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Preface

The antecedents of this book begin with the Program Statistics Research
Project at Educational Testing Service (ETS). This was an initiative started
in 1978 by Donald Rubin (in the Research Division) and Robert Solomon
(the Executive Vice President of ETS at that time). Its purpose was to fo-
cus the statistical research interests of the newly formed Research Statistics
Group on problems relevant to the work of the testing programs at ETS.
Paul Holland was given the responsibility for test equating research while
Rubin primarily worked on problems related to predictive validity (Rubin,
1980). These two topics are reoccurring themes for the testing programs. Of
course, research on test equating has had a long history at ETS; the most
notable early work was that of Lord (1950, 1955a) and Wilks (1961). In ad-
dition, Ledyard Tucker was renown for his many theoretical and practical
developments in this area.

The work on test equating of the Program Statistics Research Project
led to a conference on test equating in 1980 reported in Holland and Ru-
bin (1982). A new equating method, Section Pre-Equating (Holland and
Thayer, 1981), was invented as a direct consequence of the basic equating
research of the project and the need for a technical response to the New
York test disclosure legislation of the early 1980’s (McAllister, 1993).

Kernel Equating (KE) was developed in a series of ETS technical reports
as a natural next step in this program of research on test equating. The
starting point was the development of useful probability models for fitting
the score distributions that arise in test equating (Holland and Thayer,
1987). The log-linear models for score distributions discussed there were
uniquely able to fit the real data of many practical testing situations. Prior
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to that work there were only a few models available for fitting score dis-
tributions and these did not deal with many of the complexities of actual
test data. The next step was to develop a new equating method that could
fully exploit the log-linear models for score distributions. This was quick to
follow. The result was Kernel Equating. KE was developed during the late
1980’s and documented in two ETS technical reports, (Holland and Thayer,
1989; Holland et al., 1989). Liou and Cheng (1995) also contributed to the
development of KE by connecting it to problems of estimation when there
is missing data.

After the initial flurry of this half-decade of development, further work on
Kernel Equating stalled. While it remained a specialized method of some
theoretical interest, during this period it was used in only one practical
circumstance of which we are aware, reported in Dorans (2002). Other
research and practical issues, such as DIF (Holland and Wainer, 1993), took
attention away from further developments of KE at ETS. Work was done by
others that showed the utility of log-linear smoothing of score distributions
in test equating applications (Livingston, 1993a; Hanson, 1996). However,
except for a brief evaluation study (Livingston, 1993b) nothing was done to
widen the applicability of KE beyond the initial two designs discussed in the
earlier technical reports—the Equivalent Groups and the Non-Equivalent
groups with Anchor Test Designs.

In the summer of 2000, Holland returned to ETS after a seven-year period
at the UC Berkeley Graduate School of Education and resumed his long-
standing research collaboration with Dorothy Thayer. In the spring of 2001,
he met Alina von Davier, a mathematical statistician who was looking
for interesting research questions. Their conversations led her to join the
research staff at ETS in the summer of 2001 and to the subsequent decision
for the three authors to write this book. It was realized early on that to
be useful, the book would need to include ways to apply KE to all of the
usual equating designs. This required a good deal of new research that was
carried out as the book was written and supported by the ETS Research
Allocation.

Not only were we able to apply KE to all of the usual designs, but our
research also led us to new ideas including the Standard Error of Equating
Difference (SEED), a measure of the accuracy of the estimated difference
between two equating functions.

By the winter of 2002, we had a good working draft of The Kernel Method
of Test Equating, and began to try it out on those of our colleagues in R&D
at ETS who have operational responsibilities for equating tests on a regular
basis. We ran a workshop on KE at ETS and used it to improve the material
in our initial draft of the book. This book is the final result.

However, we believe that serious further research on Kernel Equating
is not only possible, but is a program likely to bear fruit. Throughout
this book we indicate topics that can further illuminate and improve upon
what we present here. We hope that researchers and graduate students in
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statistics, psychometrics, and educational measurement, looking for useful
research topics, will consider some of the possibilities we indicate here, and
push the work reported in this book in new directions.

It is important to remember that test equating is about 100 years old,
and was used as early as the Army Alpha tests of the early part of the
20th century. By now some think that modern test theory has removed
the need to equate tests, but we think this is a dream yet unrealized,
and perhaps unrealizable. The equivalence of scores from different tests,
no matter how carefully constructed to be parallel, is always an empirical
question. The methods and models of test equating have been, for nearly a
century, the way that data and theory have come to grips with this hoped-
for equivalence. We do not expect it to be any different in the near future,
or, perhaps, ever.

How this book is organized. The book is divided into two parts. In the first
we develop the theory of Kernel Equating, and in the second, we apply it
to real examples of the most important equating designs. Chapter 1 is an
introduction in which we give a little history of equating, some general dis-
cussion about test linking and test equating in particular, and develop the
basic notation that we use throughout the rest of the book. In addition, we
review the linear and equipercentile equating functions and the standard
error of equating (SEE). Chapter 2 reviews the four basic test-equating de-
signs as well as the application of both the chain and the post-stratification
approaches to the Non-Equivalent groups with Anchor Test Design. Our
development of the equating designs is aimed at our later discussion of them
within the context of KE. Chapters 3, 4, and 5 all deal with the mathe-
matical basis of KE. These are technical chapters that spell out, in detail,
the theory of KE. Chapter 6 compares KE to both the linear method and
percentile rank method of equipercentile equating and addresses what we
believe are its advantages over both.

