0L as it has CDF
G̃0L(r) = G−1

0L (r), 0 ≤ r ≤ 1. This result was proven in Handcock and
Janssen (1998b).

The second term is the additional uncertainty incurred by using Fn0
rather than F0 in the definition of the quasirelative data. The last two
terms are the contributions to the variance due to the estimation of the
nuisance parameter ρ. If ρ were known then the correct variance is given
by the first two terms. This will typically be the case when the comparison
and reference distribution are known from the substantive theory to have
the same median.

Note that there are many circumstances when the estimation of ρ
does not contribute to the asymptotic variance. This will be the case when
η(ξ 1

2
, ξ0

1
2
) is zero. A sufficient condition for this is that f(y)f0(y − ξ 1

2
+ ξ0

1
2
)

is symmetric and, in particular, when both the target and comparison dis-
tributions are symmetric. The more skewed the two distributions are, the
larger the variance contribution of ρ. If the contributions to the polariza-
tion from each tail are equal, the final term is zero. This can occur even
if the comparison and target distributions are not symmetric. This general
property of zero contribution is related to the idea of orthogonal tangent
spaces in adaptive estimation theory (Bickel, et al 1993).

10.3.2 The asymptotic distribution of M̂RP(F ; F0) under
equality

In many applications, researchers will test the hypothesis that the MRP
is zero against the complementary alternative. To construct a test of this
hypothesis it is interesting to consider the distribution of the estimate un-
der the nonparametric null hypothesis that the reference and comparison
distributions are identical (F ≡ F0). For this purpose the following result
is more accurate than the general result given in Section 10.3.1.
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Theorem. Under the hypothesis H0 : F = F0,

E
[
M̂RP(F ; F0)

]
=

{ 1
n+1 n even

1
n n odd

.

Var
[
M̂RP(F ; F0)

]
=

σ2
MRP
nm

(m + n + 1),

where

σ2
MRP =

{
1
3 + 1

(n+1)2 n even
1
3 − 1

n(n+1) n odd

In addition, M̂RP(F ; F0) is asymptotically normal as n → ∞ or m → ∞
or both.

These results indicate that, under the null hypothesis, M̂RP(F ; F0)
is asymptotically unbiased (and can easily be made unbiased for fixed
n). In addition it is asymptotically normal with variance very close to
(1/3)[1/n + 1/m], when n and m are moderate to large. For fixed m, as n

increases so that our knowledge of F0 increases, M̂RP(F ; F0) is unbiased
with variance exactly 1/3m. The additional inflationary factors involving n
are the price we pay for not knowing F0 and having to estimate it from the
data by Fn0. The proof of this result uses Lemma F.2 given in Appendix
F. Clearly

mVar
[
M̂RP(F ; F0)

]
= 16σ2

|Qi− 1
2 | [(m − 1)φ + 1] ,

so the variance follows easily. As the expectation and covariance matrix of
the |Qi− 1

2 | are known and finite, the asymptotic normal result follows from
the central limit theorem (Serfling 1980).

10.3.3 The joint distribution of the median relative polarization
indices

In many situations the MRP is calculated for multiple comparison distri-
butions relative to a fixed reference distribution. For example, the reference
distribution could be earnings for workers in 1967 and the comparison dis-
tributions would be earnings series for workers in subsequent years. The
objective would be to see how the polarization changed over time relative
to a fixed reference year.

Generalizing our notation, let Yt = (Yt1, . . . , Ytmt) denote the indepen-
dent sample from the tth comparison distribution Ft, t = 1, 2, . . . , T. De-
note the vector of median polarization indices by MRP = {MRP(F1; F0),
MRP(F2; F0), . . . , MRP(FT ; F0)}′. Let M̂RP = {M̂RP(F1; F0),
M̂RP(F2; F0), . . . , M̂RP(FT ; F0)}′ be the vector of estimates of the MRPs.
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The theorem in Section 10.3.1 can then be extended to cover the joint dis-
tribution of M̂RP :

Theorem. If the conditions of the theorem given in Section 10.3.1 are
satisfied by F0, Ft, t = 1, 2, . . . , T, then

M̂RP ∼ AN
{
MRP, ΣMRP

}
(10.4)

as m/n → κ2 < ∞, m → ∞. An explicit expression for ΣMRP is given in
Section 10.4.2.

As in previous subsection, the result can be refined to represent the
joint distribution under the null hypothesis that the reference and compar-
ison distributions are identical (Ft ≡ F0, t = 1, 2, . . . , T ).

Theorem. Under the hypothesis H0 : Ft = F0, t = 1, . . . , T, M̂RP is
asymptotically normal:

M̂RP ∼ AN

{
0,

σ2
MRP
n

(
diag(γt) + 11′ − I

)}
(10.5)

as n, m1, . . . , mT → ∞. Here I is the T ×T identity matrix, 1 is the T unit
vector and γt = mt + n + 1/mt, t = 1, . . . , T.

The proof is similar to that for the theorem in Section 10.3.2.

10.4 Computing standard errors

In this section we give the formula for the computation and estimation of
the asymptotic distributions given in the theorem in Section 10.3.1 and
Section 10.3.3.

10.4.1 The asymptotic variance of the estimate of MRP

For computing (10.2), it is convenient to have an expression directly in
terms of the relative CDF:

16Var(| R0L − 1
2

|) = 4 − 32
∫ 1

0
(r − 1

2
)G0L(r) dr − [MRP(F ; F0) + 1]2.

An alternative estimator can be based on the sample variance of {| Qi −
1
2 |}m

i=1. For use in practice, an estimate of G̃0L(r) is needed and the natural
choice is
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Ĝn,m(r) = Fm(F−1
n0 (r) + ρ̂) 0 < r < 1.

The properties of this estimator with ρ known are developed in Section
9.2.2. Based on a simple extension of the results when the nuisance pa-
rameter ρ is estimated, it can be shown that Ĝn,m is a

√
n−consistent and

asymptotically normal estimator of G̃0L(r) as m/n → κ2 < ∞, m → ∞.
Alternate estimators exist that can also be extended to this situation. See
Li, et al (1996). The terms in (10.3) require estimates of the reference and
comparison densities. These can be estimated using any of the approaches
described in Section 9.1. In this book we have used a Poisson regression
based estimator with the same bins and smoothing parameter for each dis-
tribution.

10.4.2 The asymptotic variance of the joint distribution

In this section we give an explicit formula for the asymptotic covariance
matrix of M̂RP given in (10.4). Define ρt = ξ 1

2 t − ξ0
1
2

and ξ 1
2 t = F−1

t ( 1
2 ).

Let Rt0L = F0(Yt − ρt) be the relative distribution of Ft location matched
to F0 and R̃0tL = Ft(Y0 + ρt) be the relative distribution of F0 location
matched to Ft. Define Gt to be the CDF of Rt0L. Based on (10.2), the
(ts)th element of ΣMRP is

1
m

I{t = s}
[
16Var

(
| Rt0L − 1

2
) |
)

+ σ2
t (δt(ξt))

]
+

1
n

16Cov
(

|R̃0tL − 1
2

|, |R̃0sL − 1
2

|
)

+
1
n

[
δt0(ξt) [LRP(Ft; F0) − URP(Ft; F0)]

+ δs0(ξs) [LRP(Fs; F0) − URP(Fs; F0)]

+ 4δt0(ξt)δs0(ξs)
]
,

where σ2
t (·), δt(·), and δt0(·) are versions of σ2(·), δ(·) and δ0(·), respectively,

given in (10.3) with Ft as the comparison distribution. As for (10.2), we
can express the covariance directly in terms of the relative CDF:

16Cov
(

|R̃0tL − 1
2

|, |R̃0sL − 1
2

|
)

=

16
∫ 1

0
|Gt(r) − 1

2
||Gs(r) − 1

2
| dr − [MRP(Ft; F0) + 1][MRP(Fs; F0) + 1].

These terms can be estimated using the approach given in Section 10.4.1.
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10.5 Statistical properties of estimates of the upper
and lower indices

As in Section 10.3 we will consider the situation where we have indepen-
dent samples from both distributions. The natural estimators of the lower
and upper indices are L̂RP(F ; F0) ≡ LRP(Fm; Fn0) and ÛRP(F ; F0) ≡
URP(Fm; Fn0), respectively. These estimates can be reexpressed as

L̂RP(F ; F0) =
8
m

m∑
j=1

∣∣∣∣Qj − 1
2

∣∣∣∣ I(Qj ≤ 1
2
) − 1

ÛRP(F ; F0) =
8
m

m∑
j=1

∣∣∣∣Qj − 1
2

∣∣∣∣ I(Qj >
1
2
) − 1

The vectors LRP,URP and L̂RP, ÛRP are defined analogously to
MRP and M̂RP. We state the following result:

Theorem. If the conditions of the theorem in Section 10.3.1 are satisfied
by F, Ft, t = 1, 2, . . . , T, then L̂RP and ÛRP are asymptotically normal: L̂RP

ÛRP

 ∼ AN
{(

0
0

)
,

(
ΣLRP ΣUL
ΣUL ΣURP

)}
(10.7)

as m/n → κ2 < ∞, m → ∞.

The result for the case of equality of the distributions is given in the
next section. There we also give explicit expressions for ΣUL, ΣLRP and
ΣURP under equality of the distributions. Formulae for the general case
are given in Handcock and Janssen (1998a).

These results indicate that L̂RPt(F ; F0) and ÛRPt(F ; F0) are asymp-
totically unbiased. In addition they are asymptotically jointly normal.
Under the null hypothesis that the reference and comparison distribu-
tions are identical (Ft ≡ F0, t = 1, 2, . . . , T ) the variance is very close to
(5/3)[1/n + 1/m], when n and m are moderate to large. It is also impor-
tant to note that the correlation between L̂RPt(F ; F0) and ÛRPt(F ; F0)
is about 3/5, and should not be ignored when interpreting the values. For
fixed m, as n increases so that our knowledge of F0 increases, L̂RP(F ; F0)
and ÛRPt(F ; F0) are approximately unbiased with variance 5/3m.

The proof of (10.7) is similar to that of (10.4) (given in Handcock and
Janssen (1998a)) using the properties of two-sample U-statistics.
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Computational formulae for the covariance terms in (10.7) can be de-
rived in the same manner as those in Section 10.4. They are similar with
terms of the form | Rt0L − 1

2 | replaced by terms of the form | Rt0L −
1
2 | I{ Rt0L ≤ 1

2} for LRP and terms of the form | Rt0L − 1
2 | I{ Rt0L > 1

2}
for URP. Exact formula are available in Handcock and Janssen (1998a).

10.5.1 Distribution of the upper and lower indices under
equality

In this section we consider the joint distributions of LRP(F ; F0) and
URP(F ; F0) under the null hypothesis that the reference and comparison
distributions are identical (Ft ≡ F0, t = 1, 2, . . . , T ).

Theorem. Under the hypothesis H0 : Ft = F0, t = 1, . . . , T, L̂RP and
ÛRP are asymptotically normal: L̂RP

ÛRP

 ∼ AN
{(

0
0

)
,

(
Σ0

LRP Σ0
UL

Σ0
UL Σ0

LRP

)}
as n, m1, . . . , mT → ∞. The (t, s)th element of the T × T matrix Σ0

LRP is
mt+n+1

nmt

(
5 − 2

(n+1)2

)
t = s

1
n

(
5 + 2

(n+1)2

)
t �= s.

The (t, s)th element of the T × T matrix Σ0
UL is

mt+n+1
nmt

(
−3 + 2

(n+1)2

)
t = s

1
n

(
−3 + 2

(n+1)2

)
t �= s.

The expressions are given for n even. The expressions for n odd are
similar. The derivation is similar to that of the result in Section 10.3.2.

10.6 Tests of significance and multiple comparisons

In this section we use the results of Section 10.3 to construct confidence
intervals and bands for the MRP. Results for the LRP and URP are similar.
Often we would like to test if the MRP in a given situation has a statistically
significant difference from zero.
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If the sample sizes are not small, we can use the normal approximation
to the exact distribution of the estimate as the basis for a test for a given
significance level α :

P

(
|M̂RP(F ; F0)| ≤ zα/2 ×

√
Var
[
M̂RP(F ; F0)

] )
≈ 1 − α. (10.6)

For most applications, the data sets will be large survey samples for which
the sample sizes tend to be large (e.g., 1300–3000). As a result the approx-
imations will be very close to the exact values. Consider the situation in
Section 10.3 where we have many comparison distributions and wish to test
if the MRP of any of them is significantly different from zero. Using the
notation of that section, we wish to choose a critical value Lα/2 such that
for a given significance level α :

P

(
−Lα/2 ≤ M̂RP(Ft; F0) ≤ Lα/2, t = 1, . . . , T

)
≈ 1 − α.

If we wish to test the hypothesis based on individual level data, we can use
the normal approximation to the exact (multivariate) distribution of M̂RP
as the basis for a test (result (10.4) or (10.5)). The correlations between
the components are non-negligible, so the usual Bonferroni inequality will
lead to an unduly conservative critical value. An alternative approach is to
use the Dunn-Šidák inequality (Hochberg and Tamhane 1987):

P

(
−Lα/2 ≤ M̂RP(Ft; F0) ≤ Lα/2, t = 1, . . . , T

)
≥

T∏
t=1

P

(
−Lα/2 ≤ M̂RP(Ft; F0) ≤ Lα/2

)
.

A conservative significance level can then be attained by using (10.6) and
choosing the critical value to be zα̃/2, where α̃ = 1 − (1 − α)1/T for a
given overall significance level α.

A better choice of critical value can be determined by using a method
that explicitly takes into account the multivariate structure of M̂RP. Dun-
nett (1989) considers the case where the distribution has a product corre-
lation structure (i.e., the correlation can be written as βtβs, t �= s. In our
situation βt = 1/

√
γt t = 1, . . . , T ). Using this approach, Lα/2 can be

calculated exactly (his algorithm is freely available as AS 251). The critical
values for simultaneous comparisons made in this book are based on this
method.
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10.7 Bootstrap confidence intervals and achieved
significance level

The bootstrap can be used to determine confidence intervals for general
divergence measures. Confidence intervals for many measures can be derived
from the asymptotic approximations to the distributions of their estimators.
Examples are given in Sections 10.2 thru 10.5. However for many measures
these distributions are not known, nor do simple approximations exist. A
good example is the the Kullback-Leibler divergence. It can be expressed
as a functional of g

DKL(F ; F0) ≡ DKL(g) =
∫ 1

0
log
(
g(r)

)
dG(r) = EG

[
log
(
g(X)

)]
.

Some of the estimators proposed for D(F ; F0) are described in Section 10.1.
The bootstrap can be used to estimate the distributions of such divergence
estimates even under these circumstances. For general information about
the bootstrap see Efron (1993). A more detailed technical description is
given in Shao and Tu (1995). Here we will describe one approach to imple-
menting the bootstrap.

Let D(F ; F0) ≡ D(g) be a divergence measure that can be expressed
a functional of g which is smooth under appropriate assumptions on the
density g. Let Qj = Fn0(Yj), j = 1, . . . , m be the quasirelative data from
Section 9.2 and let gn,m(r) be an estimate of g based on {Qj}m

j=1 (Section
9.2.3). The procedures described here aim to determine measures of uncer-
tainty for D(g) based on generic features of gn,m(r). However the properties
of the procedure will depend on the specific properties of the estimator.

A bootstrap algorithm for confidence intervals can be described as:
1) Select B independent bootstrap samples based on samples from the ref-

erence and comparison groups. Denote the reference group samples by
{Y ∗1

0i }n
i=1, . . . ,{Y ∗B

0i }n
i=1, where each is a sample from Y01, Y02, . . . , Y0n

consisting of n data values drawn with replacement. Denote the com-
parison group samples by {Y ∗1

j }m
j=1, . . . , {Y ∗B

j }m
j=1, where each is a

sample from Y1, Y2, . . . , Ym consisting of m data values drawn with
replacement.

2) Let Fb(y) = 1
n

∑n
i=1 I(Y ∗b

0i ≤ y) be the EDF of {Y ∗b
0i }n

i=1. Form the
bootstrapped approximate relative data:

X∗b
j = Fb(Y ∗b

j ) j = 1, . . . , m

and the bootstrapped relative density estimate gn,m(X∗b).
3) Evaluate the bootstrapped estimate of the divergence D(gn,m(X∗b)).
4) Define

KBOOT(r) = P [D(g∗b
n,m) ≤ r] 0 < r < 1.

An approximately 100(1−α)% confidence interval for D(g) is the boot-
strap percentile interval:
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K−1

BOOT(α/2), K−1
BOOT(1 − α/2)

)
.

The accuracy of the confidence set may be improved using more so-
phisticated methods – see Shao and Tu (1995), Chapter 4.

For the p-value for the hypothesis test H0 : F = F0, we seek to esti-
mate the achieved significance level, ASL = PH0 [D(Û) ≥ D(ĝ)] where Û is
the distributional estimate of g if the null hypothesis is correct. Let Rj be
the rank of Yj in the combined vector {Y1, Y2, . . . , Ym, Y01, . . . , Y0n}, where
the ties are broken in favor of the {Y0i}n

i=1, and Sj be the rank of Yj in
{Y1, Y2, . . . , Ym}, where ties are broken arbitrarily. The approximate rela-
tive data can then be expressed as Xj = 1

n (Rj − Sj), j = 1, . . . , m. Under
H0, {Rj}m

j=1 is a random sample of size m from the integers 1 thru n + m
drawn without replacement and {Sj}m

j=1 is determined by the {Rj}m
j=1.

Thus {Xj}m
j=1 can be simulated directly from the known distribution of

the ranks under the null hypothesis. Note that {Xj}m
j=1 retains the depen-

dence among the {Xj}m
j=1 even though the marginal distribution of Xj is

uniform on {0, 1
n , 2

n , n−1
n , 1}.

The most direct bootstrap algorithm to estimate ASL is:
1) Select B independent bootstrap samples: {X∗1

j }m
j=1, . . . ,{X∗B

j }m
j=1 from

the above distribution of the ranks under H0.
2) Evaluate the estimate of the divergence D(g∗b

n,m) based on {X∗b
j }m

j=1.
3) Approximate ASL by

ÂSL =
1
B

#{D(g∗b
n,m) ≥ D(gn,m)}.

The availability of a distribution under the null hypothesis for gen-
erating the bootstrap data that does not depend on characteristics of the
unknown F and F0 is key to the approach. For small sample sizes a test
can be based on the permutation distribution of the ranks. See Efron and
Tibshirani (1993), Chapter 15 for details.

As the bootstrap is based on a nonparametric estimator, the conver-
gence rates of the bootstrap estimate may be slow. The quality of the
bootstrap approximation can be improved in a number of ways. First, by
drawing observations not from Fn0 and Fm directly, but from smoothed
versions of them (Shao and Tu 1995). This may help if the sample sizes
(n, m < 100) are small, or if a nonsmooth estimate of g is used (e.g., a
histogram estimator). Second, a smaller smoothing parameter can be used
to reduce the bias in the estimator for g. Third, an estimator for the density
adapted to the divergence functional may be used. In particular, estima-
tors based on Poisson regression, log-density estimation such as log-spline
density estimators (Kooperberg and Stone 1992) or other basis function
expansions (Barron, et al 1992) can be considered. These estimators work
well on [0, 1] and have good analytical and computational properties.
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Background material

The Kullback-Leibler divergence is central to many statistical endeavors –
see Kullback (1968) and Soofi (1994). A fundamental reason for this is the
connection to measures of information. Recall that the Kullback-Leibler
divergence is just the entropy of the corresponding relative distribution.