Part II of the book begins with Chapter 7. Each of the five chapters in
Part II addresses a different equating design and shows how to apply KE
to it. In these chapters we use real data to show how KE can be applied
in each situation. We have attempted to give enough information in each
of these application chapters that practitioners can see how the new tools
that KE provides work, as well as how the actual use of KE can proceed in
practice. Furthermore, to aid in the use of this book as a reference for KE,
we tried to make each of the chapters in Part II as similar as we could. The
result is a certain amount of repetition in Chapters 7—11. We also make
continual references to the appropriate parts of Part I in Chapters 7—11,
as well.

Our application of KE to the Counterbalanced Design gives a new ap-
proach to equating using this design. Our treatment of both Chain and
Post-Stratification Equating in the Non-Equivalent groups with Anchor
Test Design is, to our knowledge, the first to give parallel developments
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of these two approaches from a common point of view. Finally, our de-
velopment of the standard error of equating (SEE) for all of the common
equating designs, including Chain Equating for the Non-Equivalent groups
with Anchor Test Design, is probably the most comprehensive comparison
of the SEE’s since the early work of Lord (1950, 1955a).

Acknowledgements. We are indebted to ETS and to many ETSers for their
assistance and encouragement in the production of this book: Drew Gito-
mer for financial support; John Mazzeo, Neil Dorans, Skip Livingston, Kr-
ishna Tateneni, Wen-Ling Yang, Cathy Wendler, and Miao-Hsiang Lin for
encouragement, review, and valuable suggestions; Kristen Huff and Miriam
Feigenbaum for their support in the process of gathering the data; and Di-
ane Rein, Elizabeth Brophy, and Martha Thompson for their assistance in
the production of the book.

This work is a collaboration in every respect and the order of the au-
thorship is alphabetical.

Princeton, NJ Alina A. von Davier

September, 2003 Paul W. Holland

Dorothy T. Thayer
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List of Notation

The list of notation is ordered, approximately, by first appearance in the
book.

TABLE 1:

Symbol Explanation First
appearance

X, Y : The names of two tests to be equated. 1.2

A : The name of the anchor test in the Non-
Equivalent groups with Anchor Test (NEAT)
Design.

1.2

X, Y : The scores from X and Y, respectively, re-
garded as random variables.

1.2

A : The score on the anchor test, A, regarded as
a random variable.

1.2

J, K, L : Number of possible X-, Y -, or A-scores, re-
spectively.

1.2

xj : A possible score value for X, j = 1 to J. 1.2

yk : A possible score value for Y , k = 1 to K. 1.2

al : A possible score value for A, l = 1 to L. 1.2

continued on the next page
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TABLE 1: continued

Symbol Explanation First
appearance

T : The target population of examinees on which
the equating of X and Y takes place.

1.2

∑
j : Sum over the full range of j. 1.2

G−1(u) : Inverse function of G. The solution to u =
G(y), for a specified u.

1.4

rj : Prob{X = xj |T} = the score probability of
X = xj over the target population, T.

1.2

sk : Prob{Y = yk | T}= the score probability of
Y = yk over the target population, T.

1.2

tl : Prob{A = al |T} = the score probability of
A = al over the target population, T.

1.2

F (x) : Prob{X ≤ x |T} = cumulative distribution
function (cdf) of X over T.

1.2

G(y) : Prob{Y ≤ y | T} = cdf of Y over T. 1.2

H(a) : Prob{A ≤ a |T} = cdf of A over T. 1.2
Subscripts on F, G, and H indicate that the
cdf’s refer to other populations, i.e., P or Q.

µX , σX : The mean and standard deviation of X over
the target population, T.

1.2

µY , σY : The mean and standard deviation of Y over
the target population, T.

1.2

LinY : The linear equating function for equating X
to Y over T.

1.3

EquiY : Any version of the equipercentile equating
function for equating X to Y over T.

1.4

eY : Usually, the Kernel Equating function for
equating X to Y over T. It is used in Chap-
ter 1 to refer to any equating function that
equates X to Y over T.

1.7

continued on the next page
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TABLE 1: continued

Symbol Explanation First
appearance

KE : The Kernel Method of Equating. 1.1

EG : The Equivalent-Groups Design. 1.6

SG : The Single-Group Design. 1.6

CB : The Counterbalanced Design. 1.6

NEAT : The Non-Equivalent groups with Anchor Test
Design.

1.6

SEEY : The Standard Error of Equating for an equat-
ing function that equates X to Y on T.

1.7

P and Q : Populations of examinees. 2

rPj , sQk,
tPl, tQl: Score probabilities for X , Y , and A over the

populations P and Q (the NEAT Design).
2.4.1

r : The (column) vector of score probabilities, rj . 2.1

s : The (column) vector of score probabilities, sk. 2.1

t : The (column) vector of score probabilities, tl. 2.4.1

rP , sQ,
tP , tQ : The (column) vectors of score probabilities for

X, Y , and A over the populations P and Q
(the NEAT Design).

2.4.1

DF : Design Function. 2

df : Degrees of freedom. 9

IRJ : Euclidean J-dimensional space. 2.1

ΩJ : The set of all J-dimensional score probability
vectors, r.

2.1

pjk : Prob{X = xj , Y = yk |T} = the bivariate
score probability of X = xj and Y = yk over
the target population, T.

2.2

continued on the next page
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TABLE 1: continued

Symbol Explanation First
appearance

P : For the SG Design, the J by K matrix of bi-
variate score probabilities for (X, Y ). For the
NEAT Design, the J by L matrix of bivariate
score probabilities, pjl, for (X, A).

2.2

pk : The kth column vector of P. 2.2, 2.4

v(P) : The vectorization of the matrix, P. In the SG
Design, v(P) is a JK-dimensional column vec-
tor.

2.2

qkl : Prob{Y = yk, A = al |Q} = the bivariate
score probability of Y = yk and A = al over
the population, Q.

2.4

Q : For the NEAT Design, the K by L matrix of
bivariate score probabilities for (Y , A) on Q.

2.4

ql : The lth column of Q. 2.4

v(Q) : The vectorization of Q. In the NEAT Design,
v(Q) is a KL-dimensional column vector.

2.4

IJ : The J by J identity matrix. 2.1

0 : A matrix or vector of all zeros of appropriate
dimension.

2.1

M : A matrix of zeros and ones used to compute
the column vector of the row sums of a bi-
variate score probability matrix, P, from its
vectorized version, v(P). M is defined in equa-
tions (2.9) and (2.11). M with subscripts de-
notes versions of M that arise in various equat-
ing designs throughout this book.

2.2

N : A matrix of zeros and ones used to compute
the column vector of the column sums of a bi-
variate score probability matrix, P, from its
vectorized version, v(P). N is defined in equa-
tion (2.10) and (2.12). N with subscripts de-
notes versions of N that arise in various equat-
ing designs throughout this book.

2.2

continued on the next page
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TABLE 1: continued

Symbol Explanation First
appearance

1J : A column vector of all ones. 2.2

X1 : In the CB Design, the X-score that is obtain
when examinees are tested first by X and sec-
ond by Y. Likewise, X2, Y 1, and Y 2 are de-
fined analogously.

2.3

P(12) : The version of the bivariate score probability
matrix that arises in the CB design when X
is taken first and Y second. P(21) is defined
analogously.

2.3

p(12)jk : The entries in the matrix, P(12). p(21)jk are the
entries in P(21).

2.3

wX , wY : In the CB Design, the weight given to the data
that are not subject to order effects.

2.3

r1, s1,
r2, s2 : In the CB Design, the score probability vectors

for X1, Y 1, X2, and Y 2, respectively.
2.3

w : In the NEAT Design, the weight given to pop-
ulation P in the definition of the Target Pop-
ulation, T = wP + (1 − w)Q.

2.4

eY (CE): Chain Equating function equating X to Y . 2.4.1

eY (PSE) : Post-Stratification Equating function equating
X to Y .

2.4.2

êY hXhY : KE function equating X to Y using band-
widths, hX and hY , in the continuization step.

3.1

F̂hX : The KE continuized version of F (x) using a
bandwidth of hX . Defined in (4.5).

4.1

ĜhY : The KE continuized version of G(y) using a
bandwidth of hY . Defined in (4.8).

4.1

u : The vector used to specify a log-linear model
for score probabilities, whose dimension equals
the number of score values. In our examples,
u = 0.

3.2.1

continued on the next page
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TABLE 1: continued

Symbol Explanation First
appearance

B : The B-matrix used to specify a log-linear
model for score probabilities. Row dimension
of B = the number of parameters in the model
and the Column dimension of B = the number
of score values.

3.2.1

IS(xj) : The subset indicator variable, which has the
value 1 if xj ∈ S, and 0 otherwise.

3.2.1

Σr̂, ŝ: The cross-covariance matrix of the estimated
score probability vectors, r̂ and ŝ.

3.2.1

Σr̂ : The covariance matrix of the estimated score
probability vector, r̂.

3.2.1

Cr : The C-matrix factor of Σr̂. C-matrices occur
throughout this book, with and without sub-
scripts, to make them appropriate to specific
equating designs.

3.2.1

Dr : The diagonal matrix with the vector r along
its main diagonal.

3.2.1

√
r : The vector whose entries are the (positive)

square roots of the vector r.
3.2.1

aX : The value defined in equation (4.4), that is
part of the definition of the KE continuization
process using Gaussian Kernel smoothing.

4.1.1

hX , hY : The two bandwidths that are used to define
the KE continuizations of F (x) and G(y).
They are positive numbers. Large values of
the bandwidths lead to linear equating, while
smaller values give more “equipercentile-like”
equating functions.

4.1.1

N (µ, σ2) : The Normal or Gaussian distribution with
mean µ and variance, σ2.

4.1.1

Φ : The Normal or Gaussian cdf. 4.1.1

continued on the next page
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TABLE 1: continued

Symbol Explanation First
appearance

PEN1 : A penalty function used to chose an “optimal”
bandwidth in the continuization process. De-
fined in equation (4.27).

4.1.2

PEN2 : A penalty function used to chose an “optimal”
bandwidth in the continuization process. De-
fined in equation (4.29).

4.1.2

PRE(p) : The “Percent Relative Error” in the pth mo-
ments. A tool to compare the distribution of
Y with the equated values, eY (X).

4.2

R, S : A general notation to denote the pre-smoothed
data that arises in any equating design. Val-
ues of R and S are specified in Table 5.1 for
each equating design in this book. The related
notation for the number of score values, pa-
rameter estimates and C-matrices are given
in Table 5.2.

5.2

JeY : The Jacobian matrix of the KE function with
respect to the score probabilities, r and s. De-
fined in equations (5.9) and (5.19).

5.2

JDF : The Jacobian matrix of the Design Function
with respect to the score probabilities of the
pre-smoothed data in each equating design.
Defined in Tables 5.3 and 5.4 for the designs
used in this book.