There is an almost endless array of measures that have been proposed
based on linear rank statistics and their variants. Other examples are the
distance measures given in Table 4.5.1 of Titterington (1985).

Expressions for the covariance terms in (10.7) can be easily derived
from the expressions in Section 10.4.2. The significance bands in Section
10.6 based on the assumption of equality of the distributions is the most
useful in practice.

Exercises

Exercise 10.1. Show that the score function J(p) = p with D̂CS(F ; F0)
results in the Wilcoxon statistic.

Exercise 10.2. Show that the score function J(p) = I(p < 1
2 ) with

D̂CS(F ; F0) results in the median test.

Exercise 10.3. Show that the score function J(p) = (p− 1
2 )2 with D̂CS(F ; F0)

results in the Mood test.

Exercise 10.4. Show that the score function J(p) = |p− 1
2 | with D̂CS(F ; F0)

results in the Ansari-Bradley test.

Exercise 10.5. Use the theorem in Section 10.2.1 to derive the asymptotic
distribution for the Wilcoxon statistic.

Exercise 10.6. Use the theorem in Section 10.2.1 to derive the asymptotic
distribution for the median test statistic.

Exercise 10.7. Use the theorem in Section 10.2.1 to derive the asymptotic
distribution for the Mood’s test statistic.

Exercise 10.8. Use the theorem in Section 10.2.1 to derive the asymptotic
distribution for the Ansari-Bradley test statistic.

Exercise 10.9. Suppose that the Legendre polynomials on [−1, 1] are used to
form the basis for the orthogonal series expansion given in Section 10.2.2.
Show that the estimate of θ1 given in Section 9.2.3.5 corresponds to the
Wilcoxon rank sum.

Exercise 10.10. Suppose that the Legendre polynomials on [−1, 1] are used
to form the basis for the orthogonal series expansion given in Section 10.2.2.
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Show that the estimate of θ2 given in Section 9.2.3.5 corresponds to the
Mood statistic.

Exercise 10.11. Suppose that the Hermite polynomials on [−1, 1] are used to
form the basis for the orthogonal series expansion given in Section 10.2.2.
Show that the estimate of θ1 given in Section 9.2.3.5 corresponds to the
Normal scores test statistics.

Exercise 10.12. Suppose that the Hermite polynomials on [−1, 1] are used
to form the basis for the orthogonal series expansion Section 10.2.2. Show
that the estimate of θ2 given in Section 9.2.3.5 corresponds to the Klotz
statistic.

Exercise 10.13. Justify the statement that if the comparison distribution
is a location shifted version of the reference distribution, then the relative
density will tend to be monotone (i.e., g′(p) will not change sign). Give a
counter example to the general claim.

Exercise 10.14. Suppose the comparison distribution is a scale shifted ver-
sion of the reference distribution. Prove that g′(p) will change sign exactly
once, or give a counter example.

Exercise 10.15. Suppose that the Legendre polynomials on [−1, 1] are used
to form the basis for the orthogonal series expansion Section 10.2.2. Suppose
the divergence measure is the weighted sum of the components:

∑∞
k=0 αkθk

where αk = 1/k(k + 1). Show that the estimator
∑∞

k=0 αkθ̂k corresponds
to the Anderson-Darling statistic.

Exercise 10.16. Suppose that the sine basis φk(p) = sin(2πp) is used to
form the basis for the orthogonal series expansion Section 10.2.2. Suppose
the divergence measure is the weighted sum of the components:

∑∞
k=0 αkθk

where αk = 1/k2π. Show that the estimator
∑∞

k=0 αkθ̂k corresponds to the
Cramer-von Mises statistic. .

Exercise 10.17. Look up the definition of intermediate efficiency given in
Kallenberg (1983). What is it “intermediate” between? Give a critique of
it in relation to the usual concepts of efficiency.

Exercise 10.18. What are the advantages of using a smoother estimator
of F0 in place of the empirical CDF Fn0 in the definition of the location
matched quasirelative data (Section 10.3)? What are the disadvantages?

Exercise 10.19. Give examples of comparison and reference distributions
which are both nonsymmetric and for which the estimate of ρ does not in-
flate the asymptotic variance of M̂RP(F ; F0) Give an intuitive explanation
why this is so.

Exercise 10.20. Use the results in Appendix F to prove the theorem in
Section 10.3.2.
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Exercise 10.21. Verify the expression for the asymptotic distribution of
M̂RP, under the null hypothesis that the reference and comparison distri-
butions are identical, given in Section 10.3.3.

Exercise 10.22. Give a bootstrap algorithm for D̂CS(F ; F0) with the score
function J(p) = p. Implement the algorithm and use it to compare a N(0, 2)
distribution to a standard normal reference. Use n = m = 5 as the sample
sizes. How does the bootstrap distribution of Step 3 in Section 10.7 compare
to that given by the result in Section 10.2.1
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Chapter 11

The Relative Distribution for
Discrete Data

In this chapter we modify the definition of the relative distribution for con-
tinuous data given in Chapter 2 to cover discrete distributions and group-
level data. We do so by introducing the idea of a random grade trans-
formation. This approach ensures that the discrete relative distribution is
continuous even though the source distributions are discrete. Extending the
fundamental concept to the discrete data context ensures that the analysis
of discrete distributions retains the tractability and interpretability of their
continuous cousins.

The initial sections are concerned with the definition and interpretabil-
ity of the discrete relative distribution, PDF and CDF. In the remainder
of the chapter we address the inferential issues for the discrete relative dis-
tribution that have been addressed for the continuous version in Chapter 9
and 10. In Sections 11.3, we study the statistical properties of an estima-
tor of the discrete relative CDF and PDF when the reference distribution
is known. In Section 11.4 we extend this to the situation where both ref-
erence and comparison distributions are unknown. In many circumstances
the sample information is discretized into the proportions falling into cate-
gorical bins formed by cut points. In Section 11.5, we define the group-level
relative density appropriate for this situation and study estimators for it.
The definition and estimation of the relative polarization indices based on
both discrete and group-level indices is considered in Section 11.6. Much
of this development utilizes the closeness of the definitions between the
discrete and continuous versions. This parsimony enables both forms of
information to be understood within the same framework.

11.1 The discrete relative distribution

In this section we will define a version of the relative distribution useful
when the comparison or reference distributions are discrete or grouped.

Consider first the situation where both Y and Y0 are discrete with
outcome set {xi}Q

i=1, where Q can be infinity. Let the two probability mass
functions be

179
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pi = P (Y = xi) p0i = P (Y0 = xi) i = 1, . . . , Q

The CDF of Y0,

F0(x) =
∑

i:xi≤x

p0i x ∈ IR,

is a step-function with jumps of size p0i at each xi. Hence, for discrete data
the grade transformation (2.2) does not produce a satisfactory scale for
comparison of the two distributions. Consider the random transformation

F d
0 (x) = U

[
F0(xi−1), F0(xi)

]
for xi−1 < x ≤ xi, i = 1, . . . , Q.

where x is an element of the outcome space. Here U [a, b] is the uniform
distribution on the interval (a, b]. We define F (x0) = F0(x0) = 0 for any
x0 < x1. We call F d

0 (x) a random transformation as it maps the value x to
a random value in the interval from F0(xi−1) to F0(xi). We can think of
F d

0 as an extension of F0 that has a continuous range, and is more in the
spirit of the grade transformation. Note that F d

0 (x) approaches F0(x) as the
outcome space becomes more dense, and the two coincide for continuous
outcome spaces.

The discrete grade transformation of Y to Y0 is defined to be the
random variable

R = F d
0 (Y ). (11.1)

R is obtained from Y by transforming it by using the function F d
0 , and

so it is absolutely continuous with outcome space [0, 1]. Note that like the
(continuous) grade transformation (2.2), R measures the relative rank of Y
compared to Y0, we shall also refer to the distribution of R as the relative
distribution. The CDF of R is

G(r) =
(

r − F0(xi−1)
)

g(i) + F (xi−1), (11.2)

where
F0(xi−1) < r ≤ F0(xi) i = 1, . . . , Q.

Here
g(i) =

pi

p0i
i = 1, . . . , Q. (11.3)

This distribution is a natural generalization of the discrete CDF. First, its
CDF matches the actual CDF on the outcome set: G(r) = F (F−1

0 (r)), for
r = F0(xi), i = 1, . . . , Q. Second, G(r) is the linear interpolant between
these values for 0 ≤ r ≤ 1.

The discrete relative density g(r) is defined to be the (right-continuous)
derivative of G(r), that is, the step function with values

g(i) for F0(xi−1) < r ≤ F0(xi)
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for 0 ≤ r ≤ 1. Thus although the CDF G(r) is continuous and the PDF
g(r) exists, the latter is not continuous. However if the two distributions are
identical, then the discrete relative distribution is the uniform probability
distribution on [0, 1], and the CDF of the relative distribution is a 45o line
from (0, 0) to (1, 1). Thus this definition retains the interpretability of the
continuous version, and reduces to that version when the outcome space is
continuous.

In particular, graphical displays similar to the plot of the relative CDF
and density in the continuous case can be created by plotting G(r) and
g(r), 0 ≤ p ≤ 1. Note that the discrete PDF is defined by the values
{g(i), F0(xi)}Q

i=1. The relative CDF has support {F0(xi)}Q
i=1 and values

G(i) = F (xi).

11.2 Application: men’s and women’s hours worked

In Section 2.2, we used the distribution of earnings for women and men in
1987 to illustrate the definition of the relative distribution in the continuous
case. In this section we consider the distributions of total hours worked for
the same groups.

The data are drawn from the U.S. Current Population Survey (CPS)
in its annual March supplement for 1987. The selected sample consists of
white males and females, aged 16–66, and excludes the self-employed, full-
time students, and those in the military and in farming. In each survey,
respondents were asked, “In the weeks that ... worked, how many hours did
... usually work per week?” and “During 19XX in how many weeks did ...
work even for a few hours? Include paid vacation and sick leave as work.”
Hours worked last year is derived by multiplying the reported hours worked
per week last year by the reported weeks worked last year. The resultant
samples sizes here are quite large; n = 25, 047 for the men, and m = 22, 030
for the women

Figure 11.1 is back-to-back display of their empirical probability mass
functions. The women’s distribution is plotted on top and the men’s distri-
bution on the bottom. This type of graph is a very good way to compare
two discrete distributions that are on a metric scale. The distributions have
a natural discreteness due to the tendency for respondents to report hours
around standard work week schedules (e.g., 35, 37.5, or 40 hours per week).

The center of the men’s distribution appears to be slightly above the
center of the women’s distribution. The spread of the distributions looks
about the same. Both these observations (and other comparisons) can be
verified using numerical summary measures of location, scale, and skewness,
for example. Note, however, that the discreteness and coarseness of the
distribution makes direct comparison of the distributions difficult.

Figure 11.2 is the discrete relative density of the women’s to the men’s
distribution. A description of the estimators and their statistical properties
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Hours worked per year in 1987
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Fig. 11.1. The distributions of the hours worked per year for women and men in
1987 from the 1988 CPS.

is postponed until the next section. The horizontal line at 1 represents
the relative density if the two distributions were identical. The upper axis
is labeled in equivalent weekly hours worked (annual hours/52), and can
be used for both men and women (see Section 2.2 and the discussion of
Figure 2.2 there). We can see that women are much more likely to fall in
the lower quantiles of the men’s distribution (“part-time” workers). The
plateau between the 20% quantile and the 65% quantile of the men’s hours
worked represents the men and women working 40 hours per week and
52 weeks a year (2,080 hours per year). By reading across the x-axis, we
can see that 65% − 20% = 45% of male workers in 1987 were working the
equivalent of a standard 40-hour week. The relative density for this group
is 0.9, indicating that women were 90% as likely as men to be working
this schedule, that is, 90% × 45% = 40% were working the equivalent of a
standard 40-hour week. There appears to be a spike in the women’s hours
just below the standard 40 hour week (about the 19% quantile of the men’s
distribution). The upper axis shows that this corresponds to working 37.5
hours per 52-week year. This may indicate that women are more likely to
subtract a half-hour lunch break from their total 8-hour workday (or not
be paid for it). Women are much less likely than men to report working
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more than the standard 40-hour week (“overtime” workers), a pattern that
strengthens as the number of hours worked increases.

For discrete data again, the relative distribution enhances direct com-
parison between the distribution. While the histograms in Figure 11.1 give
a general sense of the differences in the two distributions, the details are
hard to see, in part because the graphs are dominated by the modes. By
contrast, the relative density in Figure 11.2 provides more precise informa-
tion about both the modal differences and the detailed differences in the
upper and lower tails.
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Fig. 11.2. The relative density of hours worked per year for women to men in
1987 from the 1988 CPS. The upper and right axes are labeled in average hours
worked per 52-week year.

Figure 11.3 shows the relative CDF of women’s to men’s hours worked.
The concave shape reflects the left-shifted location of the women’s distri-
bution relative to the men’s. The number of hours worked by the median
woman is below the 25% quantile for the men; 90% of women work fewer
hours than the 75% quantile for the men. Conversely, only 60% of the men
work less than the 80% quantile for the women. Reading off the top axis
labels, we can also see that the fraction of female workers reporting less
than the standard 40-hour work week is about 45%, compared to 20% for
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men. This is consistent with information from other sources on the preva-
lence of women in the temporary help industry and their predominance in
part-time jobs (see, for example, Belous 1989). Substantially more of the
male workers are putting in longer working hours than women – about 30%
of men are working over 40 hours per week, compared to about 10% of
women. Note that the discreteness and bumps in the individual densities
have much less visible impact on the relative CDF than they do on the
individual densities and the relative PDF.
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Fig. 11.3. The relative CDF of hours worked for women and men in 1987 from
the 1988 CPS.

These figures suggest how the relative distribution can aid the compar-
ison of distributions. This is not to suggest that they can replace the direct
graphical overlay (as in Figure 11.1); their objective is to focus on those
characteristics of the individual distributions important for comparing the
two.
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11.3 Inference when the reference distribution is
known

In this section we assume that the reference CDF, F0, is known and the
data on the comparison group arises from a sample survey. That is, we
assume that we have a sample Y1, Y2, . . . , Ym that are independently and
identically distributed from the population distribution F. We will assume
throughout that the outcome space is finite (i.e., Q is finite).

Consider the relative data Rj = F d
0 (Yj), j = 1, . . . , m. As the sample

is independently and identically drawn from the CDF F, the relative data
are independently and identically drawn from the CDF G. Thus we could
directly apply the CDF and PDF estimation methods of Sections 9.1 and
9.2 to the relative data on the support [0, 1].

11.3.1 Estimation of the discrete relative CDF

The natural estimator of G(r) is

Gm(r) =
1
m

m∑
j=1

I(F d
0 (Yj) ≤ r). (11.4)

All the properties of this estimator described in Section 9.1 apply. However
this estimator includes a small amount of unnecessary variation due to the
random grade transformation. A direct estimator may do better. In addition
most of the methods in Section 9.2 make various assumptions about the
smoothness of the relative density which will not be true for the discrete
relative density. We now consider more direct methods.

Note that F0(Yj) has a multinomial distribution taking values
{F0(x1), . . . , F0(xQ)} with probabilities p = {p1, . . . , pQ}. Motivated by
(11.2), a direct estimator of G(r) is

Gm(r) =
(

r − ri−1

)
ĝm(i) +

i−1∑
j=1

p̂j ri−1 < r ≤ ri, (11.5)

where ri = F0(xi), i = 1, . . . , Q, and

p̂i =
1
m

m∑
j=1

I(Yj = xi) i = 1, . . . , Q

and

ĝm(i) =
p̂i

p0i
i = 1, . . . , Q. (11.6)

Much can be said about Gm as an estimator of G(r). Perhaps the most
useful result is
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Theorem. The estimator (11.5) satisfies:

Gm(r) ∼ AN
{

G(r),
αΣαT

m

}
0 < r < 1

as m → ∞. Here α = (r − ri−1, 1 − r + ri−1) and

Σ =
(

G(ri)(1 − G(ri)) G(ri−1)(1 − G(ri))
G(ri−1)(1 − G(ri)) G(ri−1)(1 − G(ri−1))

)
.

Note that if r = ri then this reduces to the result (9.2) as this linear
interpolating estimator and estimator (11.4) coincide. If r is not one of the
ri values, then this estimator can be shown to have smaller variance than
(11.4) (Exercise 11.17).

11.3.2 Estimation of the discrete relative PDF

The properties of the estimator (11.5) suggest that we use (11.6) as an
estimator of the relative PDF. Estimation of the relative PDF g(r) reduces
to the estimation of g(i) as the cut points ri, i = 1, . . . , Q are known. The
natural estimator of g = {g(1), . . . , g(Q)} is ĝm = {ĝm(1), . . . , ĝm(Q)}
given in (11.6).

Note that the distribution of ĝm is that of scaled multinomial propor-
tions. Hence we have (see, e.g., Serfling 1980):

Theorem. The estimator in (11.6) satisfies:

ĝm ∼ AN
{

g(i),
Ω

m

}
(11.7)

as m → ∞. Here the covariance matrix is

Ω =


−g(i)g(j) i �= j

g(i)
(

1
p0i

− g(i)
)

i = j
.

11.4 Inference for the discrete relative distribution

In most application contexts, the CDF of the reference distribution is also
unknown and must be estimated from sample data. We will assume that we
have a sample Y01, Y02, . . . , Y0n that is independently and identically dis-
tributed from the population distribution F0. We assume that this sample
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and the sample from the comparison group defined in the previous section
are independent. As in Section 9.1, it is natural to estimate F0(y) by the
empirical distribution function of the reference sample:

Fn0(y) =
1
n

n∑
i=1

I(Y0i ≤ y) − ∞ < y < ∞.

In this section we discuss the estimation and inference issues for the
relative density g(r), 0 < r < 1. Note that it is defined by {ri, g(i)}Q

i=1.
Motivated by (11.4), consider the following estimator of g(i)

gn,m(i) =
p̂i

p̂0i
i = 1, . . . , Q, (11.8)

where

p̂0i =
1
n

n∑
l=1

I(Y0l = xi) l = 1, . . . , Q.

We can estimate the cut points ri by r̂i = Fn0(xi) = p̂0i. Let rn,m =
{r̂1, . . . , r̂Q}, r = {r1, . . . , rQ}, and gn,m = {gn,m(1), . . . , gn,m(Q)}.