5.2

||v || : The Euclidean length (norm) of the vector, v.
The square-root of the sum of squares of its
coordinates.

5.2

∂F
∂r : The row vector of partial derivatives of the KE

continuized cdf, F (x; r) with respect to each
coordinate of r. Analogously for ∂G

∂s .

5.3.1

F ′, G′ : The density functions of the continuized cdf’s
F and G.

5.3.1

U, V : Matrices, with and without various subscripts,
that are all similar and defined in the discus-
sion of Tables 5.5 and 5.6.

5.3.2

continued on the next page
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TABLE 1: continued

Symbol Explanation First
appearance

SE-vector: A vector, of the general form, JeY JDFC,
whose length is the value of SEEY (x). An im-
portant computational tool for KE.

5.2

SEEDY : The Standard Error of Equating Difference for
the difference between two equating functions
that both equate X to Y on T.

5.3.3

PRMY : The percentile rank method of equipercentile
equating X to Y .

6.2

N, M : The samples sizes for various designs. Sub-
scripts are added as necessary to deal with in-
dividual equating designs.

7

LR : Likelihood ratio Chi-square statistic. 9.1



1
Introduction and Notation

“The comparability of measurements made in differing circumstances

by different methods and investigators is a fundamental pre-condition

for all of science. Psychological and educational measurement is no

exception to this rule. Test equating techniques are those statistical

and psychometric methods used to adjust scores obtained on different

tests measuring the same construct so that they are comparable.”

Dorans and Holland (2000)

1.1 Introduction

The assertion above follows a long line of similar claims about what test
equating is, and what it is supposed to accomplish. Related observations
may be found in Lord (1950, 1955a), Wilks (1961), Angoff (1971), Holland
and Rubin (1982), Petersen et al. (1989), Kolen and Brennan (1995), and
Dorans (2000).

The need for test equating arises when there are two or more tests of
the same construct or subject that can yield different scores for the same
examinee. The most common example is a testing program, as opposed to a
single testing instrument. A testing program is a system that regularly pro-
duces different test forms that are similar in content and format, but may
contain completely different test questions. Because the tests may contain
different questions, they can vary in difficulty depending on the degree of
control available in the test development process. Examinees tested with
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the more difficult test forms will get lower scores than they would get had
they been tested with the easier forms. Because testing programs often
require comparability of the scores produced on these different forms, test-
equating techniques were developed to adjust for these differences in test
difficulty. The goal of test equating is to allow the scores on different forms
of the same tests to be used and interpreted interchangeably.

Test equating, as it is currently practiced, requires some type of control
for differential examinee ability, or proficiency, in the assessment of, and ad-
justment for, differential test difficulty. An early reference to test equating
is Kelley (1923) in a chapter entitled “Comparable Measures.” Kelley uses
the phrase “method of equating scores” and illustrates two common meth-
ods that continue to be used today—the linear and equipercentile equating
functions. He is vague about the need to control for differential examinee
ability, but seems to be aware of the problem as the following quotation
suggests.

“It is frequently desired to compare the performances of pupils re-

ceiving marks in different subjects. If the pupils have no subjects

and no teacher in common this can only be done by making some

assumption. If there are three teachers each with 50 pupils, it is more

reasonable to assume that the mean abilities of the three groups are

equal than that similar literal or percentage grades of the three teach-

ers are equivalent.” (page 120)

If we substitute “tests” for “teachers” in Kelley’s remarks, then the pos-
sibility that differential examinee ability can confound an assessment of
differential test difficulty (or teacher grading severity), and vice versa, is a
plausible part of Kelley’s thinking at that early date.

By the time the large-scale testing programs came into existence in the
1930’s, 1940’s and 1950’s, with the need for the continual development
of new test forms (the ACT and SAT being easily identified examples),
test equating had become a specialized need, and regular activity of, the
organizations responsible for these programs.

From the 1920’s to the 1970’s various test-equating methods were de-
veloped and applied to the specific circumstances of different testing pro-
grams. Gulliksen (1950) describes several methods that were developed
from the 1920’s to the late 1940’s. Angoff (1971) codified the procedures
used throughout the testing industry in a reference that is still up-to-date
in many respects. In the 1980’s a mathematical theory for test equating
was seen to be a desirable enterprise and Lord (1980), Braun and Hol-
land (1982), and Morris (1982) proposed different first attempts at such
mathematical theories. However, it is probably fair to say that past and
current discussions of test equating are less about mathematical theories
of equating and more about methods of test equating. The scholarly work
of Kolen and Brennan (1995) discusses many issues that are involved in
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actually doing test equating, and is an important reference for the many
methods used to equate tests.

The advent of modern statistical models for test data, in particular, Item
Response Theory (Lord, 1980; Hambleton et al., 1991; Thissen and Wainer,
2001; and many others), has provided new ways to think about and to carry
out procedures that attempt to solve some of the problems addressed by
the older test equating methods.

The focus in this book is on observed-score test equating (Braun and
Holland, 1982), and we develop extensively one particular method called
Kernel Equating (KE). Observed-score test equating is just one of several
topics that fall within the general area of linking together scores from dif-
ferent tests. But observed-score test equating is widely applicable, is used
in many diverse situations, and is a useful framework for discussing other
aspects of test-score linking.

We may briefly describe observed-score equating in the following general
terms. The raw scores on a new test, say test X, are to be transformed to
be “equivalent” to the raw scores on an old test, say test Y. For example,
it might be that a 5 on X gets “equated to” or transformed to a 6.3 on Y.
The job of equating is accomplished by finding a suitable transformation,
called an equating function, that is applied to each raw-score from test X
and results in the equivalent Y -score for each X-score. The term “observed-
score test equating” is used to distinguish it from methods that are more
appropriate for transforming the “true scores” of Classical Test Theory
rather than transforming the observed scores that examinees obtain on
real tests (Lord and Novick, 1968; Feldt and Brennan, 1989). We give a
more precise definition of observed-score equating in Section 1.4.

We shall use the term “test linking” to refer to the general problem of
linking or in some way connecting the scores on two different tests. We will
reserve “test equating” to mean something special within the general area
of test linking. Ideally, when the scores on two tests are equated they may
be used interchangeably for any purpose.

While there is no unified perspective on test equating, over the last cen-
tury, practitioners and theoreticians have identified five guidelines or “re-
quirements” as a core of ideas that are important for understanding the
issues involved in test equating, as opposed to weaker (i.e., more general)
forms of test linking. We summarize these guidelines using the words of Do-
rans and Holland (2000), but these ideas were explicitly stated in similar, if
not, identical, terms, by Angoff (1971), Lord (1980), Petersen et al. (1989),
Kolen and Brennan (1995) and probably by many others as well.

“In addition to the many techniques for actually doing test linking,
there are five ‘requirements’ that are often regarded as basic to all
of test equating.

(a) The Equal Construct Requirement: tests that measure
different constructs should not be equated.
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(b) The Equal Reliability Requirement: tests that measure
the same construct but which differ in reliability should not be
equated.

(c) The Symmetry Requirement: the equating function for
equating the scores of Y to those of X should be the inverse of
the equating function for equating the scores of X to those of
Y.

(d) The Equity Requirement: it ought to be a matter of indif-
ference for an examinee to be tested by either one of two tests
that have been equated.

(e) Population Invariance Requirement: the choice of (sub)
population used to compute the equating function between the
scores of tests X and Y should not matter, i.e., the equating
function used to link the scores of X and Y should be population
invariant.”

Dorans and Holland (2000) comment on these five requirements and indi-
cate how they are, at best, rough guidelines rather than easily verified con-
ditions. In addition, (a)–(e) refer to different levels of analysis. For example,
Equity is stated in terms of individual examinees, while Equal Reliability
and Population Invariance are stated in terms of population quantities.
Symmetry is about a mathematical property and Equal Construct is about
the nature and possible uses of the tests.

The requirements of test equating are often regarded as the most strin-
gent of the various methods for linking test scores (Linn, 1993; Mislevy,
1992; Angoff, 1971). We will not discuss other linking methods in this
book, but for the sake of completeness we will now indicate how one might
think of some of the other methods in terms of weakening the above five
requirements.

If we ignore the Population Invariance requirement, (e), then the linking
relationship is sometimes called a concordance. A concordance between the
scores of two tests is a transformation between the scores of Y and X that
is designed to hold for a specific population of examinees, and there is no
claim that it holds for any other. The methods used to form concordances
are often the very same as those used to carry out observed-score test
equating. Moreover, some of the other five requirements may fail to hold
sufficiently well in situations that are called concordances. For example, the
Constructs the tests measure may not be the same, but may be similar;
or they may not be Equally Reliable; or there may be some other sense in
which the Equity Requirement does not hold well enough. The Symmetry
condition often does hold for concordances.

In other situations, we are only interested in predicting the scores or the
distribution of scores on one test from those on another test. Predicting
individual scores or projecting distributions of scores on one test from data
from another test may not involve any of the five requirements of equating.
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Certainly, prediction is an asymmetric relationship and it is well known that
regression equations do not invert in the way that the Symmetry condition
requires (discussions of this point arose at least as early as Thorndike, 1922,
and Otis, 1922). Tests of any type can be used to predict scores on a given
test, they need not measure the same construct nor be similar in reliabil-
ity. The Equity Requirement has little to do with prediction. Predictions
may vary with subpopulations and, indeed, subpopulation information may
be included in predictions or projections, thereby explicitly violating the
Population Invariance requirement.

The five requirements of test equating are intended to insure that scores
on the two tests are interchangeable. While this is a difficult goal, it is what
test equating is all about.

The five requirements are helpful in deciding when equating is appropri-
ate or inappropriate. Feuer et al. (1999) use such an approach to address the
question of the feasibility of creating a system of linking functions between
several commonly used standardized tests and the scale of the National
Assessment of Educational Progress (NAEP).

However, the five requirements do not address the question of whether or
not test equating is necessary or not. Not every pair of tests or test forms
actually needs to be equated. This decision depends on the use to which
the test are to be put and the circumstances of this use. For example, some
testing programs give one test a year, and students are ranked on that test
for some purpose such as college admissions. If all that the test is used for is
to find the top performing students on it for that year, and the scores from
one year are not ever compared to those from previous years, then equating
the forms given annually to a common scale may be an unnecessary and
expensive exercise. It is rarely useful to equate course exams given in high
school or college because teachers often either “grade on a curve” or use
their judgement as to the adequacy of each individual’s test performance
relative to the course goals. On the other hand, if several test forms are used
throughout the testing year for a common purpose and it is important that
differences between the relative difficulties of the different test forms not
affect the assessment of students taking different forms, then test equating
is probably necessary.