The asymptotic properties of the estimator are described in the follow-
ing result:

Theorem. The estimator {r̂i, gn,m(i)} of {ri, g(i)} satisfies:

gn,m ∼ AN
{
g,

1
m

Ω +
1
n

Ωo

}
(11.9)

where

Ωo =


−g(i)g(j) i �= j

g2(i)
(

1−pi

pi

)
i = j

rn,m ∼ AN
{
r,

1
n

Ωp0

}
where

Ωp0 =
{ −p0ip0j i �= j

(1 − p0i)p0i i = j

as m → ∞, m/n → κ2 < ∞. In addition, the two estimators are asymptot-
ically independent.

It is informative to compare the properties of this estimator to those of
the estimator (11.5). We can interpret the additional term in the asymptotic
variance for gn,m(i) compared to gm(i) as the price we pay for using Fn0
as a surrogate for the unknown F0.

In the special case that F and F0 are identical, we have:
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Theorem. If F ≡ F0 then

gn,m ∼ AN
{
1 ,

{
1
m

+
1
n

}{
diag

(
1
pi

)
− 11′

}}
as m → ∞, m/n → κ2 < ∞. Here 1 is the Q × 1 identity vector.

In this situation, the inflation of the variance for the less frequent values
of the reference distribution is clearly seen.

The results in this section can be used to calculate simultaneous con-
fidence bands for the relative distribution based on gn,m (Section 9.6). The
proof of these results is given in Appendix E.

The numerators in gn,m are the sample proportions from a sam-
ple of size m from a multinomial distribution with probability param-
eter p. Similarly, the denominators in gn,m are the sample proportions
from a sample of size n from a multinomial distribution with parameter
p0 = {p01, . . . , p0Q}. Thus gn,m can be consider to be the component-
wise ratio of two independent multinomial distributions. The results then
follow from applying the delta method, standard asymptotic results about
the distributions of ratios (Hinkley 1969) and some algebraic manipulations.

We assume throughout that the supports of the reference and com-
parison distributions coincide. If there exists an xi such that pi = P (Y =
xi) = 0, p0i = P (Y0 = xi) > 0 then g(i) = 0 and we interpret the diagonal
element of Ω0 as zero. This result holds with a degenerate normal distribu-
tion. If it is known that pi = 0 then this component need not be estimated.
If pi > 0 and p0i = 0 then the discrete relative distribution exists on a
collapsed support. In this case ri = ri−1 and define ĝm(i) = g(i) = 0.

11.5 Grouped data

Consider the situation where both the comparison and reference distribu-
tions are continuous, but only group-level statistics of the sample informa-
tion are reported. Let the common outcome set of Y and Y0 be partitioned
into a finite number of groups (Q) with ith cut point c[i], defined by:

F0(c[i]) =
i

Q
or c[i] = F−1

0 (
i

Q
), i = 0, 1, . . . , Q.

Instead of the individual level samples we only observe the sample pro-
portion of each group whose values fall in the interval [c[i − 1], c[i]) .The
difference between this situation and the previous discrete situation is that
in this case, the groups are equally probable (with respect to the reference
distribution), and we have implicitly continuous underlying distributions.
Note however that for most purposes we can think of the group-level dis-
tributions as discrete distributions with outcome space c[1], . . . c[Q] and
probability mass functions:
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pi = F (c[i]) − F (c[i−1]) p0i = F0(c[i]) − F0(c[i−1]) i = 1, . . . , Q.

We will implicitly assume that the values are equally distributed between
cut points, so that the relative density is constant between cut points. The
discrete relative density g(r) is then given by the construction in Section
11.1 with g(i) equal to the proportion of the comparison group whose values
fall in the interval [c[i − 1], c[i]), divided by the proportion in the reference
distribution (See (11.3)).

11.5.1 Estimation of the grouped relative density

Let

p̂i =
1
m

m∑
j=1

I(c[i − 1] ≤ Yj < c[i]), i = 1, . . . , Q

be the proportion of the comparison sample falling into each group and

p̂0i =
1
n

n∑
i=1

I(c[i − 1] ≤ Y0i < c[i]), i = 1, . . . , Q

be the proportion of the reference sample falling into each group. The cut
points for the groups are usually based on the reference sample, that is,
c[i] = Fn0( i

Q ), i = 0, 1, . . . , Q. Thus the proportion of the sample from
the reference distribution falling in each group is exactly 1/Q. The natural
estimate of the g(i) is ĝ(i) = p̂i/p̂0i.

The behavior of the estimate depends on how the cut points are deter-
mined. If the cut points are known (rather than estimated from the data),
then the distribution of ĝ = {ĝ(1), . . . , ĝ(Q)} is given by (11.9).

Suppose that the cut points are estimated as quantiles of the reference
sample. That is, c[i] = Fn0(ri), i = 0, 1, . . . , Q, where 0 = r0 < r1 <
· · · < rQ = 1. Typically these are equally spaced: ri = i/Q. For example,
the decile version corresponds to ri = i/10 and Q = 10. We then have

ĝ(i) =
Fm(c[i]) − Fm(c[i − 1])
Fn0(c[i]) − Fn0(c[i − 1])

=
Fm(F−1

n0 (ri)) − Fm(F−1
n0 (ri−1))

ri − ri−1

=
1

ri − ri−1

[
Gn,m

(
ri

) − Gn,m

(
ri−1

)]
i = 1, . . . , Q.

where Gn,m(r) is the empirical CDF for the relative distribution of Y to Y0
given in (9.16). Note that this is known for r = ri, i = 0, . . . , Q.

The asymptotic statistical properties of this estimator can then be
derived from the asymptotic joint distribution of {Gn,m(r); 0 ≤ r ≤ 1}
given in Section 9.2.2.1.
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Theorem. Under the conditions of (9.17)

ĝ ∼ AN
{
g,

1
m

Ω +
1
n

Ωγ

}
where the ijth element of Ωγ is

γij − γi−1,j − γi,j−1 + γi−1,j−1

(ri − ri−1)(rj − rj−1)

and γij = (min(ri, rj) − rirj)g(i)g(j) as m → ∞, m/n → κ2 < ∞.

11.6 Inference for the relative polarization indices

In this section we consider the definition and estimation of relative polar-
ization indices for discrete and group-level data. The treatment of summary
measures for discrete level data is greatly simplified by the definition given
in Section 11.1. As the discrete relative distribution is continuous, the defini-
tions and interpretations of the summary measures of Chapter 5 still apply.
In addition the estimators described in Chapter 10 can be used. Here we
will focus on group-level data from underlying continuous distributions. We
will also assume that the discretization is based on an even number Q of
equispaced classes with respect to the reference distribution.

The relative polarization for the group level data can be defined by:

MRP (F ; F0) =
Q

Q − 2

[
4E(| R − 1

2
|) − 1

]
=

Q

Q − 2

[
4
∫ 1

0
| r − 1

2
| g(r) dr − 1

]
=

4
Q − 2

Q∑
i=1

∣∣∣∣ i − 1
2

Q
− 1

2

∣∣∣∣ g(i) − Q

Q − 2
.

(11.10)

This expression is analogous to the definition for the continuous case given
in Section 5.6. The two coincide if we assume that the underlying continuous
relative density is constant between cut points. The group level version has
been rescaled by a factor Q/(Q − 2) to ensure that it has range -1 to 1.

The natural estimate of the group level relative polarization index is

M̂RP (F ; F0) =
4

Q − 2

Q∑
i=1

∣∣∣∣ i − 1
2

Q
− 1

2

∣∣∣∣ ĝ(i) − Q

Q − 2
. (11.11)

As the estimate is a weighted average of the ĝ(i), its properties can be
derived from those of the previous section.
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Theorem. If the cut points are known, that is, c[i] = F−1
0 (ri), ri = i/Q, i =

0, 1, . . . , Q, then we should adjust the estimator to reflect this (i.e., use
ĝ(i) = pi/(1/Q). This estimator satisfies:

M̂RP (F ; F0) ∼ AN
{

MRP (F ; F0),
1
m

Σ1

}
,

where Σr is

16
(Q − 2)2

[
(Q + 1)2q(r, Q/2, 0) − 2(Q + 1)q(r, Q/2, 1) + q(r, Q, 2) − µ2]

q(j, k, l) =
1
Q

k∑
i=1

ilgj(i) j = 1, 2, k = 0, 1, 2, l = Q/2, Q

µ = (Q + 1)q(1, Q/2, 0) − 2q(1, Q/2, 1) + q(1, Q, 1)

as m → ∞, m/n → κ2 < ∞.

The estimate can be reexpressed as

4
Q − 2

qT ĝ − 3Q + 2
Q − 2

,

where the ith element of q is (Q − 2i + 1)I{i ≤ Q/2} + 1. The result then
follows from some algebraic manipulations.

Note that if we use the estimator based on the ratio or sample propor-
tions instead, we have

Theorem. If the estimator (11.8) is used for g(i) in (11.10) then

M̂RP (F ; F0) ∼ AN
{

MRP (F ; F0),
1
m

Σ1 +
1
n

Σ2

}
as m → ∞, m/n → κ2 < ∞.

We can be more precise about the bias:

E
[
M̂RP (F ; F0)

]
= MRP (F ; F0) +

(Q − 1)
n

MRP (F ; F0)+o(
1
n

)+o(
1
m

).

The second term is a result of the uncertainty in the reference group pro-
portions.

Typically the exact equispaced cut points are unknown and are usually
estimated from the reference sample, that is, c[i] = Fn0( i

Q ), i = 0, 1, . . . , Q.
We then have
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Theorem. If the reference group cut points are estimated by their sample
values then

M̂RP (F ; F0) ∼ AN
{

MRP (F ; F0),
1
m

Σ1 +
1
n

16
(Q − 2)2

[
qT Ωγq

]}
as m → ∞, m/n → κ2 < ∞.

We can consider the refinement of these results to the situation when
the reference and comparison distributions are equal.

Theorem. Under the hypothesis H0 : F = F0,

M̂RP (F ; F0) ∼ AN
{

0,
Q + 2

3(Q − 2)
·
{

1
m

+
1
n

}}
as m → ∞, m/n → κ2 < ∞. If the cut points are known so that the
estimator ĝ(i) = pi/(1/Q) is used:

M̂RP (F ; F0) ∼ AN
{

0,
Q + 2

3(Q − 2)
· 1
m

}
.

11.6.1 The joint distribution of the group level relative
polarization

The relative polarization index is often calculated for multiple comparison
distributions relative to a fixed reference distribution.

Suppose Yt = (Yt1, . . . , Ytmt) is an independent sample from the tth
comparison distribution Ft t = 1, 2, . . . , K. The estimate of the group
level relative density for the tth target distribution is denoted by ĝt(i). De-
note by MRP = {MRP (F1; F0), MRP (F2; F0), . . . , MRP (FK ; F0)}T ,

and M̂RP = {M̂RP (F1; F0), M̂RP (F2; F0), . . . , M̂RP (FK ; F0)}T , the
vectors of indices and estimates of the indices, respectively. In this situa-
tion the numerators in the estimates {ĝt(i)}K

t=1 are uncorrelated, and the
dependence is introduced only by the common denominator and cut points.

Typically the exact equispaced cut points are unknown and are usu-
ally estimated from the reference sample, that is, c[i] = Fn0( i

Q ), for
i = 0, 1, . . . , Q. We then have

Theorem. If the reference group cut points are estimated by their sample
values then

M̂RP ∼ AN {MRP, ΣMRP} ,

where the (t, s)th element of the K × K matrix ΣMRP is:
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1
mt

Σt
1I{t = s} +

1
n

16
(Q − 2)2

[
qT Ωt

γq
]

as n, m1, . . . , mK → ∞ at the same rate. Here Σt
1 and Ωt

γ are the versions
of Σ1 and Ωγ for the tth comparison distribution.

We can specialize this result to the situation where all the distributions
are equal. Using the approach in Section 10.6 these can be used to construct
simultaneous significance bands for polarization index.

Theorem. Under the hypothesis H0 : Ft = F0, t = 1, . . . , K, M̂RP is
asymptotically normal:

M̂RP ∼ AN

0,
Q + 2

3(Q − 2)

 γ1 1 . . . 1
1 . . . 1 γ2 1 . . . 1
1 . . . 1 γK

 .

where
γt =

1
mt

+
1
n

t = 1, . . . , K.

as n, m1, . . . , mK → ∞ at the same rate.

11.6.2 Indices of upper and lower polarization

As described in Section 5.7, the median relative polarization index can be
decomposed into contributions from the lower tails and contributions from
the upper tails of the distributions.

For group-level data the lower polarization index can be defined as

LRP (F ; F0) =
Q

Q − 2

[
8
∫ 1

2

0
| r − 1

2
| g(r) dr − 1

]

=
8

Q − 2

Q/2∑
i=1

∣∣∣∣ i − 1
2

Q
− 1

2

∣∣∣∣ g(i) − Q

Q − 2
.

The natural estimate of the group level lower relative polarization index re-
places g(i) by its sample version described in the previous sections. The up-
per relative polarization can be defined and estimated in the same manner.
Note that the comparison and reference distributions are median matched
in this definition, that is, it is assumed that g(1) + · · · + g(Q/2) = 1

2 . The
asymptotic distributions of the estimators is very similar to that for the
median relative polarization index and will not be detailed here.
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Background material

The use of the density ratio is the natural way to define the relative prob-
ability mass function for discrete data. This was first suggested by Parzen
(1983). Parzen (1993) proposed the distribution-type P-P plot, which is
tantamount to the discrete relative CDF (11.2). The approach in Section
11.1 places each of these functions within a coherent framework centered
around the concept of a continuous relative distribution. This ensures that
both continuous and discrete distributions can be treated in a similar man-
ner.

In this chapter we do not explicitly consider the situation where the
comparison and reference distributions are known to be members of para-
metric families of discrete distributions. See Simonoff (1996) for a discussion
of the estimation of discrete parametric distributions.

Exercises
Exercise 11.1. Suppose that Y0 is a binary random variable taking the values
−1 and 1 with equal probability. That is,

P (Y0 = −1) = P (Y0 = 1) =
1
2
.

Let Y have a standard normal distribution. What is the distribution of the
grade transformation R = F0(Y ), given in (2.2)?

Exercise 11.2. Suppose that Y is a binary random variable taking the values
−1 and 1 with equal probability. Let Y0 have a standard normal distribu-
tion. What is the distribution of the grade transformation R = F0(Y )? Is
the relative CDF of Y to Y0 the inverse of the one in Exercise 11.1?

Exercise 11.3. Suppose that both Y and Y0 are binary random variables
taking the values −1 and 1 with equal probability. What is the distribution
of the grade transformation R = F0(Y )? Does the grade transformation
represent a satisfactory definition for the relative distribution? Explain.

Exercise 11.4. In Exercise 11.3, suppose the support of both Y and Y0 is
{a, b} for values a < b. What is the distribution of R?

Exercise 11.5. Use the definition of the random grade transformation to
show that the CDF of the discrete relative distribution is given by (11.2).

Exercise 11.6. Use the definition of the random grade transformation to
show that the discrete relative distribution is absolutely continuous. Then
derive the formula for the PDF of the relative distribution given in (11.3).

Exercise 11.7. Determine the random grade transformation of Y to Y0 for
the distributions in Exercise 11.1 How does it differ from the (nonrandom)
grade transformation?
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Exercise 11.8. Determine the random grade transformation of Y to Y0 for
the distributions in Exercise 11.2 How does it differ from the (nonrandom)
grade transformation?

Exercise 11.9. Answer Exercises 11.3 and 11.4 for the random grade trans-
formation. How do they differ from the (nonrandom) grade transforma-
tions?

Exercise 11.10. Let Y and Y0 be absolutely continuous distributions. Show
that the random grade transformation and the grade transformation coin-
cide.

Exercise 11.11. In Section 11.3 it is claimed that the linear interpolating
estimator of G(r) has variance that is less than or equal to the variance
of the estimator (11.3). Prove that the variance is the same at the points
r = ri, i = 1, . . . , Q. Show that the variance is strictly less at the other
points. This result can be shown algebraically. Can you give a heuristic
proof of the result?

Exercise 11.12. In the following sequence of questions we verify and expand
on the analysis in Section 11.2 of the total hours worked for women and
men in 1987.
What is the median women’s hours worked? What is the median men’s
hours worked? Compare the IQR of the two distributions? Calculate parallel
boxplots for women and men separately. Calculate the skewness of each
distribution.
Write a summary comparing the two distributions based on these summary
statistics.

Exercise 11.13. Calculate the probability mass function of the total hours
worked for women in 1987. Do the same for the men.
Calculate the relative PDF (Figure 11.2) and CDF (Figure 11.3). Verify
the numerical summaries given in Section 11.2.

Exercise 11.14. Calculate the probability mass function of the total hours
worked for women in 1997. Do the same for the men. Are these distributions
different from their 1987 counterparts?
Calculate the relative PDF of 1997 women to 1997 men. Is it similar to the
one given in Figure 11.2 for 1987?

Exercise 11.15. Calculate the relative PDF of women in 1997 to women in
1987. Calculate the relative PDF of men in 1997 to men in 1987. Are the
two similar? Complete a decomposition analysis of women to men similar
to that in Section 8.4 for earnings. Summarize your findings and discuss
the differences from those of the earnings analysis.

Exercise 11.16. Prove the theorem in Section 11.3.1.

Exercise 11.17. Prove the theorem in Section 11.3.2.

Exercise 11.18. Verify the formula (11.9)

Exercise 11.19. Prove the theorem in Section 11.5.1.
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Chapter 12

Application: Changes in the
Distribution of Hours Worked

12.1 Background

In this application, we will turn our attention to the distribution of hourly
wages for all workers, rather than the subset of workers who are employed
full-time, full-year. While the demographics of the labor force changed sub-
stantially during the period of growing earnings inequality, changes of sim-
ilar magnitude were also occurring in the structure of the labor market.
Restructuring took two forms: continuing decline in manufacturing em-
ployment leading to the emergence of a “service economy” (Fuchs 1968),
and a rise in market-mediated employment relations such as outsourcing,
subcontracting, and temporary, contingent, and part-time work contracts.

Deindustrialization is associated for many with the substitution of bad
jobs for good ones. Service sector jobs have traditionally paid less, offered
fewer benefits, and more part-time employment (Costrell 1988; Meisen-
heimer II 1998). While these changes have been found to be associated
with some of the loss in middle-income jobs and subsequent polarization in
earnings, the evidence suggests that other factors must also be playing a
role. For one the decline in manufacturing employment is not a recent phe-
nomenon. Over the past 50 years, manufacturing’s share of employment has
been falling steadily, almost linearly. In addition, earnings inequality has
been growing within different industrial sectors, including manufacturing.

The “good jobs–bad jobs” debate has thus increasingly focused on the
changing nature of employment relations within firms. In contrast to the
idea that some industries provide good jobs with stable employment and
high wages, while other industries provide bad jobs with low wages, inse-
curity and no mobility, the evidence suggests these employment strategies
are being used together, not only within industries, but also within firms
(Cappelli 1994; Harrison 1994). As a result, research has began to shift to
firm-level analyses of employment restructuring.