1.2 The Notation Used in This Book

We adopt a notational scheme in this book that we will apply consistently
across all of the chapters. In this section we develop some of this notation
and then use it in the next two sections to discuss the linear and the
equipercentile equating functions. In this and the next three sections our
concern is with population level quantities rather than sample estimates.
We will turn to estimating equating functions in Section 1.7.
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We let X and Y denote two tests or two forms of the same test. In
addition, we let T denote the target population on which the observed-
score equating is to be done. Following Braun and Holland (1983) and
Kolen and Brennan (1995), we explicitly include the target population T
in the discussion for any observed-score test equating method.

Thus, we follow Dorans and Holland (2000), in regarding satisfaction
of the Population Invariance requirement of Section 1.1 as an empirical
question that can only be answered by varying the target population, T.
If the resulting equating functions for different T s are different enough to
have practical consequences, then we would regard the Population Invari-
ance requirement as being violated. However, the use of a common target
population is the way that we “control for” differential examinee ability in
observed-score test equating. The difference in observed test performance
is due to test differences, not examinee differences because the tested pop-
ulation is the same.

We will denote the scores on X and Y by X and Y , and regard X and
Y as random variables with distributions. The motivation for this is to
regard X or Y as the scores of randomly selected examinees from T.

As we shall see in Chapter 2, the target population is very clear for
some data collection designs used in test equating, but for other designs it
needs careful definition. We will give the details of the choice of T in our
discussions of the different data collection designs in Chapter 2.

Score distributions are usually discrete so that to adequately describe
them we need to specify both their possible values and the associated prob-
abilities of these possible values. This level of detail, in the description of
test score distributions, is necessary to adequately describe KE.

We will denote the possible values of X by

xj for j = 1, . . . , J, (1.1)

and those of Y by

yk for k = 1, . . . , K. (1.2)

We then denote the score probabilities of X and Y by

rj = Prob{X = xj |T } and sk = Prob{Y = yk |T } , (1.3)

where the probability, Prob{ |T }, in (1.3), is that associated with random
sampling from (or conditional on) the target population, T. We will adopt
the convention of suppressing T in our notation as much as possible, but
it is always implied. This is why we do not subscript rj and sk with a T.
However, when there are other populations that must be considered, as
there are in the anchor test designs discussed in Chapters 2, 10 and 11, we
will make them explicit in the notation, usually as subscripts.

To help clarify our notation so far, in the simple case of “number right
scoring,” the possible values for X are just the consecutive integers, x1 = 0,
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x2 = 1, x3 = 2, etc. In other cases, the possible values of X and Y need
not be consecutive integers and can be negative or have fractional parts—
unrounded formula scores are the most well known example of this, but
“theta-hats” from models that use some form of Item Response Theory are
another example of scores that need not be consecutive integers. However,
in all of the examples used in this book the {xj} and {yk} are consecutive
integers. We do not give any serious consideration to other possibilities in
this book.

The score probabilities, {rj} and {sk}, are positive numbers that sum to
unity. While the sample frequencies corresponding to a given score for X
or Y may be zero, in the target population we always assume that every
score is possible, and simply delete from consideration any that are not
logically possible. In this book we will assume that the values of {xj} and
{yk} are specified and known.

In some settings we will need to refer to an “anchor test,” A, and will
use the following similar notation for its distribution over T :

tl = Prob{A = al |T } , for l = 1, . . . , L , (1.4)

where al denotes a possible value of A .
In Chapters 2, 10, and 11 we will define additional notation that arises

when an anchor test is part of the data collection design, but in this chapter
we are interested in more general considerations and the above level of
notational detail is sufficient for our purposes.

In addition to the discrete score distributions described above, we will
also need a notation for the cumulative distribution functions (cdf’s) of X ,
Y and A, so we set up that notation now. The cdf’s of X, Y and A over
T are denoted by:

F (x) = Prob{X ≤ x |T } ,

G(y) = Prob{Y ≤ y |T } , (1.5)
H(a) = Prob{A ≤ a |T } .

Again, we suppress the reference to T in F, G and H, but it is always
implied when we refer to these cdf’s, and when we need to indicate the
population that is relevant to a cdf we will include it as a subscript. This
will arise in the chapters that consider anchor test designs.

We will denote the moments of X and Y over T in a familiar way
whenever possible. For example, the means and standard deviations of X
and Y over T are denoted as

µX = E(X |T ), µY = E(Y |T ),

σX = SD(X |T ), σY = SD(Y |T ),

where E(X |T ) denotes the expected value of X over (or conditional on)
T and SD(X |T ) denotes the standard deviation of X over T.
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As an example of our use of this notation, the moments indicated above
are calculated from the possible values and the score probabilities in the
following, well known, manner:

µX =
∑

j

xjrj , µY =
∑

k

yksk,

σ2
X =

∑
j

(xj − µX)2rj , σ2
Y =

∑
k

(yk − µY )2sk. (1.6)

Throughout this book we will use the vector notation, rt = (r1, . . . , rJ ),
where the superscript t always denote vector transpose. The J-dimensional
(column) vector, r, contains all of the X-score probabilities over T. Sim-
ilarly, s is the corresponding K-dimensional (column) vector of Y -score
probabilities over T. In Appendix D we review the ideas of vectors and
matrices that we use throughout this book.

We emphasize here that, in our notation, the score distributions spec-
ified by r and s always refer to the target population, T, on which the
observed-score equating function is being computed. There may be other
populations that arise besides the target population, and there may be rel-
evant score distributions for X and Y over them, but we will use different
symbols to refer to score distributions that are not computed over T. How-
ever, in specifying an observed-score equating method it is important to
clearly specify the target population. In observed-score test equating, the
Population Invariance requirement is always an open question that should
be empirically examined.