The postwar years of earnings growth and equalization emerged during
a unique period in American industrial history. The period was marked by
the development of a system of employment relations often referred to as the
“internal labor market” (Doeringer and Piore 1971). The key characteristic
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of an internal labor market is a formal hierarchy of jobs within firms that
are filled primarily by internal promotion rather than through external
recruitment. The resulting system serves to buffer employment relations
– including decisions about wages, job mobility, and training – from the
volatility of external market pressures.

In stylized form, the internal labor market was characterized by the
lifetime job. Workers started at one company, stayed with it, and were guar-
anteed job security and yearly raises. In return, employers obtained control
over labor supply and a committed workforce, or at least a negotiated truce
with labor. For jobs higher in the skill hierarchy, the system also provided
customized training, since workers learned on the job and therefore brought
firm-specific knowledge and tested skills to each new position (Kochan, et
al 1986; Piore and Sabel 1984).

The terms of this trade-off deteriorated for American employers in the
mid-70s. Cost reduction became an important basis of competition, and in-
ternal labor markets became a natural target. Cost reduction requires flex-
ibility in who is hired, for how long, for how much, and for which tasks. To
get this flexibility, some firms have adopted high-performance work systems
that can benefit their employees as well as productivity (Pfeffer 1994; Piore
and Sabel 1984). Other employers, however, are now more willing to rely in-
stead on the external labor market, as the high-performance systems require
significant initial investments in technology and training. With the changes
in corporate financing and governance in the wake of banking deregulation,
the “shareholder revolution” has skewed the incentives towards short term
growth in dividends, rather than long term reinvestment of profits (for a
review, see Applebaum and Berg 1996). The wave of “downsizing” that
took place during the late 1980s and 1990s heralded this change. For the
first time, employment losses finally reached deep into the white collar oc-
cupations (Cappelli 1992), though some question the extent of the change
(Gordon 1996). There are many good reviews of this literature (Appelbaum
1987; Cappelli 1995; Colclough and Tolbert 1992; Harrison 1994; Osterman
1994; Pfeffer and Baron 1988).

In one of the first systematic studies of the growth in “market-
mediated” employment relations, Belous (1989) documented a dramatic
rise in the number of contingent workers during the 1980s. While the total
labor force grew by 14% during this period, the number of agency temporary
workers grew by 175%, part-time employment grew by 21%, employment
in the business service sector – the primary provider of subcontracted hu-
man services – grew by 70%, and self-employment grew by 19%. Overall,
Belous estimates that the contingent workforce grew from about 25-28% of
the workforce to 30-37% of the workforce during the decade. Subsequent
estimates, using more refined definitions and different data sources have
generally been lower, from 5% (Abraham 1990; Polivka 1996) to 17% (Na-
tional Center on Educational Quality of the Workforce 1995) of the work-
force. At the same time, nearly 80% of firms reported making use of flexible
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staffing arrangements, excluding the use of part-time workers, which is ex-
tremely widespread (Houseman 1997; Mishel and Bernstein 1994, p229).
While agencies specializing in temporary clerical workers accounted for
two-thirds of the total temporary employment in 1972, they comprised only
55% in 1982 (Abraham 1990). Increasingly, firms are turning to temporary
workers to staff other specialized, nonclerical positions.

This change in business practices may help to explain the growth in
the dispersion of hourly wages for the workforce as a whole: hourly wages
for part-time workers are on average 70% of those of comparable full-time
workers (Belous 1989, p104). We will use relative distribution methods to
take an initial look at this question. To proxy the change in employment
relations, we will use the distribution of weekly hours worked. Substitution
of part-time for full-time workers should result in an increased dispersion in
weekly hours worked, with growth in the lower tail of the distribution. Note
that we could also have used weeks worked during the last year to proxy
for contingent work status, as contingent workers are less likely to have job
security, and may spend more weeks unemployed or out of the labor force
when they lose their jobs. We have run the analysis with each variable and
the findings are essentially the same, so we report here on the results from
the part-time analysis.

The relative distribution can easily be used to test whether the distri-
bution of weekly hours worked has changed over time, and the analysis will
provide an example of an application of the methods to discrete data. In
addition, the decomposition techniques discussed in Chapters 7 and 8 can
be used here to determine whether the change in the distribution of hours
worked is associated with the change in the distribution of hourly wages.

12.2 Data

The data are drawn from the March supplement of the Current Popula-
tion Survey (CPS) for earnings years 1980 through 1997. For simplicity,
the selected sample consists of white males, aged 16–66 and excludes the
self-employed, full-time students, and those in the military and in farming.
Women and minority workers have typically been over-represented in the
contingent workforce, so some of the impact of this type of restructuring
may play out through a widening of the gender and race wage gaps. But if
firm-level restructuring is playing a role in growing earnings inequality more
generally, then its effects should also be visible among white men. From pre-
vious chapters, we have seen that this group experienced a marked growth
in annual earnings inequality, even among full-time full-year workers. On
the one hand, this indicates that changes in hours worked will not explain
all of the increase in wage inequality. On the other, it suggests that white
men will not be immune to the trends.
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Our measure of the distribution of hours worked is taken from the CPS
question: “In the weeks that you worked, how many hours did you usually
work per week?” We will refer to this as the work schedule distribution
below.

For this analysis, we use hourly wages, rather than annual earnings, as
our income measure. The choice is dictated by the nature of the research
question. Annual earnings are a function of hours worked, and the corre-
lation between these two variables is not the focus of interest here. We
are not asking whether firms have reduced their overall utilization of labor
(or workers their overall supply of hours), but instead whether firms are
substituting less expensive contingent workers for more expensive full-time
workers. If so, then the distribution of wage offers will have changed, and
it is these wage offers that we analyze here. We derive the hourly wage by
dividing the reported annual income from wages and salary by the annual
hours worked last year. We construct annual hours worked as the product
of weeks worked last year and usual hours per week. The number of weeks
worked last year is taken from the CPS question, “During 19XX, how many
weeks did you work either full-time or part-time, not counting work around
the house? Include paid vacation and paid sick leave.” They are deflated
using the PCE deflator to represent 1997 real dollars.

12.3 Findings

To motivate the analysis here, we start by examining the polarization trends
in hours and wages. Figure 12.1 displays the relative polarization index
series for hours worked (panel (a)) and hourly wages (panel (b)). Both
series show similar levels of polarization over the period, and both display
greater polarization in the upper tail than in the lower. The trends are
sufficiently similar to suggest that there may be a causal relation. These
are marginal trends, however, so we proceed with this in mind.

12.3.1 Changes in the distribution of hours worked

Traditional summary statistics give some sense of the changes in the dis-
tributions of hours worked These are presented in Table 12.1. The median,
not surprisingly, is 40 hours per week, the standard work week. The mean
shows a slight upshift, and the standard deviation indicates greater disper-
sion. The IQR suggests that the dispersion may be greater in the upper tail
than the lower.
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Fig. 12.1. The relative polarization indices (lower, median and upper) for changes in the distributions of hours
worked and hourly wages.
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Proportion of work schedules in 1980
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Fig. 12.2. The relative distribution of usual weekly hours worked in 1997 to that
in 1980. The upper axis is labeled in 1980 weekly hours worked. The dotted lines
are 95% pointwise confidence bounds.

Table 12.1. Summary statistics for the distributions of hours worked in 1980 and
1997.

Summary Statistic 1980 1997

Sample size 38,459 26,908
Mean 41.1 42.2
Standard deviation 10.7 11.4
Median 40 40
Interquartile range 40–45 40–48

To get a more complete picture of the changes, we can examine the
relative distribution of work schedules in 1997 to that in 1980. This is
shown in Figure 12.2. Conceptually, this relative density is similar to the
one constructed for earnings in previous chapters, though there is no need
for deflation here as the scale is the same in both time periods. The graph
is not nearly as smooth because of natural discreteness in reported hours
around standard work week schedules (e.g., 35–40 hours per week). The
labels at the top show the usual weekly hours worked.
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The bar from the 10% through the 70% quantiles in the figure repre-
sents individuals working 40 hours per week and 52 hours per year, indicat-
ing that 70% − 10% = 60% of workers in 1980 were working the standard
work week. The relative density for this group is about 0.85, indicating that
such workers were about 14% less common in 1997 (so 86% × 60% = 52%
are working the standard 40-hour week in 1997). The polarization in work
schedules can be clearly seen, and the stronger polarization in the upper
tail is also evident.

The proportion of workers in 1997 reporting less than the standard
40-hour week does not appear to have grown, except for certain schedules.
The thin spike in the lower tail occurs at about 24 hours per week, and
the value indicates that about 45% more workers reported 24-hour work
weeks in 1997. There has also been a slight increase in those reporting 25–
35 hours per week. Other part-time schedules, however, are less common
in 1997. Overall, the fraction of workers reporting less than 35 hours per
week is about the same in both years: 11%. This suggests that white men
have not been affected by the growth of part-time jobs.

There has been growth in the upper tail of the hours distribution,
however, with about 60% more workers reporting 50- to 60-hour work weeks.
The fraction working more than a standard 40-hour work week grew from
28% in 1980 to 35% in 1997. White men appear to have increased rather
than decreased the hours they spend working.

The estimated MRP for the relative distribution of work schedules in
Figure 12.2 is 0.089 (95% CI 0.080–0.098). The estimated lower and upper
relative polarization indices are 0.045 and 0.133 respectively, indicating
relatively more growth in the upper tail. Both are significant at the 95%
level.

Figure 12.3 displays the changes in the distribution of hourly wages
over this period. The first panel shows the estimates of the two densities
overlaid. As the sample sizes here are over 20,000 in each year, the sam-
pling variability will have only a modest effect on the form of the kernel
density estimates. The 1997 distribution is slightly downshifted from the
1980 distribution, and its tails are somewhat denser. This can be verified
using summary measures of location, scale, and skewness. In particular,
the mean of the 1997 values is larger than that of the 1980 values ($17.78
vs. $16.36), while the median is slightly smaller ($13.49 vs. $14.26). This
suggests the importance of changes in distributional shape.

Panel (b) shows the shape shift in the wage distribution, that is, the
location-matched relative density of 1997 to 1980 wages. We have used
a multiplicative median adjustment here, as the wages are not logged.
Median-matching has a small effect, as the medians of the two distribu-
tions are quite close. It does, however, reveal the marked polarization in
the upper tail, which was not visible in the PDF overlay. In the absence of
the small median wage downshift, the fraction of workers in the upper decile
of the wage distribution would have risen by nearly 50%. But the density in
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Fig. 12.3. (a) The distributions of hourly wages in 1980 and 1997 expressed in 1997 dollars. (b) The shape shift,
shown by the location-matched relative density of 1997 to 1980 wages. The upper axis is labeled in 1997 dollars.
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the lower tail would also have grown by about 10%. Without the median-
matching, the growth in the upper and lower tails is more symmetric: 32%
and 24% respectively.

Figure 12.3 shows that the hourly wage distribution of white men has
polarized during this period. The estimate of the MRP of the relative dis-
tribution of hourly wages in Figure 12.3 is 0.063 (95% CI 0.054 − 0.072).
The upper and lower indices are 0.11 and 0.02 respectively. Only the upper
index is significant at the 95% level.

12.3.2 Linking changes in hours worked to changes in wages

The fact that the upper tails of both the wage and work schedule distri-
butions have polarized suggests that there may be a link between the two
changes. In this section, we begin to explore this possibility. We disaggre-
gate the overall wage distribution and polarization indices into subgroups
of workers defined by the number of weekly hours worked. This approach
will allow us to characterize within- and between-group changes in the wage
distribution over time. We median-match the overall distribution before sep-
arating into the different groups to net out the aggregate change. Residual
location shifts within groups will now capture upshifting and downshifting
relative to the pooled population.

Table 12.2 presents the mean and median wages for three groups of
workers: those working less than the standard work week (< 35 hours per
week), those working a standard work week (35–40 hours per week), and
those working more than the standard work week (> 40 hours per week).

Table 12.2. Mean and median hourly wages, 1980 and 1997, by work group (in
1997 real dollars).

Mean Median

Work Group 1980 1997 1980 1997

Total workforce $16.48 $18.09 $14.51 $13.75
part-time 11.05 15.60 7.17 6.86
standard 17.05 16.97 15.53 13.88
overtime 17.32 20.58 14.93 15.87

The differences in wage trends are quite pronounced. Real median earn-
ings for both part-time and standard workers fell from 1980 to 1997; by
about 5% for part-time workers, and about 10% for standard. By contrast,
median earnings rose for the overtime group by about 6%. The net result
was a change in relative position. In 1980, the wages for standard and over-
time workers were very close, while the wages for part-time workers lagged
behind. In 1997, part-time workers remained behind, but the median earn-
ings for overtime workers had pulled ahead of standard workers by about
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14%. The means tell a different story: they rise rather than fall over the
period for most groups, and part-time workers appear to be doing relatively
better using this measure. Given the strong right skew in the unlogged wage
distribution, the median is probably the better location measure.

Figure 12.4 shows the 1997 to 1980 relative wage distributions for the
three groups of workers. Because these wage distributions have not been
median-matched within each group, the relative densities represent both
group-specific median and overall shape shifts (see Chapters 3 and 4). The
median upshift for the overtime workers is quite visible. The relative PDF
shows that compared to their counterparts in 1980, about twice as many
of these men were earning wages in the top decile in 1998. This upshift,
however, masks a slight polarization in their earnings. The median rela-
tive polarization index for this group is the same as for the pooled pop-
ulation, with the upper tail contributing more than the lower. The set of
polarization indices for each group are presented in Table 12.3. The loss in
median earnings is visible for the standard full-time workers. We can also
see a significant polarization in the upper tail of their earnings distribution
(URP = 0.06), but the polarization in the lower tail is significantly nega-
tive, so the net overall polarization for this group is close to 0. Part-time
workers show a milder and nearly symmetric polarization.

Table 12.3. Polarization indices for the relative distribution of hourly wages,
1980 to 1997, by work group. Indices significant at the 95% level are indicated by
*.

Work Group LRP MRP URP

Overall 0.02 0.06* 0.11*
part-time 0.05 0.05* 0.04
standard -0.04* 0.01 0.06*
overtime 0.03 0.06* 0.09*

If each of the group specific polarization indices were close to 0, this
would imply that after holding changes in work schedule constant there is
no residual polarization in wages. The polarization we observe in the overall
wage distribution must then be due entirely to the changing composition
of work schedules. If, instead, all of the group specific polarization indices
were about equal to the overall workforce indices, then holding the changes
in work schedule constant does nothing to reduce the observed polarization
in wages. This would suggest that the polarization in work schedules has
contributed little to the polarization in wages.

Instead, we see a mix of these two scenarios. Workers on the standard
work week show a wage distribution with upper tail polarization, and lower
tail convergence. Those who worked part-time show low but symmetric
positive polarization over this time period. And those who worked overtime
show greater polarization. As the average hourly wage for the overtime
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Fig. 12.4. Relative wage distributions for three groups of workers, defined by their usual work schedule: (a) less than
35 hours per week; (b) 35–40 hours per week; (c) more than 40 hours per week. The upper axis is labeled in 1997
dollars.
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group is 15% higher than the overall workforce in 1997, their within-group
distributional shifts will amplify the upper polarization in the overall wage
distribution beyond that expected by the growth in their numbers.

At this point, we can make several initial conclusions. The shifts in
work schedules that we observed do not completely account for the polar-
ization in wages, because there is evidence of residual polarization within
the main group of full-time workers. At the same time, however, the shifts
in work schedules likely had some effect. This effect is difficult to establish
from the three within-group graphs because the scales on the horizontal
axis are standardized to within-group quantiles, so the group position on
the overall scale (visible on the top axis) is not easy to decode.

To summarize the composition effect, we can decompose the overall
relative distribution of wages by the distribution of hours worked, using
the methods from Chapter 7. These methods allow us to to adjust the
relative wage distribution so that we can examine the residual differences
assuming there had been no changes in work schedules.

Figure 12.5 graphically represents the decomposition of the relative
wage density by work schedule changes (see Chapter 7, Section 7.2). Panel
(a) is the original (unadjusted) relative wage density 12.2. Panel (b) rep-
resents the part of (a) that is attributable to the effect of changes in the
distribution of weekly hours worked. Panel (c) represents the hours-adjusted
relative wage density – what the relative density would have looked like in
the absence of any compositional changes in work schedules.

From panel (b), we can see that the shift in weekly hours worked had an
extremely modest effect on the distribution of hourly wages. There appears
to be a very slight downshift effect, and some polarization in the upper tail.
The small size of the effect is somewhat surprising given the large increase
in higher-paid overtime workers by 1997. What this panel shows, however,
is that absent any changes in the relative wages paid to overtime workers,
the impact of the change in work schedules would have been negligible.

The RD in the middle panel is formed by comparing the composition-
adjusted 1980 wage distribution to the original 1980 wage distribution. As
we noted above, in 1980 the overtime workers had little median wage ad-
vantage over the rest of the workforce: $14.93 vs. $14.51, about 3%. Absent
an increase in this wage differential, a rising share of overtime workers could
only affect the relative wage distribution if their 1980 wages were more or
less polarized than the rest of the workforce. In fact, their wages were less
polarized (the MRP is -0.09 and significant). The slight growth in the lower
tail seen in this panel must therefore be due to the slight increase in the
fraction of part-time workers, whose median wages – $7.17 per hour – are
substantially lower than the rest of the workforce.

The panel makes clear that the shift in work schedules did not drive
the majority of the rising inequality in wages, and panel (c) shows a residual
polarization virtually identical to the unadjusted RD in (a). The growth in
overtime workers indirectly contributed to the growth in upper tail wage
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(c) Hours-adjusted RD

Fig. 12.5. Decomposition of the relative wage distribution, 1997 to 1980, by hours worked: (a) Original unadjusted
relative wage density; (b) effect of changes in the distribution of hours worked; (c) the relative wage density adjusted
for changes in hours worked. The upper axis is labeled in 1997 dollars. The entropy for each relative density is shown
above this.
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polarization, but only because their relative wage advantage increased. It
was not the hours, but the wages paid for these hours, that were ultimately
responsible for the growth in overall wage polarization.

12.4 Discussion

The work schedule distribution for white men has polarized in the last
two decades, and many are now working longer hours. As shown by the
RD for the distribution of weekly hours worked, the fraction working the
standard 35–40 hour work week has fallen by 15%, and most of the corre-
sponding increase is found among overtime workers. During this period a
similar polarization occurred in hourly wages. While there was a modest
decrease in the median wage, the fraction in the top wage decile grew by
about 30%. This similarity in marginal wage and work schedule changes
suggests that the change in the mix of work schedules could be driving a
substantial part of the growth in wage inequality. Using stratified analyses
and the decomposition technique, however, we find this is not the case. The
exploratory graphics demonstrate significant residual wage polarization in
the regular full-time work group (which continues to comprise about 50% of
the workforce), and in the overtime group. The findings from the decompo-
sition analysis show at best a modest polarizing effect of the compositional
change in work schedules, and the residual polarization is nearly the same
as the unadjusted. Unexpectedly, the composition effects were not found at
the highest earnings level, but at the lowest. Thus the greater increase in
upper tail of the work schedule distribution does not appear to account for
the increase in the upper tail of the wage distribution. Instead, it was the
relative median wage increase for overtime workers that provided the boost
in the upper tail of the wage distribution. Had these overtime workers been
paid the same relative wages in 1997 as they had in 1980, there would have
been little impact of their growth in number.

Exercises

Exercise 12.1. The analysis in the chapter focused on white males. The
case for women may be very different as the numbers and role of women
in the workforce has changed over the time period 1980 to 1997. Follow
through the analysis of Section 12.3 for white women. How do the relative
polarization indices over time compare to that for white men given in Figure
12.1? How does the relative distribution of hours worked compare to that
for white men given in Figure 12.2? Summarize the effect of changes in the
work schedule distribution on the distribution of wages for white women.
Discuss the similarities and differences with the case for white men.
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Exercise 12.2. Minority workers have typically been over-represented in the
contingent workforce. Follow through the analysis of Section 12.3 for black
men and then for black women. How do the relative polarization indices
over time compare to that for white men given in Figure 12.1? How does
the relative distribution of hours worked compare to that for white men
given in Figure 12.2? Summarize the effect of changes in the work schedule
distribution on the distribution of wages for black men and black women.
Discuss the similarities and differences with the case for white men.

Exercise 12.3. In the chapter, hours worked was used as a proxy for the
in employment relations. Many other factors have changed over the time
period under study. Follow through the analysis of Section 12.3 adjusting
for the number of years of education rather than hours worked. Summarize
the effect of changes in the distribution of this measure of educational at-
tainment on the distribution of wages. How do these effects differ from the
effects of changes in the work schedule distribution?

Exercise 12.4. Changes in the work schedule and educational attainment are
related to each other and both will effect the distribution of wages. Follow
through the analysis of Section 12.3 adjusting for both the number of years
of education and hours worked. You will need to use a bivariate adjust-
ment to do this. Use a block adjustment and then consider both sequential
adjustments. Does the effect of changes in the work schedule distribution
depend on changes in the distribution of educational attainment?

Exercise 12.5. A third factor that may be important is change in the age
distribution of the workers. Repeat Exercise 12.4 adjusting for the number
of years of education, hours worked, and age. Are changes in the work
schedule a major factor after the other two factors have been adjusted for?

Exercise 12.6. Answer Exercise 12.3 for white women rather than white
men.

Exercise 12.7. Answer Exercise 12.5 for black women rather than white
men.

Exercise 12.8. Changes in the sex composition of the work force may be
an important factor also. Consider the population of white workers (i.e.,
pooling the women’s and men’s samples). Follow through the analysis of
Section 12.3 adjusting for changes in the sex distribution in addition to
hours worked. Is the effect of changes in the work schedule distribution
dependent on changes in the sex distribution?

Exercise 12.9. In addition to sex, changes in the race composition of the
work force may be important. Consider the population of all workers (i.e.,
pooling the samples by race and sex). Follow through the analysis of Section
12.3 adjusting for changes in the race/sex distribution in addition to hours
worked. Is the effect of changes in the work schedule distribution dependent
on changes in the race/sex distribution?
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Exercise 12.10. The analysis in the chapter focused on the net change from
1980 to 1997. Variations within this time period are not observed. Follow
through the analysis of Section 12.3 comparing 1989 to 1980, and then
comparing 1997 to 1989. How does the relative distribution of hours worked
compare in these two periods? Summarize the effect of changes in the work
schedule distribution on the distribution of wages for the two periods.



Chapter 13

Quantile Regression

In this chapter we consider regression models for the relationship between
a primary variable of interest and measured covariates. By far the most
common regression models used in practice are for the mean. That is, they
focus on modeling the mean of the conditional distribution of the target
variable given the values of the covariates as a function of the covariate
values. However the mean is only one characteristic of the conditional dis-
tribution that is of interest. More generally, we wish to compare how other
characteristics of the conditional distribution change with changing values
of the covariates.

The conditional distributions can be characterized by their quantiles.
By choosing particular quantiles, attention can be focused on other aspects
of the conditional distributions, such as the upper or lower tail behavior.
In this chapter we show how the regression model can be extended to cover
modeling of these quantiles.

In the first section we consider the inference for quantiles based on a
sample from the target distribution alone. In Section 13.2 we consider the
general regression model for a target variable based on covariates. There,
models for the quantile function are treated in the same framework as mod-
els for the mean function. The paper of Koenker and Bassett (1978) led to
a surge in interest in parametric quantile regression. They explored the
properties of linear regression models for the quantiles. This model is cov-
ered in Section 13.3. While the linear model for quantiles is as useful and
interpretable, the conditional quantile functions are rarely linear in multi-
ple quantiles. In Section 13.4 we discuss nonparametric quantile regression
models that provide flexible models for more complicated situations.

13.1 Estimation of quantiles

In this section we consider estimation of the quantiles of a distribution
based on a random sample from it.

In Section 2.1 the quantile function corresponding to a CDF F (y) was
defined to be:

213
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Q(p) ≡ F−1(p) = inf
y

{y | F (y) ≥ p } 0 < p < 1.

We introduce Q(p) to keep the notation simple, and will refer to it as the
pth quantile of F. Note that the quantile function is nondecreasing and
Q(r) approaches Q(p) as r < p approaches p (i.e., the quantile function is
left-continuous). Hence

Q(p) ≤ y if and only if F (y) ≥ p.

Let yL = sup{y | F (y) = 0} ≥ −∞, and yU = inf{y | F (y) = 1} ≤ ∞ so
that the support of the distribution is [yL, yU ]. We assume throughout that
F (y) is absolutely continuous with PDF f(y) > 0, yL < y < yU . In this case
F (y) is 1-1 and Q(p) is differentiable for 0 ≤ p ≤ 1. The analog of the PDF
for the quantile function is the quantile-density function q(p) ≡ Q′(p) =
1/f(Q(p)) (Parzen 1979). Tukey (1965) calls q(p) the sparsity function.

As in Chapter 9, we assume that we have a sample Y1, Y2, . . . , Ym that
are independently and identically distributed from the population distri-
bution F. There we estimated the CDF by the empirical CDF Fm, so it is
natural to estimate the quantile function by the inverse of Fm :

Q̂m(p) ≡ F−1
m (p) = inf

x
{x | Fm(x) ≥ p } 0 < p < 1

We will refer to Q̂m(p) as the sample or empirical pth quantile of F. Note
that the CDF of Q̂m(p) is

P [Q̂m(p) ≤ y] = P [Fm(y) ≥ p] =
m∑

j=�mp

(
m

j

)
[F (y)]j [1 − F (y)]m−j ,

where �x is the least integer at least as large as x. If F has a density then
Q̂m(p) has a density that can be obtained by differentiating this function.

As these results suggest, the properties of Q̂m(p) as an estimator of
Q(p) are closely tied to the properties of Fm as an estimator of F. We can
asymptotically approximate the distribution of Q̂m(p) for each individual
p :

Theorem. Assume that 0 < p < 1. Suppose F (y) possesses a density f(y)
in a neighborhood of Q(p) that is positive and continuous at Q(p), then

Q̂m(p) ∼ AN
{

Q(p),
p(1 − p)q(p)

m

}
(13.1)

as m → ∞.

A similar result holds for the joint estimation of quantiles. For ex-
ample, if 0 < r < p < 1, the bivariate distribution of (Q̂m(p), Q̂m(r)) is
asymptotically normal with correlation

√
r(1 − p)/

√
p(1 − r).
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This result shows that there is convergence for each value of r individ-
ually. To measure the global closeness of Q̂m(p) to Q(p), we can again use
the Kolmogorov-Smirnov distance

Dm = sup
0<p<1

|Q̂m(p) − Q(p)|.

The convergence of Q̂m(p) to Q(p) occurs simultaneously for all p only if
both yL and yU are finite. In this case Dm converges to zero with probability
one if sup0≤p≤1 q(p) < ∞. This result suggests that for large sample sizes
the deviation between Q̂m(p) and Q(p) will be small for all p. The empirical
quantile function and other estimators of the quantile function have been
extensively studied – see Csörgő (1983) and Serfling (1980).

While the empirical quantile function is simple to calculate, smoother
estimators of the quantile function have more desirable statistical proper-
ties. A smooth estimator of the quantile function can lead to a smooth
estimator of both the quantile and the quantile density functions. An es-
timate of the quantile density function would be necessary for estimating
the asymptotic variance of the empirical quantile function. In addition it
represents an interesting reexpression of the distributional shape. Cheng
and Parzen (1997) propose a natural class of smooth estimators:

Q̂m(p) =
∫ 1

0
Q̂m(r)drKm(p, r) 0 < p < 1,

where for each p, Km(p, ·) is a CDF on [0, 1]. If Km(p, r) is a point mass
at r = p, then the estimator is the empirical quantile function. Smoother
choices of Km(p, r) result in smoother estimators for the quantile function.
The quantile density function can then be estimated by the derivative of
Q̂m(p) :

q̂m(p) =
d

dp
Q̂m(p) 0 < p < 1.

The properties of these estimators depend on the choice of Km(p, r). One
common choice is the difference kernel:

drKm(p, r) = K

(
p − r

h

)
dr,

where K(·) is a kernel function given in (9.10) and h is a bandwidth which
decreases to zero as the sample size increases. For appropriate choices
of Km(p, r) these estimators outperform their empirical counterparts. See
Parzen (1979) and Cheng (1998) for a discussion of the statistical properties
of these estimators.

Confidence intervals for Q(p) will be ambiguous if there are values
y > Q(p) for which F (y) = p. We will assume that F (y) is strictly increasing
in a neighborhood of Q(p), that is, there exist a < Q(p) < b such that
F (x) < F (y) if a < x < y < b to the right of Q(p). Based on (13.1) we can
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construct a confidence interval for Q(p) using the normal approximation to
the empirical quantile function. However this requires an estimate of q(p)
to calculate the width. As an alternative consider a confidence interval of
the form Y(L) to Y(K) where Y(1) ≤ . . . ≤ Y(m) are the ordered data values,
and 1 ≤ L < K ≤ m are integers. If Uj = F (Yj) then U1, . . . , Um are
independent and uniform on [0, 1]. Let U(1) ≤ . . . ≤ U(m) be the ordered
values so that U(j) = F (Y(j)). Note that

P (Y(L) ≤ Q(p) ≤ Y(K)) = P (U(L) ≤ p ≤ U(K)),

which is independent of F. We can then choose K and L to have the correct
coverage (e.g., 95%) and also to produce a small interval. One rule for
constructing an approximate 100(1 − α)% confidence interval is to choose

L = mp + Zα/2

√
mp(1 − p) K = 2mp − L,

where Zα/2 is the α/2th quantile of a standard normal distribution. The L
should be rounded down to an integer. It can be shown that this interval
has asymptotically the same properties as the interval based on (13.1) when
q(p) is known.

Figure 13.1 is a plot of the empirical quantile function for the log of
women’s earnings in 1997 (see Section 2.1).

The median log-earnings of Q(1
2 ) appears to be about 10.1. The median

earnings is then just exp(10.10) = $24, 239. The sample size is m = 14, 341
and for a 95% confidence for the median K = 7053, L = 7288. The interval
is then from 10.090 to 10.109. Figure 13.2 is a plot of the density quantile
function based on the log-spline estimator in (9.12). The function increases
dramatically in the tails because the quantile function is changing quickly
there.

The empirical quantile function estimates of the 10% and 90% quantiles
are 9.38 and 10.80, so the 90–10% range is 1.42. An approximate 95%
confidence for this range can be based on (13.1) if we estimate q(0.1) and
q(0.9). If we use the log-spline estimator in Figure 13.2, the interval runs
from 1.41 to 1.45.

13.2 Motivation for quantile regression

Consider the situation where, in addition to the variable of interest, we
observe covariates on the individuals and the impact of these covariates
on the response is of interest. Let Y represent the variable of interest,
which we call the target variable, and let X represent the values of the
covariates. The covariates can be both discrete and continuous. In Chapter
7, we developed a distributional technique to adjust the distribution of the
target variable for differences in the distribution of the covariates between
populations. Here we focus on a single population, and wish to understand
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Fig. 13.1. The empirical quantile function for the log-earnings for women in 1997
from the 1998 CPS.

the relationship between the target variable and the covariates with the
objective of predicting the target variable from the covariates.

Let Yj and Xjk be the target value and kth covariate, respectively,
for the jth individual. Let Xj = (1, Xj1, . . . , XjK) be the vector of K
covariates for the jth individual augmented by a constant term. The data
is then {Yj , Xj}m

j=1, where the target and the covariates are measures on
the same member of the population.

Regression models form a framework for modeling Y as a function
of the values of the covariates X. The objective in this framework is to
predict the values of the target variable for given values of the covariates,
and conduct inference about the parameters of the model.

Let F (y|x) be the CDF of the conditional distribution of Y given X =
x. The model for the relationship takes the form:

Yj = θ(Xj) + εj j = 1, . . . , m (13.2)

for some unknown function θ(x). The εj represent the random variation of
Y from its functional relationship with X and are referred to, unpejora-
tively, as errors. We will assume throughout this chapter that the errors
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Fig. 13.2. The quantile density function for the log-earnings for women in 1997
from the 1998 CPS.

are conditionally independent and identically distributed given X = x. We
also assume that the errors are independent of the covariates. Clearly, each
of these assumptions can be weakened or altered to different circumstances.
Denote the conditional distribution of εj given Xj = x by E(y|x). Formally,

P [εj ≤ ε|X = x] = E(ε|x) j = 1, . . . , m

These regression models specify that the conditional distributions satisfy
the relationship:

F (y|x) = E(y − θ(x)|x) for all y and x. (13.3)

To further define θ(x) we need to clarify its relationship to the errors.
The most commonly studied model is based on representing the func-

tional relationship between the covariates and the conditional mean of the
target variable given the covariates. For this version of (13.2) the error dis-
tribution E(y|x) is defined to have zero mean for each x. Hence θ(x) is the
conditional expectation of Y given X = x, m(x) = E[Y |X = x]. Usually, it
is also assumed that E(y|x) has variance σ2(x).
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The regression model can be reexpressed in terms of the quantiles. The
conditional quantile function of Y given X = x is:

Qp(x) ≡ inf
y

{y | F (y|x) ≥ p } 0 < p < 1.

Denote the conditional quantile function of the errors by

Up(x) ≡ inf
y

{y | E(y|x) ≥ p } 0 < p < 1.

As we assume that F (y|x) is absolutely continuous and strictly increasing
on its support, the model (13.3) can be reexpressed as:

Qp(x) = θ(x) + Up(x) for all p and x. (13.4)

The error distributions can sometimes be assumed to differ only in terms of
a multiplicative scale factor, so that the data follow a location-scale model:

Yj = θ(Xj) + σ(Xj)υj j = 1, . . . , m,

where the υj are independent and identically distributed with unknown
quantile function U(p) independent of Xj . The υj are assumed to have
unit scale, and the scale factor σ(x) > 0. The location-scale model can be
expressed as:

Up(x) = σ(x)U(p) for all p and x.

A further simplification is the location model where E(y|x) is completely
independent of x, that is,

Up(x) = σU(p) for all p and x,

for some σ > 0.
For the regression model for the mean, the constraint on the errors

can also be stated as
∫ 1
0 Up(x) dp = 0. If it is also assumed that E(y|x) has

variance σ2(x), then
∫ 1
0 U2

p (x)dp = σ2(x).
The most commonly used regression model is linear regression where

m(x) = β0 + β1x1 + · · ·βKxK = xβ, (13.5)

where β = (β0, β1, . . . , βK)T are the regression coefficients and x =
(1, x0, x1, . . . , xK)T . The classical linear regression model for the mean has
independent and identically distributed normal errors. This is the location
model with U(p) as the quantile function of the standard normal distribu-
tion. If this model is specified correctly then inference for the parameters
β, σ and prediction can be done within the likelihood or least-squares frame-
work. We will not develop them here - see von Eye and Schuster (1998) for
a book length treatment.

In general, the regression model for the mean can be viewed as inference
for m(x), the mean of the conditional distribution of the response, where the
influence of the observations with values of the covariate not equal to x is
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determined by the assumptions made about m(x) and the error terms. The
linear regression model assumes that m(x) has a parametric linear form. If
m(x) is only assumed to be a smooth function of x the situation is referred
to as nonparametric regression. In this case, observations with values of the
covariate close to x should have similar values of the mean, and information
can be borrowed from them to infer m(x), and vice versa. In both the linear
and nonparametric situations, the theory for the mean regression model has
been well developed. See Simonoff (1996) for a discussion.

The mean is only one characteristic of the conditional distribution of
the response. It is of interest to model other characteristics such as the
quantiles. Hogg (1975) has argued for the use of conditional quantile func-
tions as descriptions of distributional change within the regression context.

Let p ∈ (0, 1) be a given quantile of interest. Suppose that instead of
defining the regression model for m(x) by constraining the mean of E(y|x)
to be zero, the pth quantile of the error distribution is constrained to be
zero: E(0|x) = p for each x. Then θ(x) is Qp(x), the conditional pth quantile
of Y given X = x. The model (13.1) for the relationship takes the form:

Yj = Qp(Xj) + εj j = 1, . . . , m, (13.6)

where the conditional quantile functions of the errors satisfy the constraint
Up(x) = 0 for each x. The relationship (13.6) along with the constraint on
the errors define the general quantile regression model.

Interest in the quantiles can also be motivated by doing a search for
location measures θ(x) that are robust to the distribution of the error terms.
Under the location model, the mean function m(x) is the value of θ(x) that
minimizes the squared error loss E[L(Y − θ(X))|X = x] where L(y) = y2.
Under the same model, Qp(x) minimizes the loss E[Lp(Y − θ(X))|X = x]
relative to the asymmetric absolute loss function Lp(y) = |y| + (2p − 1)y.
If p = 1

2 this is just the absolute loss function L 1
2
(y) = |y|, so that Q 1

2
(x)

is the conditional median function of Y. If the conditional distribution of
Y given X = x is very asymmetric or heavy-tailed, the median may be a
better summary of location than the mean.

When the error terms are both heteroscedastic and asymmetric then
a wide range of loss functions result in interesting forms for θ(x). Aigner,
Amemiya, and Poirier (1976) and Newey and Powell (1987) use asymmetric
squared error loss (L(y) = |p − I(y ≤ 0)|y2) to define a location measure
they call expectiles. Although they are less interpretable than the quantiles,
inference for them is somewhat easier than for the asymmetric absolute
loss. Efron (1991) extends this work by estimating the quantiles based on
the expectiles. His estimators have the computational advantages of the
expectiles and greater efficiency when the errors are normal. He advocates
location measures based on the class of asymmetric power loss functions:
Lp,α(y) = |p − I(y ≤ 0)|yα, 0 < p < 1, α > 0. This includes the above loss
functions as special cases. He argues for values 0 ≤ α ≤ 2 with the smaller
values being more robust and the higher values having greater efficiency
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when the errors are normal-like. In the remainder of this chapter we focus
on quantiles estimated via asymmetric absolute loss, although much of the
development is applicable with other choices of loss function.