1.3 The Linear Equating Function

Perhaps the most familiar and widely computed, if not actually used, of
all the equating functions is the linear equating function. We denote it by
LinY (x) to indicate that X is being linearly equated to Y on T. LinY (x)
is old and well known (Otis, 1922; Hull, 1922; Angoff, 1971) and given by
the formula,

LinY (x) = µY + (σY /σX)(x − µX), (1.7)

where the relevant moments of X and Y are specified in (1.6). As usual,
in the notation of (1.7) we have suppressed any explicit reference to T, but
it is there implicitly because the moments of X and Y are computed over
T.

It is often noted that LinY (x) has the form of a simple linear regres-
sion function of Y on X where the correlation is assumed to be unity.
This observation is more confusing that helpful—a confusion that has been
pointed out repeatedly (Otis, 1922; Hull, 1922; Flanagan, 1939; Lord, 1950,
1955a)—and we will not propagate this confusion here. LinY (x) is also
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called the “mu and sigma line” as well. Its main property, for use in test
equating, is that it is a transformation of X-raw scores into Y -raw scores
that has the property that the distribution of X is changed so that it has
the same mean and variance over T that Y has, that is,

E(LinY (X) |T ) = µY and Var(LinY (X) |T ) = σ2
Y . (1.8)

Note that the linear regression function of Y on X would not satisfy the
second part of (1.8), because the squared correlation coefficient would mul-
tiply σ2

Y .
The earliest uses of the linear equating function were based on a very old

notion (going back to Galton according to Kelley, 1923) of the “equivalence”
of “standard scores.” X-score x and Y -score y are equivalent in this sense
if they are the same numbers of standard deviation units away from their
respective means in T, i.e., if they have the same “standard score” or
“z-score”,

(x − µX)/σX = (y − µY )/σY . (1.9)

It is a simple exercise to derive (1.7) from (1.9). It is also easy to show that
the linear equating function satisfies the Symmetry requirement listed in
Section 1.1. This follows from the fact that if we solve the equation, y =
LinY (x), for x in terms of y we get x = µX +(σX/σY )(y−µY ) = LinX(y) .

1.4 The Equipercentile Equating Function

We now turn to the most important of the observed-score equating meth-
ods, the equipercentile equating function. We may think of it as arising
from generalizations of either (1.8) or (1.9). To generalize (1.8), we might
ask if an equating function can be found that forces all of the moments
of the transformed X to match those of Y on T. To generalize (1.9) we
could propose a notion of equivalence in which x and y are equivalent if
they are at the same quantile of their respective distributions over T rather
than merely having the same z-score. Both of these approaches, suitably
interpreted, lead to the equipercentile equating function. We begin with
generalizing (1.8).

It is well known (Kennedy and Gentle, 1980, page 176) that if F (x) from
(1.5) were a continuous and strictly increasing cdf, then the transformed
random variable U = F (X) has the uniform distribution over (0, 1) . Sim-
ilarly, if G from (1.5) has a (properly defined) inverse, G−1(u), for u in
(0, 1), then V = G−1(U) has the distribution specified by G when U
has the uniform distribution on (0, 1) . Hence, the composed transforma-
tion V = G−1(F (X)) will have exactly the same distribution as Y over
T. Thus, in the case where both of the cdf’s involved are continuous and
strictly increasing, the transformation of X,

EquiY (X) = G−1(F (X)), (1.10)
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is a generalization of LinY (x) in (1.8) in the sense that it matches all of
the moments of Y over T.

However, score distributions are discrete in most cases and therefore the
cdf’s are not continuous and strictly increasing, instead, they are jump
functions, with jumps at the possible values of the discrete distribution.
Hence, in order to use formula (1.10), some way must be found to deal
with the discreteness of the two score distributions.

The earliest motivation for equipercentile equating comes from general-
izing the notion of equivalence in (1.9) as follows. Regard X-score x and
Y -score y as equivalent if

F (x) = u = G(y) , (1.11)

for u in (0, 1) . This definition, that the quantiles of the two score distri-
butions corresponding to u are “equivalent,” occurs at least as early as
Kelley (1923). However, for any given value of u in (0, 1), it is almost never
the case that both of the equations in (1.11) can be satisfied exactly by x
and y for the same value of u. This has the same root cause that we have
mentioned earlier—the discreteness of the two score distributions. Ignoring
this problem for the moment, and formally solving for x in terms of y in
(1.11), we obtain the same function that arises in (1.10), i.e.,

y = EquiY (x) = G−1(F (x)) . (1.12)

If a proper meaning can be given to the inverse function in G−1(F (x))
then (1.12) defines the equipercentile equating function of X to Y on T,
EquiY (x). It is also a transformation of X-raw scores into Y -raw scores,
and, if done carefully, will make the distribution of EquiY (X) even closer
to that of Y than LinY (X) is.

All methods of equipercentile equating must circumvent the discreteness
that plagues the definition of G−1(F (x)) . The equipercentile method that
is in wide use, which we will call the “percentile rank method,” or the PRM,
replaces the discrete cdf’s, F (x) and G(y), by piecewise linear continuous
cdf’s (Holland and Thayer, 1989; Kolen and Brennan, 1995; and Chapter 6).
The method of Kernel Equating that we discuss in this book replaces F (x)
and G(y) with continuous approximations that are smoother than the ap-
proximation of the “percentile rank method.” The Kernel Equating method
uses Gaussian kernel smoothing rather than linear interpolation.