For fixed p, the conditional quantile function Qp(x) plays the same
role as the conditional mean function m(x) in the nonparametric regression
model for the mean. Each choice of p focuses attention on a different char-
acteristic of the conditional distribution of Y given X = x. The choice of p
will vary from application to application. Often the median (p = 1

2 ) is the
most natural, or the quartiles (p = 0.25, 0.75). Some interesting guidance
and examples are given by Efron (1991) and Buchinsky (1998).

In the next sections we consider models for the conditional quantile
function that parallel those developed for the conditional mean function.

13.3 Linear quantile regression

The linear quantile regression model is linear regression for a given quantile
of the conditional distribution of Y given X = x. In addition to the general
model in (13.6), the quantile is assumed to be a linear function of the
covariates:

Qp(x) = xβp x ∈ DX , (13.7)

where DX is the range of applicability of the model. Note that the regression
coefficients βp depend on the quantile p. Expressed in this form, the model
may not hold for multiple p, except under special conditions on the error
terms.

For given p, the regression coefficients can be interpreted in much the
same way as they are in regression for the mean function. We can interpret
βpk as the change in the pth quantile due to a unit change in the kth
covariate, holding the values of the other covariates fixed.

Recall in linear regression for the mean that the regression coefficients
are characterized by minimizing the squared-error loss. For quantile regres-
sion, θ(x) = Qp(x) = xβp minimizes the loss E[Lp(Y − θ(X))|X = x] for
each x. Thus the vector of coefficients βp is the value of γ that minimizes

the loss EX

[
E[Lp(Y − Xγ)|X]

]
, overall. If the covariates are nonrandom,

then the outer expectation is redundant. There will be more on this later.
Following the analogy to least-squares regression, the natural estimator

for βp is β̂p, the value of γ that minimizes

m∑
j=1

Lp(yj − xjγ). (13.9)

This is also the method of moments estimator of βp. The natural estimator
of Qp(x) is then xβ̂p.
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The statistical properties of β̂p have been studied under a variety of
conditions. In almost all social science applications, the data arise from ob-
servational studies or sample surveys where some of the covariates are not
under the control of the researcher. The most common situation is where the
data {Yj , Xj}m

j=1 are a, possibly stratified, random sample from the popu-
lation of interest. Under these conditions the randomness of the covariates
should be taken into account when the statistical properties of β̂p are eval-
uated. We are assuming throughout that the covariates are independent of
the error terms. Even though the model is specified conditionally on the
covariates, the statistical properties of the estimates will clearly be differ-
ent if we condition on the values of the covariates actually observed rather
than take their statistical variation in to account. For ease of exposition we
will condition on the observed values of the covariates when describing the
properties of the estimators. To avoid degeneracies, it is necessary to place
mild restrictions on the values the covariates take as the sample size in-
creases. In particular, we will assume that 1

mXT X is a nonsingular matrix
and approaches a positive definite matrix as the sample size increases. This
assumption is standard in linear regression for the mean. In the Background
material we discuss how these assumptions can be weakened.

Let up(x) be the quantile density function corresponding to Up(x).
Suppose first that the errors are identically distributed so that the data
follow the location model and hence up(x) = up independent of x. In this
case the quantile functions for different p are all parallel with slopes βk(p) =
βk, k = 1, . . . , K and the intercepts are β0(p) = Up. The simplest result is:

Theorem. Suppose that 0 < p < 1 and (Yj , Xj)m
j=1 follow the linear quantile

regression model (13.7) and the distribution of the errors is independent of
x. If up is positive and continuous in a neighborhood of p then, as m → ∞,

β̂p ∼ AN

{
βp,

σ2
p

m
[XT X]−1

}
(13.10)

where σ2
p = p(1 − p)u2

p.

The result is similar to that of (13.1) in the sense that σ2
p is the variance

of the quantile estimate based on a sample of size m from the error dis-
tribution. This result is similar to that for least-squares regression with a
redefined σ2

p.
This result can be extended to the case where the error distribution

depends on x:

Theorem. Suppose that 0 < p < 1 and (Yj , Xj)m
j=1 follow the linear quantile

regression model (13.7). If up(x) is positive and continuous in a neighbor-
hood of p for each x then

β̂p ∼ AN
{

βp,
p(1 − p)

m
[XT DX]−1[XT X][XT DX]−1

}
(13.11)
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as m → ∞. Here D is the diagonal matrix with jjth element 1/u2
p(xj).

As Q̂p(x) is a linear combination of the estimated regression coefficients, it
is also asymptotically unbiased and normal.

Confidence intervals for the regression coefficients and regression quan-
tiles can be based on these results. Applying them in practice requires an
estimate of up(x), the conditional quantile density function. The approaches
in Section 13.1 can each be applied here. In particular, it is also possible to
use the order statistics to define confidence intervals. A number of bootstrap
estimators for the covariance matrix have also been developed. Buchinsky
(1995) compares these and other approaches. He finds that a bootstrap
estimator performs the best in the general setting, but requires extensive
computational time.

If the model is assumed to hold simultaneously for multiple quantiles
then either DX , the plausible range of values the covariates can take, is
limited or the quantile functions are parallel so that the errors are indepen-
dent of x. Otherwise, if 0 < r < p < 1 are two values for which the model
hold there will be values of the covariates for which Qp(x) = xβ(p) will be
less than Qr(x) = xβ(r). If the above estimation procedure is used for both
r and p then the estimates will be correlated. The two above results can be
generalized to show that β̂(p) and β̂(p) are jointly asymptotically normal
with the natural covariance matrix. See Powell (1986) and Koenker and
Bassett (1978) for details. The problem here is that the estimates for each
quantile are computed separately. Thus even if the errors are identically
distributed, the estimated curves may cross in the domain of the covari-
ates. For particular classes of error distributions, Koenker (1984), Cole and
Green (1992) and others consider alternative estimation schemes to ensure
the estimated curves do not cross. He (1994) proposes a procedure based on
the location-scale model called restricted regression quantiles that produces
estimates that do not cross. that produces

The location model is very restrictive. It is natural to consider the class
of linear heteroscedastic models:

Up(x) = (xγ)U(p) for all p and x,

where xγ > 0 for x ∈ DX . This is a location-scale model where the scale
function σ(x) = xγ is linear in the covariates. Such models have been
studied by Gutenbrunner and Jureckova (1992), Koenker and Zhao (1994),
and He (1997).

In Chapter 4 we studied the distributions of annual earnings of white
males from 1967–1997 using relative distribution methods. Figure 4.2 is the
running boxplot of the earnings by year. In Figure 13.3 the empirical quan-
tiles (13.1) are plotted for p = 5%, 25%, 50%, 75%, and 95%. Superimposed
over the empirical quantiles are the quantile estimates based on the linear
model. The linear model appears to fit quite well for each of the quantiles.
Note, however, the deviations between the empirical quantiles and the lines
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are greater than expected from statistical variation, and so there is some
lack of fit. As a general pattern, we can see the increase in spread of the
distributions over time with greater changes for the extreme quantiles.
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Fig. 13.3. Empirical quantiles and linear quantile estimates for the annual earn-
ings distributions: 1967–1997. The quantiles shown are p = 5%, 25%, 50%, 75%,
and 95%.

13.4 Nonparametric quantile regression

The linear models of the previous section have many advantages, including
ease of interpretation and computation. However they place very restrictive
assumptions on the conditional quantile functions, especially if the model is
assumed to hold for multiple quantiles. Given the success of nonparametric
regression methods for the mean function, it seems natural to consider
nonparametric estimation of Qp(x). The various nonparametric quantile
regression models only assume that Qp(x) is a smooth function of x.

Cheng (1983; 1984) described the asymptotic properties of kernel den-
sity estimators (Section 9.3.2). Stute (1986) considered nearest neighbor
kernel estimators when the covariate distribution is random. Janssen and
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Veraverbeke (1987), and Lejeune and Sarda (1988) also proposed nonpara-
metric estimators based on kernel or local polynomial ideas.

In the context of growth measurement for biomedical studies, Cole
(1988) proposed an estimation method based on transforming the condi-
tional distributions to an approximately normal form. In the discussion to
that paper, Cox and Jones introduced a form of smoothing spline model for
the conditional quantile functions. Koenker, et al (1992) proposed smooth-
ing spline models based on L1 and L∞ smoothness norms. An indepth study
of quantile smoothing spline models was undertaken in Koenker, Ng, and
Portnoy (1994). He and Shi (1994) considered a related approach. Ng (1996)
showed how monotonicity and convexity constraints could be imposed, and
demonstrated a computationally efficient algorithm.

Non-parametric estimation using local polynomial methods have been
extensively used for estimating the mean function. Their advantages extend
to the quantile case. Chaudhuri (1991) developed the asymptotic theory for
local polynomial estimators (Section 9.3.3). Fan, et al (1994) and Fan, Yao,
and Tong (1996) further developed the theoretical ideas. Fan and Gijbels
(1996) provide a book length treatment of local polynomial regression, and
discuss quantile estimation. We follow Yu and Jones (1998) in the develop-
ment below.

As in the situation of nonparametric estimation for the mean function,
each of these methods have their strengths and weaknesses. Often theoret-
ical advantages are lost in the sea of practical details. In this section we
will focus on local-polynomial methods, both because of their theoretical
strengths and the benefits of the extensive practical knowledge that has
been built up about them.

The idea of the local linear fitting is to approximate Qp(x) by a linear
function

Q̃p(z) = Qp(x) + qp(x)(z − x)

for values, z, of the covariates close to x. We can then fit a line to the data
values with covariates close to x, and estimate Qp(x) by Q̃p(x), the value
on the regression line. Of course, data with covariates closer to x should
receive more weight than data further away, and we should fit a different
model for each value of x we are interested in.

Figure 13.4 displays the local-linear quantiles estimates for p = 5%,
25%, 50%, 75%, and 95%. In this case they are quite close to the empirical
quantiles as the sample sizes are very large – m is about 20,000. The pattern
seen here, suggests that the linear model of the previous section is not a
perfect fit to the data.
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Fig. 13.4. The local linear quantile estimates for the annual earnings distribu-
tions: 1967–1997. The quantiles shown are p = 5%, 25%, 50%, 75%, and 95%.

Background material

The study of quantiles has a long history, going back at least to Fran-
cis Galton in 1885. Estimation has traditionally been based on the order
statistics. Quantile estimation in the regression setting was considered in
the seminal paper of Koenker and Bassett (1978). They were motivated
by issues of robust estimation in the regression context, and especially the
detection of outliers. Koenker and Bassett focused on linear quantile re-
gression. Subsequently Ruppert and Carroll (1980), Koenker and Portnoy
(1987), and others further developed the theory. Powell (1986) considers
the extension to censored data. Buchinsky (1998) is a good review paper
on the parametric approach and its extensions. The nonparametric quantile
regression model was considered by Janssen and Veraverbeke (1987), Leje-
une and Sarda (1988) and Chaudhuri (1991). Yu and Jones (1998) provide
a description of the local-linear approach to quantile estimation. Together
with Buchinsky (1998), it provides a good review of the state-of-the-art of
the practice of quantile regression.

It is not necessary to assume that the errors εj are independent of Xj .
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In the general case, estimation can be based on the generalized method
of moments (Powell 1986). Issues relating to endogeneity and longitudinal-
ity are similar to those in the mean regression situation. See Chamberlain
(1984) for an introduction.

One of the insights of Koenker and Bassett (1978) was that the mini-
mization problem (13.9) could in fact be phrased as a linear programming
problem with an expanded parameter space. Using standard results and for
a given data set, they showed the existence and optimality of solutions to
the minimization problem. The estimates themselves could be obtained by
efficient and numerically stable linear programming algorithms. The repre-
sentation also made it clear that the solutions were robust to outliers in the
target variable, in much the same way as the sample quantiles are robust to
changes in data values. That is, the estimate is unchanged by any changes
in yj that do not change the sign of yj −xj β̂p. Gutenbrunner and Jureckova
(1992) gave a statistical interpretation to the solutions to the dual of the
linear programming problem that extended the duality of order statistics
and ranks to the linear regression setting. For additional information about
the linear programming representation, see Buchinsky (1998).

Exercises
Exercise 13.1. Derive the formula for the CDF of Q̂m(p) given in Section
13.1. You can use the fact given in Section 9.2 that mFm(y) is a binomial
random variable on m trials and with probability of success F (y).

Exercise 13.2. Derive the formula for the PDF of Q̂m(p) based on the re-
sult for the CDF given in Section 13.1. Give a heuristic rationale for its
relationship to the binomial probability mass function.

Exercise 13.3. Derive the relationship (13.3) from the definition of the re-
gression model.

Exercise 13.4. Show that the median is a value that minimizes the mean
absolute deviation of a distribution around that value.

Exercise 13.5. Give an example where regression for the median function
is more appropriate substantively than regression for the mean function.
Why do you think the former is rarely used in practice?

Exercise 13.6. Use the definition of the regression model to show the equiv-
alence of the formulations given in (13.3) and (13.4).

Exercise 13.7. Construct the empirical quantile function for men’s log-
earnings in 1997. How does it compare to that for women given in Figure
13.1.

Exercise 13.8. Fit a linear quantile regression model to the median of men’s
log-earnings from 1967-1997, using year as the independent variable. Fit
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models for the p = 5%, 25%, 75%, and 95% quantiles and graph them in a
plot similar to Figure 13.3.

Exercise 13.9. Fit a linear quantile regression model to the median of the
population log-earnings from 1967-1997 using year, and race/sex group as
covariates. Compare the coefficients of the four groups. Repeat the analysis
for the p = 5%, 25%, 75%, and 95% quantiles.

Exercise 13.10. Refit the linear quantile regression model to the median of
the population log-earnings from 1967-1997. Include an interaction term
between race, sex and year. Which of these factors appears to have the
greater effect? Do significant interactions exist? Answer the same questions
for the p = 5%, 25%, 75%, and 95% quantiles.



Appendices

A. Descriptions of the data sets

The data sets can be obtained electronically over the World Wide Web, by
connecting to the Relative Distribution website. A link to the website is
maintained by the publisher at:

http://www.springer-ny.com/stats

under the heading “Author/Editor Home Pages.” The website contains
descriptions of the variables and data file formats. The data files are S-
PLUS and SAS system files, so it should be possible to import them into
virtually any statistical, database management or spreadsheet package.

B. More on computational issues

Many of the computational issues relevant to relative distribution methods
are generic to density estimation, and smoothing methods in general. Hence
computer code for density estimation can be coopted for relative density
estimation. Sources for computer code are given in the “Computational
issues” sections of the chapters. However the transient nature of the sources
and locations make a comprehensive listing untenable. As an alternative,
the relative distribution website contains links to software that the authors
found useful to implement relative distribution methods. These links will
be updated to ensure they are active. We welcome additions, corrections
and updates to this information by authors or readers.

S-PLUS was used to construct all the figures and numerical summaries
in this book, so we have focused on S-PLUS-related software. Discussion
of any software does not imply any endorsement of any kind about that
software, and we provide no warranty of any kind on the correctness or
usefulness of any software mentioned, or provided, or of the accuracy of
our descriptions of the software. Users of any software should consider the
software as being used at their own risk.

SAS is a registered trademarks of SAS Institute Inc. S-PLUS is a trade-
mark of StatSci. SPSS is a registered trademarks of SPSS, Inc. All other
trademarks are the property of their respective owners.
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C. Estimation of permanent wages and wage growth

Permanent wages are unobserved, and estimated using a mixed effects
model for the age-earnings profile.

For each respondent, the profile is represented as:

yit = b0i + b1iaget + b2iage2
t ,

where yit is the log of real (PCE-deflated) permanent wages for respondent
i at time t. Each of the coefficients b0i, b1i, and b2i represent a combination
of the fixed and random effects for the lifecycle growth in wages:

bji = βj + τji, τji ∼ N(0, σ2
j ) j = 0, 1, 2

where the βj are the “fixed effects”, and the τji are independent random
draws from normal distributions. The fixed-effects quadratic in age, β0 +
β1aget +β2age2

t , captures the mean growth in wages over the life-cycle, and
the τji capture the heterogeneity in individual profiles. For the motivation of
these models and discussion of alternative specifications cf., Gottschalk and
Moffitt (1994) and Haider (1997). Further details of the wage estimation
procedure can be found in Bernhardt, et al (1999).

We use this mixed-effects specification to fit a wage profile for each
respondent that covers the 16–34 year old age range. The wage gain for
each respondent is then defined as

wi = (yit | aget = 34) − (yit | aget = 16) i = 1, . . . , n.

The observed log-wages, zit, are modeled as:

zit = yit + εit,

where εit, i = 1, . . . , n, t = 1, . . . , 15 are i.i.d. N(0, σ2) with unknown σ > 0.
The values used throughout Chapter 8 to represent wage growth for an
individual are the empirical Bayes estimates of wi based on this random
effects model. For a discussion see, Diggle, et al (1994), Section 5.6.

All respondents with two or more valid wage observations are used
during the wage estimation procedure. For this analysis, we restrict the
sample to respondents not lost to attrition.

D. Proof of results in Chapter 9

In this appendix we sketch proofs of results about the estimates of the
relative CDF and the relative density given in Chapter 9. The proofs were
originally given in Handcock and Janssen (1998b).
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The asymptotic distribution of multivariate U-statistics with
estimated parameters

To illustrate the statistical behavior of the estimator (9.17), first consider
estimating the joint distribution of Fm(λr) and Fm(λs) with λν = F−1

0 (ν)
for 0 < ν < 1, based on the bivariate comparison sample U-statistic

Um(γ) =
1
m

m∑
j=1

h(Yj ; γ) = {Fm(γ1), Fm(γ2)}

with kernel
h(Y ; γ) = {I(Y ≤ γ1), I(Y ≤ γ2)}.

The expectation of Um(γ) is

θ(γ) = {F (γ1), F (γ2)}.

Suppose that F (x) is differentiable at x = λr and x = λs and f(λr), f(λs) >

0 then the joint asymptotic distribution of m
1
2 [Um(λ)− θ(λ)] is well known

(see Serfling 1980). In our situation λ = (λr, λs) = (F−1
0 (r), F−1

0 (s)) is un-
known and it is estimated by λ̂n = (F−1

n0 (r), F−1
n0 (s)). The standard results

for U-statistics do not apply to m
1
2 [Um(λ̂n)−θ(λ)]. However a multivariate

Gaussian limit can be obtained from the general expansion

m
1
2 [Um(λ̂n) − θ(λ)] = m

1
2 [Um(λ) − θ(λ)] + m

1
2 (λ̂n − λ)′θ(λ) + op(1),

where θ(λ) is the 2 × 2 matrix:

{ ∂θ(·)
∂γ1

,
∂θ(·)
∂γ2

}′
∣∣∣∣
γ=λ

.

This expansion is used by Randles (1982) in the one-sample situation (i.e.,
λ̂n and the univariate U-statistic are based on the same sample). For our
two-sample situation we will need a generalization of Randles’ result which
we state in full generality as Lemma D.1.

Following Randles (1982), let h(Y1, Y2, . . . , Yr; γ) be a multivariate
symmetric kernel of degree r based on the sample Y1, Y2, . . . , Ym and with
the expected value

θ(γ) = Eλ[h(Y1, Y2, . . . , Yr; γ)],

where λ denotes the true parameter value. Let Um(γ) be a q-variate U-
statistic corresponding to h(·; γ). Let λ̂n be an estimate of λ based on the
first sample {Y01, Y02, . . . , Y0n}.
Condition D.1 Suppose there is a neighborhood of λ, call it K(λ), and a
constant K1 > 0, such that if γ ∈ K(λ) and D(γ, d) is a sphere centered at
γ with radius d satisfying D(γ, d) ⊂ K(λ), then
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E[ sup
γ′∈D(γ,d)

|h(Y1, Y2, . . . , Yr; γ′) − h(Y1, Y2, . . . , Yr; γ)|] ≤ K1d

and

lim
d→0

E[ sup
γ′∈D(γ,d)

|h(Y1, Y2, . . . , Yr; γ′) − h(Y1, Y2, . . . , Yr; γ)|2] = 0.

Condition D.2A Assume that θ(γ) has a zero differential at γ = λ, that

n
1
2 [λ̂n − λ] = Op(1)

and that
m

1
2 [Um(λ) − θ(λ)] D→ N(0, Ω),

where
Ω = Var

(
E[h(Y1, Y2, . . . , Yr; λ)|Y1]

)
(A.1)

is positive definite, as m → ∞, m/n → κ2 < ∞.
Condition D.2B: Assume that θ(γ) has a nonzero differential at γ = λ,
that

m
1
2 [Um(λ) − θ(λ), (λ̂n − λ)′] D→ Np+q(0, Σ),

where

Σ =
(

Σ11 0
0 κ2Σ22

)
and

Ω = D′ΣD (A.2)

is positive definite, where

D =
(

Iq×qθ(λ)

)
and θ(λ) is the p × q matrix:{ ∂θ(·)

∂γ1
, . . . ,

∂θ(·)
∂γp

}′
∣∣∣∣
γ=λ

as m → ∞, m/n → κ2 < ∞.
We then have the following multivariate version of Theorem 2.13 in

Randles (1982):
Lemma D.1. If Condition D.1 holds and, in addition, one of Condition
D.2A or D.2B holds, then

m
1
2 [Um(λ̂n) − θ(λ)] D→ N(0, Ω),

where Ω is given by (A.1) or (A.2), respectively.
The proof of Lemma D.1 follows from the following extension of The-

orem 2.8 in Randles (1982) to our two-sample situation: If n
1
2
(
λ̂n − λ

)
=

Op(1) and Condition D.1 holds, then
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N
1
2 [Um(λ̂n) − θ(λ̂n) − Um(λ) + θ(λ)] P→ 0,

where N = n + m. The proof of this result follows closely that of Theorem
2.8 in Randles (1982).

Sketch of the proof of the result (9.17)
From e.g., Serfling (Serfling 1980, Theorem B, p. 80), we have

n
1
2 [λ̂nr − λr, λ̂ns − λs] ∼ AN

{(
0
0

)
, Σ22

}
with

Σ22 =

(
r(1−r)

(f0(λr))2
r(1−s)

f0(λr)f0(λs)
r(1−s)

f0(λr)f0(λs)
s(1−s)

(f0(λs))2

)
as n → ∞. From standard results about the sample distribution function:

m
1
2 [Um(λr) − θ(λr), Um(λs) − θ(λs)] ∼ AN

{(
0
0

)
, Σ11

}
with

Σ11 =
(

G(r)(1 − G(r) G(r)(1 − G(s)
G(r)(1 − G(s) G(s)(1 − G(s)

)
as m → ∞. Thus Condition D.2B of Lemma D.1 follows with:

D =


1 0
0 1

f(λr) 0
0 f(λs)

 .

Condition D.1 follows because F (x) is differentiable in neighborhoods of
λr. Thus Lemma D.1 gives the required asymptotic Gaussian distribution
and an easy calculation of D′ΣD gives the covariance expression in (9.20).

Sketch of the proof of result (9.20)
As K is twice differentiable we can expand the estimator:

gn,m(r) =
1

mhm

m∑
j=1

K

(
r − Rj

hm

)

=
1

mhm

m∑
j=1

K

(
r − F0(Yj)

hm

)

+
1

mhm

m∑
j=1

F0(Yj) − Fn0(Yj)
hm

K ′
(

r − F0(Yj)
hm

)

+
1

mhm

m∑
j=1

(F0(Yj) − Fn0(Yj))2

2h2
m

K ′′ (∆j)

= gm(r) + Tn,m(r) + Rn,m(r),

(A.3)
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where ∆j is between h−1
m (r − Fn0(Yj)) and h−1

m (r − F0(Yj)).

Lemma D.2.
√

mhm Rn,m(r) P→ 0 as m → ∞.
Sketch of the proof of Lemma D.2

For simplicity assume the support of K is contained in [−1, 1]. We can
bound Rn,m(r) as

|Rn,m(r)| ≤ 1
mhm

m∑
j=1

(F0(Yj) − Fn0(Yj))2

2h2
m

|K ′′ (∆j) |

and express ∆j as

∆j =
r − F0(Yj)

hm
− θj

F0(Yj) − Fn0(Yj)
hm

,

where 0 ≤ θj ≤ 1. Note that for ∆j �∈ [−1, 1] we have K ′′ (∆j) = 0,
therefore the terms in the sum that are different from zero are those for
which ∆j ∈ [−1, 1]. Therefore, with ∆n0 = supt |F0(t) − Fn0(t)|, we have

|Rn,m(r)| ≤ 1
mh3

m

∆2
n0C(K ′′)

m∑
j=1

I{−1 ≤ ∆j ≤ 1},

where C(K ′′) is the upper bound for K ′′. Now

−1 ≤ ∆j ≤ 1 ⇐⇒ r − hm ≤ F0(Yj) + θj(F0(Yj) − Fn0(Yj)) ≤ r + hm.

Therefore

I{−1 ≤ ∆j ≤ 1} ≤ I{r − hm − ∆n0 ≤ F0(Yj) ≤ r + hm + ∆n0}
and

|Rn,m(r)| ≤ C(K ′′)
∆2

n0

h3
m

1
m

m∑
j=1

I{r − hm − ∆n0≤ F0(Yj) ≤ r + hm + ∆n0}

= C(K ′′)
∆2

n0

h3
m

· {Gm

(
r + hm + ∆n0

)− Gm

(
r − hm − ∆n0

)}
= C(K ′′)

∆2
n0

h3
m

· {[Gm

(
r + hm + ∆n0

)− Gm

(
r − hm − ∆n0

)]
− [G(r + hm + ∆n0

)− G
(
r − hm − ∆n0

)]}
+ C(K ′′)

∆2
n0

h3
m

· [G(r + hm + ∆n0
)− G

(
r − hm − ∆n0

)]
= I1

n,m + I2
n,m

where G(s) = 1
m

∑m
j=1 I{F0(Yj) ≤ s}. As G is a Lipschitz function, we have

|G(r + hm + ∆n0
)− G

(
r − hm − ∆n0

)| ≤ 2LG(hm + ∆n0)
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and √
mhmI2

n,m ≤ 2LGC(K ′′)
∆2

n0

h3
m

√
mhm

(
hm + ∆n0

)
= op(1)

as ∆n0 = Op(n− 1
2 ) and mh3

m → ∞. We now consider I1
n,m :

|I1
n,m| ≤

2C(K ′′)
∆2

n0

h3
m

· sup
|t|≤hm+∆n0

|[Gm

(
r + t

)− Gm

(
r
)]− [G(r + t

)− G
(
r
)]| .

The Dvoretzky–Kiefer–Wolfowitz (1956) bound for the tails of ∆n0
yields that for any given ε > 0 there exists some finite C such that ∆n0 ≤
Cn− 1

2 up to an event with probability less than or equal to ε. The inequality
|t| ≤ hm + ∆n0 on this set means that |t| ≤ C1hm for some constant C1.
Using (2.13) in Stute (1982) we see that

sup
|t|≤C1hm

|[Gm

(
r + t

)− Gm

(
r
)]− [G(r + t

)− G
(
r
)]| = Op

(√−hm log hm

m

)
.

Therefore, as mh3
m → ∞, √

mhmI1
n,m = op(1).

Lemma D.2 follows as ε > 0 is arbitrary.

The second term in (A.3) can be expressed as a two-sample U-statistic:

Tn,m(r) =
1

mn

n∑
i=1

m∑
j=1

khm
(Y0i, Yj ; r)

with two-sample kernel

khm(x, y; r) = −(I{x ≤ y} − F0(y)
) 1
h2

m

K ′(r − F0(y)
hm

)
,

which is dependent on m via hm. Note that E[khm(Y0, Y ; r)] = 0 and the
projections are E[khm(Y0, y; r)] = 0 and

g1hm(x; r) = E[khm
(x, Y ; r)]

= −
∫ 1

0

(I{F0(x) ≤ s} − s
) 1
h2

m

K ′(r − s

hm

)
g(s) ds.

Jammalamadaka and Janson (1986) consider the asymptotic behavior
of one-sample U-statistics with kernel depending on m. Based on an exten-
sion of their ideas to two-sample U-statistics with kernel depending on m,
we can obtain:
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Tn,m(r) =
1
n

n∑
i=1

g1hm
(Y0i; r) + op

(
(nhm)− 1

2
)

(A.4)

as m → ∞, m/n → κ2 < ∞. Now

√
mhm

1
n

n∑
i=1

g1hm(Y0i; r)

= −
√

m

h3
m

∫ 1

0
{ 1
n

n∑
i=1

I{F0(Y0i) ≤ t} − t
}
K ′(r − t

hm

)
g(t) dt

D= −
√

m

n

1

h
3/2
m

∫ 1

0
Un(t)K ′(r − t

hm

)
g(t) dt,

where Un(t) is the uniform empirical process (Shorack and Wellner, 1986).
We then have √

m

n

1

h
3/2
m

∫ 1

0
Un(t)K ′(r − t

hm

)
g(t) t

=
√

m

n

1

h
1/2
m

∫ 1

0
Un(t)g(t) dK

(r − t

hm

)
=
√

m

n

[ 1

h
1/2
m

K
(r − t

hm

)
Un(t)g(t)

]1
0

−
√

m

nhm

∫ 1

0
K
(r − t

hm

)
[g(t)Un(dt) + Un(t)g′(t) t]

= −
√

m

n

1

h
1/2
m

∫ 1

0
K
(r − t

hm

)
g(t)Un(dt)

−
√

m

n

1

h
1/2
m

∫ 1

0
K
(r − t

hm

)
Un(t)g′(t) dt

= I3
n,hm

+ I4
n,hm

.

The second term I4
n,hm

converges in probability to zero:

|I4
n,hm

| ≤
√

m

n
sup

0≤t≤1
|Un(t)|

√
hm

∫ 1

0

1
hm

K
(r − t

hm

)|g′(t)| dt = op(1)

as m → ∞, m/n → κ2 < ∞, because sup0≤t≤1 |Un(t)| = Op(1) and the
integral converges to |g′(r)| by Bochner’s Theorem. Thus I4

n,hm
is asymp-

totically negligible. Note, however, that if g(r) is not smooth, this term can
contribute variation in moderate sample sizes. In fact, we can write

Var[I4
n,hm

] =
m

n

1
hm

∫ 1

0

∫ 1

0
K
(r − t

hm

)
K
(r − u

hm

)
Cov(Un(t), Un(s))g′(s)g′(t)dsdt

→ hmκ2r(1 − r)[g′(r)]2R2(K)
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as m → ∞, m/n → κ2 < ∞. While this variance is small it is highly
correlated with I3

n,hm
and Tn,m(r) so that, in small sample sizes, its con-

tribution matters. This expression will be used in Section 9.2.3.2 to obtain
an expression for the variance that is more accurate in small samples than
the asymptotic approximation.

Pulling together these results, (A.4), Lemma D.2 and (A.3) we obtain
that √

mhm

[
gn,m(r) − g̃n,m(r)

]
=
√

m

n

1

h
1/2
m

∫ 1

0
K
(r − t

hm

)
g(t)Un(dt)

+
1

h
1/2
m

∫ 1

0
K
(r − t

hm

)
U1m(dt)

+op(1)

where

g̃n,m(r) =
1

hm

∫ 1

0
K
(r − t

hm

)
g(t)dt

and U1m is the empirical process for G. To complete the proof of the theorem
we need to show that g̃n,m(r) approaches g(r) at a fast enough rate that√

mhm

[
g̃n,m(r)−g(r)

] → 0. Note that g̃n,m(r) has the same distribution
as gm(r) in (9.9) so we can use standard kernel density results to see that
mh5

m → 0 is a sufficient condition.
To calculate the variance terms explicitly, we can reexpress the above

as√
mhm

[
gn,m(r)−g̃n,m(r)

]
=√

m

n

1
n1/2

n∑
i=1

{ 1

h
1/2
m

K
(r − Ui

hm

)
g(Ui) − 1

h
1/2
m

E
[
K
(r − Ui

hm

)
g(Ui)

]}
+

1
m1/2

m∑
i=1

{ 1

h
1/2
m

K
(r − Ri

hm

)− 1

h
1/2
m

E
[
K
(r − Ri

hm

)]}
+ op(1),

where U1, . . . , Un are i.i.d. uniform [0, 1] independent of the Ri’s. The vari-
ance of the first term is then

m

n

∫ 1

0

1
hm

K2(r − t

hm

)
g2(t) dt − m

n
hm

[∫ 1

0

1
hm

K
(r − t

hm

)
g(t) dt

]2
→ κ2g2(r)R(K)

as m → ∞, m/n → κ2 < ∞. The expression for the second term follows
similarly.
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E. Proof of results in Chapter 10

Multivariate U-statistics with estimated parameters

In this appendix we use a U-statistics approach to decompose the MRP
estimator into independent components. The decomposition forms the basis
of the theorems in Sections 10.3.1 and 10.3.3.

We first give a result about two-sample U-statistics that is used in the
proof, and has independent interest. Theorem 2.8 of Randles (1982) can be
extended to our two-sample situation. Following Randles, let
h(Y1, Y2, . . . , Yr1 ; Y01, Y02, . . . , Y0r2 ; γ) be a bivariate symmetric kernel of
degree (r1, r2) based on the independent samples Y1, Y2, . . . , Ym and Y01,
Y02, . . . , Y0n. Denote the expected value of h(·; ·, γ) by

θ(γ) = Eλ[h(Y1, Y2, . . . , Yr1 ; Y01, Y02, . . . , Y0r2 ; γ)],

where λ denotes a parameter value. Let Um,n(γ) be a U-statistic corre-
sponding to h(·; γ). Lemma E.1 is an extension to the two-sample situation
of Theorem 2.8 of Randles. The following conditions are useful (see Remark
2.14 and Conditions 2.2 and 2.3 in Randles 1982):
Condition E.1 Suppose there is a neighborhood of λ, call it K(λ), and a
constant K1 > 0, such that if γ ∈ K(λ) and D(γ, d) is a sphere centered at
γ with radius d satisfying D(γ, d) ⊂ K(λ). If

S = sup
γ′∈D(γ,d)

|h(Y1, . . . , Yr1 ; Y01, . . . , Y0r2 ; γ
′)−h(Y1, . . . , Yr1 ; Y01, . . . , Y0r2 ; γ)|

then E[S] ≤ K1d and limd→0 E[S2] = 0.
Condition E.2 Suppose

n− 1
2

(
λ̂ − λ

)
= Op(1).

Lemma E.1. Suppose Conditions E.1 and E.2 are satisfied. Then

N
1
2 [Un,m(λ̂) − θ(λ̂) − Un,m(λ) + θ(λ)] P→ 0,

where N = n + m.
The proof of this result follows closely that of Theorem 2.8 in Randles.

Sketch of the proofs of results in Sections 10.3.1 and theorem
10.3.3

The MRP can be reexpressed as:

MRP(F ; F0) = 1 + 8θ2(F, F0; ξ) − 4θ1(F, F0; ξ)
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where

θ1(F, F0; λ) =
∫ ∞

−∞
F (y)f0(y − λ1 + λ2) dy = P

(
Y1 ≤ Y01 + λ1 − λ2

)

θ2(F, F0; λ) =
∫ λ1

−∞
F (y)f0(y − λ1 + λ2) dy,

λ = (λ1, λ2) is the parameter, ξ = (ξ 1
2
, ξ0

1
2
). Define the two-sample kernel

h1(x, y; λ) = I(y ≤ x + λ1 − λ2). The corresponding generalized U-statistic

U (1)
m,n(λ) =

1
mn

n∑
i=1

m∑
j=1

h1(Y01, Yj ; λ)

(the Wilcoxon two–sample rank statistic) is an unbiased estimator of
θ1(F, F0; λ). Similarly we can define the two-sample kernel
h2(x, y; λ) = I(y ≤ x + λ1 − λ2)I(x ≤ λ2). The corresponding two-sample
U-statistic

U (2)
m,n(λ) =

1
mn

n∑
i=1

m∑
j=1

h2(Y0i, Yj ; λ)

is an unbiased estimator of θ2(F ; F0; λ). The estimator can then be ex-
pressed as:

M̂RP(F ; F0) = 1 + 8U (2)
m,n(ξ̂) − 4U (1)

m,n(ξ̂),

where ξ̂ = (ξ̂ 1
2
, ξ̂0

1
2
), so that

M̂RP(F ; F0) − MRP(F ; F0) =

8[U (2)
m,n(ξ̂) − θ2(F ; F0; ξ)] − 4[U (1)

m,n(ξ̂) − θ1(F ; F0; ξ)]. (A.5)

To simplify the notation we will suppress reference to F and F0 in
θ1(F, F0; λ) and θ2(F, F0; λ). We would like to show the asymptotic Gaus-
sianality of

U (2)
m,n(ξ̂) − θ2(ξ) =

(
U (2)

m,n(ξ) − θ2(ξ)
)

(A.6)

+
(

θ2(ξ̂) − θ2(ξ)
)

(A.7)

+
(

(U (2)
m,n(ξ̂) − U (2)

m,n(ξ)) − (θ2(ξ̂) − θ2(ξ))
)

.

Using Lemma D.1 it can be shown that the last term in the decomposition
is of smaller order than the first two terms. For the term (A.7) we have

θ2(ξ̂)−θ2(ξ) = φ2(ξ)
(

ξ̂ 1
2
−ξ 1

2

)
+[F (ξ 1

2
)f0(ξ0

1
2
)−φ2(ξ)]

(
ξ̂0

1
2
−ξ0

1
2

)
+op(n− 1

2 ),
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where

φ2(λ) =
∫ λ1

−∞
f(y)f0(y − λ1 + λ2) dy.

We further have (see Serfling 1980, p.93):

n
1
2

(
ξ̂0

1
2

− ξ0
1
2

)
= n

1
2

[
F0(ξ0

1
2
) − Fn0(ξ0

1
2
)
]

f0(ξ0
1
2
)

+ op(1).

Therefore

θ2(ξ̂) − θ2(ξ) =
φ2(ξ)
f(ξ 1

2
)

(
F (ξ 1

2
) − Fm(ξ 1

2
)
)

+ [
1
2

− φ2(ξ)
f0(ξ0

1
2
)
]
(

F0(ξ0
1
2
) − Fn0(ξ0

1
2
)
)

+ op(n− 1
2 ) (A.8)

as m/n → κ2 < ∞, m → ∞. Finally we consider the term (A.6). Based on
the ideas of Randles and Wolfe (1979), we obtain the following:

U (2)
m,n(ξ) − θ2(ξ) =

1
m

m∑
j=1

[
g2(Yj ; ξ) − θ2(ξ)

]

+
1
n

n∑
i=1

[
g1(Y0i; ξ) − θ2(ξ)

]
+ op(n− 1

2 )

as m/n → κ2 < ∞, m → ∞. Here we have used the projections:

g1(x; ξ) =E[h2(x, Y1; ξ)] = I(x ≤ ξ0
1
2
)F (x + ξ 1

2
− ξ0

1
2
)

g2(y; ξ) =E[h2(Y01, y; ξ)] = (
1
2

− F0(y − ξ 1
2

+ ξ0
1
2
))I(y ≤ ξ 1

2
).

A similar approach is valid for U
(1)
m,n(ξ) :

U (1)
m,n(ξ) − θ1(ξ) =

1
m

m∑
j=1

[
g̃2(Yj ; ξ) − θ1(ξ)

]

+
1
n

n∑
i=1

[
g̃1(Y0i; ξ) − θ1(ξ)

]
+ op(n− 1

2 )

as m/n → κ2 < ∞, m → ∞. Here the projections are:

g̃1(x; ξ) =E[h1(x, Y1; ξ)] = F (x + ξ 1
2

− ξ0
1
2
)

g̃2(y; ξ) =E[h1(Y01, y; ξ)] = 1 − F0(y − ξ 1
2

+ ξ0
1
2
).

In addition
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θ1(ξ̂) − θ1(ξ) =
φ1(ξ)
f(ξ 1

2
)

(
F (ξ 1

2
) − Fm(ξ 1

2
)
)

− φ1(ξ)
f0(ξ0

1
2
)

(
F0(ξ0

1
2
) − Fn0(ξ0

1
2
)
)

+ op(n− 1
2 ), (A.9)

where
φ1(λ) =

∫ ∞

−∞
f(y)f0(y − λ1 + λ2) dy

as m/n → κ2 < ∞, m → ∞.
Applying (A.6), (A.9) and some algebra, (A.5) can be reexpressed in

terms of the sums of two independent random variables:

M̂RP(F ; F0) − MRP(F ; F0) =
1
n

n∑
i=1

a(Y0i) +
1
m

m∑
j=1

b(Yj) + op(n− 1
2 )

(A.10)
as m/n → κ2 < ∞, m → ∞, where

a(x) = 8
[
g1(x; ξ)−θ2(ξ)

]
−4
[
g̃1(x; ξ)−θ1(ξ)

]
−4
[
I(x ≤ ξ0

1
2
)− 1

2

]
(1+δ0(ξ)).

b(x) = 8
[
g2(x; ξ) − θ2(ξ)

]
− 4
[
g̃2(x; ξ) − θ1(ξ)

]
+ 4
[
I(x ≤ ξ 1

2
) − 1

2

]
δ (ξ).

These expressions can be reduced with a little algebra to:

a(x) = −4|F (x + ξ 1
2

− ξ0
1
2
) − 1

2
| + 2Sign(x − ξ0

1
2
)δ0(ξ) − MRP(F ; F0) + 1

b(x) = 4|F0(x − ξ 1
2

+ ξ0
1
2
) − 1

2
| − 2Sign(x − ξ 1

2
)δ (ξ) + MRP(F ; F0) − 1.

Note that we have used Property (a) of Section 2.2 to introduce
MRP(F ; F0) into the expression for b(x). The theorems in Sections 10.3.1
and 10.3.3 then follow directly from the consideration of (A.10).

F. Properties of the quasirelative data under equality

In this appendix we give properties of the quasirelative data under the
hypothesis of equality of the comparison and reference distributions. These
properties form the basis of the results in Section 10.3 . First, let us consider
the properties of the quasirelative data:
Lemma F.1. Under the hypothesis H0 : F = F0,
1) E(Qj) = 1

2 and σ2 = Var(Qj) = n+2
12n .

2) The correlation between Qi and Qj is 1
n+2 .
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3)

E(|Qj − 1
2
|) =

{ n+2
4(n+1) n even

n+1
4n n odd

σ2
|Qj− 1

2 | = Var(|Qj − 1
2
|) =

{
(n+2)(n2+2n+4)

48n(n+1)2 n even
(n2+2n−3)

48n2 n odd

The covariance between |Qi− 1
2 | and |Qj− 1

2 | is (1/(n+2))σ2
|Qj− 1

2 |, i �= j.

Proof of lemma F.1

By the symmetry in the ranks produced by the hypothesis, the marginal
distribution of Qj is uniform on {i/n : i = 0, . . . n}. So part a) follows easily.
Also

Var(
m∑

j=1

Qj) = Var

 1
n

m∑
j=1

Tj − m(m + 1)
2n

 =
m(n + m + 1)

12n
,

using standard results about ranks. By symmetry the pairwise correlation
between Qi and Qj is the same for each i �= j. If we denote the common
value by φ then

Var(
m∑

j=1

Qj) = mσ2 [(m − 1)φ + 1] .

Comparing the last two expressions proves b). Part c) follows by applying
a similar approach to the distribution of |Qi − 1

2 |.
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application, 111–117
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discrete, application, 205–210
for blocks of variables, 98
interaction effect, 94
multivariate, 95–98
residual effect, 89

Cox proportional hazards model, 154
CPS,

see Data, Current Population Sur-
vey

Cramer-von Mises
statistic, 163, 177
test, 69, 164

cubic B-splines, 137
cumulative distribution function

definition, 18
empirical, 123
relative CDF, 21

Data
Current Population Survey, 16, 50,

76, 181, 199
National Longitudinal Survey, 101

data-adaptive, 136
deciles, 11, 19

relative, application, 2, 53, 106, 112
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decomposition,
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interaction effect, 94, 115
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application, 114–117
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multivariate, 10
of chi-squared divergence, 162
of divergence measures, 65
of the polarization index, 72
regression, 8, 35
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density estimation, 37, 121–157
bandwidth, 128–129, 131, 137, 138,

144, 145, 146, 147, 157, 215
bandwidth choice, 129
difference kernel, 215
exponential family based, 132–138,

147–148
histogram, 125–127, 144
kernel, 127–129, 137, 144–146
local-quadratic vs. kernel, 131
log-spline, 136, 138, 157, 175, 216
nonparametric, 32
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when the reference distribution is

known, 123
density overlay, 7, 24, 41, 52, 55, 73,

102, 111
density ratio, 2, 24, 34, 35, 37, 45, 46

decomposition, 45
relation to relative density, 22

descriptive vs. explanatory tool, 43
diagnostics,

see regression, diagnostics
discriminant analysis, 37
distribution

asymptotic, 132, 165
asymptotic joint, 169
bootstrap, 30
convergence in, 155
convergence with probability one,

155
location matched, 166
ordering, 5
population, definition, 15
posterior, 30
prior, 30
relative frequency, definition, 15

distribution function
sample, 123, 140, 141, 153, 164,

187
distributional divergence,

see divergence measures
distributions

basic concepts, 15–21
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beta, 30, 127, 132, 133, 136
binomial, 39, 123, 227
exponential family, 133
gamma, 30
normal, 14, 22, 27, 47, 106, 123,

155, 159
Pareto, 30, 51
Poisson, 129
standard normal, definition, 17
uniform, 3, 19
uniform, definition, 17

divergence measures, 64–67
alternatives, 64
decomposition of, 65
desired properties, 64
directed, 64

divergence of degree,
see divergence measures, alterna-

tives
Dunn-Šidák inequality, 172

empirical distribution function,
see distribution function, sample

entropy, 67, 76
application, 76–78, 82, 106, 112,

208
equal-precision, 154
estimation

for a pooled reference group, 148
of relative CDF, 141
of relative PDF, 144
when both distributions are un-

known, 140
when the data are censored, 150
when the data are weighted, 152
when the reference distribution is

known, 122, 185–186
exchange rate, 38
Exercises, 11, 13–14, 38–40, 47, 60–

61, 73–74, 87, 99–100, 117–119,
157–158, 176–178, 194–195,
210–212, 227–228

web site for data, 229
expectiles, 220
explained variance, 115
exploratory data analysis, 1, 7

graphical displays, 7–8

fixed effects, 102
function

incomplete beta, 30
indicator, 123, 151, 165
monotone, 19
monotone, definition, 19

gaussian,
see normal

Gini index, 5, 6, 8, 33–35, 49, 60, 70
see also inequality measures, alter-

natives
application, 52, 103

definition, 34
goodness-of-fit, 164
grade density, 32
grade transformation, 21, 32

for discrete data, 179–185
grading function, 32
grouped data, 188–189

heaping, 10, 17
Hermite polynomials, 31, 162, 176,

177
hessian matrix, 134
histogram,

see density estimation, 3, 17
estimator, 127

hypothesis testing, 68–69, 162, 172
achieved significance level, 174
bootstrap, 174

income share elasticity models, 28
inequality

within-group vs. between-group, 6,
76, 80, 86

inequality measures,
see also Gini index,
see also Lorenz curve
alternatives, 6, 8, 67, 70
Theil vs. Gini index, 60

inflation rate, 38
interaction effect, 94, 115
interdistributional comparison, 30
intermediate efficiency, 164, 177
interquartile range, 127
inverse cumulative distribution func-

tion, 19

Jeffrey’s divergence,
see divergence measures, alterna-

tives
joint distribution, 147

Kagan’s divergence,
see divergence measures, alterna-

tives
kernel

boundary, 129
density estimation, 137
density estimator, 203, 224
density estimator, definition, 128
function, 215
function, definition, 128
nearest neighbor estimator, 224

Klotz statistics, 162, 177
Kolmogorov’s variation distance,

see divergence measures, alterna-
tives

Kolmogorov-Smirnov
bounds, 153
distance, 124, 142, 214
test, 69, 164

Kullback directed divergence,
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see divergence measures, alterna-
tives

Kullback-Leibler divergence, 67, 134,
158, 174, 175

see also divergence measures, al-
ternatives

inference for, 160

Legendre polynomials, 31, 162, 163,
164, 176, 177

Lehmann’s alternatives, 141
likelihood, 64, 219

exact likelihood, 148
likelihood-ratio, 37
maximum likelihood estimation,

70, 132–136, 147
penalized, 138, 164
pseudolikelihood, 148

linear rank statistic, 161
location, 181

alternative measures of, 220–221
alternatives, 68
effects, 31
expectile, 220

location adjustment
definition, 44

location shift, 9, 55, 63, 89, 103, 115,
162

additive, 44
additive vs. multiplicative, 61
additive, median, 58
application, 1, 58–60, 76–78, 82,

106–108,
112

definition, 41–43
estimate, 165
mean, 44
median, 44
model, 219
multiplicative, 44
removing, 70–73
summary measure of, 67–69
testing, 162

location-scale model, 33, 45, 219, 223
logarithm,

see transformation
Lorenz curve, 5, 102, 104, 121

application, 55, 103
CDF, 33
grade transformation, 34
PDF, 33
relation to relative distribution,

33–35
lower polarization index,

see polarization index
LRP,

see polarization index

Mann–Whitney test,
see Wilcoxon test

maximal invariant, 6, 33

mean squared error
integrated, 127

measurement scale, 5
median relative polarization,

see polarization index
median shift, 106
median test,

see nonparametric tests, alterna-
tives

mixed effects model, 102, 230
model misspecification, 134–136, 158
model selection, 131, 137
model uncertainty, 134, 136, 137, 138,

158
monotonic transformation, 6
Mood test,

see nonparametric tests, alterna-
tives

MRP,
see polarization index

multinomial distribution, 188
multiple comparisons, 172

Newton-Raphson algorithm, 134
Neyman’s test, 164
Neyman-Pearson test, 164
NLS,

see Data, National Longitudinal
Survey

nonparametric methods, 70
assumptions, 9, 63
local polynomial estimator, 131
regression, 219
regression estimator, 131
relation to relative distributions, 9
smoothing splines, 131

nonparametric tests, 68
alternatives, 161, 176
Normal scores, 162, 177
two-sample, 141

normal
approximation, 153
probability curve, 17

normal scores plot,
see probability plots

normal scores test,
see nonparametric tests, alterna-

tives
normal test,

see nonparametric tests, alterna-
tives

nuisance parameter, 166
numerical optimization routine, 132

ordinal dominance curve, 37
orthogonal series expansions, 73
orthogonal tangent spaces, 166
oscillation patterns, 31
outcome set, 15
outliers, 9, 63
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P-P plot,
see probability plots

parametric densities, 122
parametric methods

assumptions vs. flexibility, 132
families of densities, 121, 148
vs. nonparametric, 6–7, 63

PDF, Lorenz,
see Lorenz curve, PDF

Pearson’s φ2 measure, 66
percentile, 19
Pietra index,

see inequality measures, alterna-
tives

polarization, 8, 55, 76, 103
definition, 69–70
of age-earnings profiles, 101
of wages, application, 197–210

polarization index
application, 78–79, 82–85, 106, 200,

203, 206
decomposition of, 72
definition, 69–73
estimation, 164, 170–172
inference for, 164
inference, discrete data, 190–193
joint distribution of, for time se-

ries, 167
lower, definition, 72
median relative index, 70–72
upper, definition, 72

power, 163
asymmetric loss function, 220
calculation, 141

power weighted divergence,
see divergence measures, alterna-

tives
principles

for effective display, 7
of comparison, 4–6

probability density function
definition, 17

probability mass function, 90, 91, 95,
179, 181, 188

binomial, 39, 227
definition, 15
relative, for discrete data, 194

probability plots, 7
decile ratios, 35
empirical quantile function, 216
histogram, 28
normal scores, 28
P-P plot, 28, 32–33, 194
Q-Q plot, 28, 32–33

proportional hazards, 30
purchasing power parity, 28, 38, 125
p-value, 174

Q-Q plot,
see probability plots

quantile
density function, 214
estimation of, 213–216
function, 11, 124
function, definition, 19
in relative distribution, 34
ratios, 35
vertical quantile comparison func-

tion, 32
quantile regression, 36, 213–227

linear, 221–224
motivation for, 216–221
nonparametric, 213, 224–225
parametric, 213
restricted regression quantiles, 223

quartiles, 19
quasirelative data, 144, 165, 174

definition, 140
location matched, 165, 166, 177
properties, 140–141
use in estimation, 156
weighted, 153

random effects, 102
rank, 2

permutation distribution, 175
transformation, 140

receiver operating characteristics
curve, 37

reference distribution, 21
choice of, 26, 44, 75
known, 27
model based, 28
pooled, 30
pooled vs. unpooled, 31–32

regression, 31
assumptions, 125
diagnostics, 60
dummy variable specification, 31
nonparametric, 138
Poisson, 129, 131, 169, 175
quantile, 213–227
residual diagnostics, 27–28

relative data, 122
definition, 21
interpretation, 24

relative distribution
assumptions, 63
asymptotic joint, 143
CDF, application, 103
CDF, definition, 21
CDF, interpretation, 24
covariate adjustment, 89–100
decile time series, application, 53
deciles, application, 2, 106, 112
decomposition, 4
definition, 21–27
discrete, application, 181–184, 200–

203
for discrete data, 179–195
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inference for, 121–157
inference, discrete, 186–188
median-matched, 70
motivation, 1–4
PDF, application, 103
PDF, definition, 22
PDF, discrete, application, 202
PDF, discrete, definition, 180
PDF, interpretation, 24
relationship to previous methods,

30–37
scale invariance, 6
statistical origins, 30–32
summary measures, 63–73

resampling methods, 8
residual diagnostics,

see regression, residual diagnostics
residuals

standardized, 125
robustness, 9

sample
bootstrap, 174
covariance matrix, 136
dependent, 140
distribution function, 124
finite population, 122, 146
proportion, 188
quantiles, 227
random, 27, 121, 213
size, 10, 123, 124, 125, 128, 134,

142, 146, 148, 149, 153, 155,
163, 172, 175, 215, 221, 225

stratified, 152, 221
survey, 122, 159, 185, 221
weights, 121, 122, 153

sampling
finite and fixed population, 122
variability, 203

scale, 181
alternatives, 68
effects, 31

scale invariance, 4–6, 26, 34–35, 70
location shift, 44
polarization index, 71, 72
Q-Q plot, 33
strong, 6, 8, 34, 38, 63
summary measures, 44

scale shift, 162
testing, 162

score function, 69, 162
semiparametric model, 136
sequential effects, 96
shape, 16, 215

definition, 41
residual, 45–47

shape adjustment
definition, 44

shape shift, 50, 89, 163, 183
application, 76–78, 82, 106–108,

112
definition, 41–43
summary measure of, 67–69

sine basis, 163, 177
skewness, 181
smoothing

absolute continuity, 17
alternative methods, 17
bandwidth, 132
choice of level, 61
density estimation, 37
distributional assumption, 7
in bootstrap estimation, 175
kernel estimator, 32
mean function estimate, 129
nonparametric methods, 12
nonparametric regression, 219
parameter, 139, 169, 175
permanent wage estimation, 102
probability mass function, 16
quantile function estimator, 215
quantile regression assumption, 224
relative, 174
relative distribution, 24, 124, 185
score function, 69
spline model, 131, 225
tail estimates, 138, 145

social welfare function, 5
squared error

asymptotic mean integrated, 127,
128, 146

integrated, 125
mean, 125, 126
mean integrated, 125, 126

standard error, 133, 137, 168
statlib, 13
stem and leaf plot, 7
step function, 180
sufficient statistic, 64
summary measures, 1, 8–9, 20–21, 63–

73
application, 76–87
based on Neyman’s test, 164
computing standard errors, 168–

169
distributional differences, 159–160
divergence,
see divergence measures, 160
estimates of polarization, 170–172
expectation, definition, 20
explained variance, 67
hypothesis testing, 68–69, 160–164
inference for, 159–175, 178
robustness, 63
variance, definition, 20

summary statistics,
see summary measures

survey data, 121, 164
survival analysis, 30
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tail probability,
see p–value

Taylor Series expansions, 128
testing,

see hypothesis tests
Theil index,

see inequality measures, alterna-
tives

top-code, 51
transformation

log-earnings, 19
log-wages, 58
logarithm, 44
monotonic, 6, 34, 72
rank, 140
variance-stabilizing, 131

two-sample
density estimation, 148
estimation, 121
rank statistics, 121

U-statistic, 170

unconditional comparison, 90
unique effects, 95
unit of measurement, 34
upper polarization index,

see polarization index
URP,

see polarization index
utility function, 5

relation to scale invariance, 5–6

variance of logarithms,
see inequality measures, alterna-

tives
variances of log-values, 70
visualization, 7

weighted average, 91
Wilcoxon test,

see nonparametric tests, alterna-
tives, 162