Angoff (1971) and Kolen and Brennan (1995) both discuss how to carry
out versions of the PRM so we will not discuss it further here. For the
rest of this chapter we will simply assume that, in some way or another,
F (x) and G(y) have been approximated by continuous cdf’s (i.e., that F
and G have been continuized) so that (1.12) is a meaningful definition of
the equipercentile equating function on T. We will compare KE to the
percentile rank method in Chapter 6.
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When F and G both have proper inverses, we can easily see that any
equating function of the form given in (1.12) satisfies the Symmetry condi-
tion. This is done by solving (1.12) for y in terms of x. Using the standard
properties of inverse functions we have x = F−1(G(y)) = EquiX(y) .

We will say that a mapping from the raw scores of X to those of Y,
e(x), is an observed score equating function if it can be written in the form
(1.12) where F and G can be interpreted as the (continuized) cdf’s of X
and Y , respectively, on a common target population, T. In some cases,
this is quite straightforward, as, for example, in the Equivalent-Groups
and Single-Group Designs. In other cases, in particular the Non-Equivalent
groups with Anchor Test Design, additional assumptions need to be made
before e(x) can be so interpreted. The crucial condition, in order to show
that e(x) is an observed score equating function, is that e(x) has the form
of the right-hand side of (1.12) over a common population of examinees.

1.5 The Relationship Between LinY (x) and
EquiY (x)

In this section we will show that there is a close relationship between the
linear and equipercentile equating functions. They are sometimes viewed
as very different, but as we shall show, if EquiY (x) is constructed care-
fully, then LinY (x) is the “linear part” or “first term” in an expansion of
EquiY (x).

We suppose that F (x) and G(y) have been made into continuous cdf’s
and that this has been done in such a way as to preserve the first two mo-
ments of X and Y , respectively. This requires that means and variances
that are computed from F (x) and G(y) are exactly the same as the means
and variances computed in (1.6) using the original discrete score distribu-
tions of X and Y . (We should point out that while Kernel Equating is
designed to achieve this equality, the percentile rank method of making F
and G continuous does not exactly reproduce the second moments of the
original score distributions, though it is usually close. We discuss this point
more carefully in Chapter 6.) In view of the fact that KE does match the
appropriate moments, the results of this section, i.e., Theorem 1.1, apply to
it exactly. However, in this book we will denote the KE function by eY (x)
and let EquiY (x) denote any solution to (1.10), where F and G have been
appropriately continuized.

When F (x) and G(y) do reproduce the first two moments of the discrete
score distributions, they can be expressed in a convenient way in terms of
two other continuous cdf’s, F0(x) and G0(y), both of which are standard-
ized to have mean 0 and variance 1. Thus,

F (x) = F0((x − µX)/σX) and G(y) = G0((y − µY )/σY ) . (1.13)
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The equations in (1.13) are analogous to the way the general N (µ, σ) cdf
is expressed in terms of the N (0, 1) cdf, i.e., as Φ ((x − µ)/σ) .

Once we have introduced F0(x) and G0(y), we can compute G−1(F (x))
in terms of the standardized cdf’s, F0(x) and G0(y), plus the means and
standard deviations of X and Y over T. We show this next.

If G(y) = u, then
(y − µY )/σY = G−1

0 (u),

or
G−1(u) = µY + σY G−1

0 (u) . (1.14)

In addition to showing how the inverse of G is related to that of G0, we
also need to define the “shape difference function,” ε(z), given by

ε(z) = G−1
0 (F0(z)) − z . (1.15)

The function ε(z) is a measure of how different the shapes of F (x) and G(y)
are. If F (x) and G(y) only differ by location and/or scale, then they have
the same shape. F0(x) and G0(y) are then identical so that ε(z) is identically
zero. Whenever the shapes of F and G differ, ε(z) is not identically zero.

Theorem 1.1 summarizes the connection between LinY (x) and EquiY (x)
using the shape difference function to express the difference between these
two basic observed-score equating functions.

Theorem 1.1. For any target population T, LinY (x) and EquiY (x) satisfy
the following equation:

EquiY (x) = LinY (x) + R(x) . (1.16)

The “remainder” R(x) is σY ε ((x − µX)/σX) where ε(z) is the shape dif-
ference function defined in (1.15).

Proof. To prove Theorem 1.1, apply (1.14) and (1.13) to G−1(F (x)) and
obtain

G−1(F (x)) = µY + σY G−1
0 (F (x))

= µY + σY G−1
0 (F0((x − µX)/σX))

= µY + σY [G−1
0 (F0((x − µX)/σX)) − (x − µX)/σX ]

+ σY [(x − µX)/σX ]. (1.17)

Then (1.17) simplifies to

G−1(F (x)) = µY + σY [(x − µX)/σX ] + σY ε ((x − µX)/σX) , (1.18)

which is equivalent to the assertion in (1.16).
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The remainder term, R(x), in (1.16) is the difference between the two
equating functions and is useful in its own right. Because F0(x) and G0(y)
both have mean 0 and variance 1, the shape difference function must fluc-
tuate around 0. This means that EquiY (x) should wind around LinY (x)
and they should be reasonably close to each other as functions.

Figure 1.1 shows the remainder function, R(x), for an equating of two
tests where the linear and equipercentile equating functions give very sim-
ilar results. It is based on the data given in Chapter 7. We can see the
general pattern. R(x) winds around the zero line, and, in this example, is
small in terms of the range of X and Y scores.

It is often of interest to discover whether or not a given equating prob-
lem is simple enough that the linear equating function is a sufficiently good
solution. If the remainder term in (1.16) is small relative to the accuracy of
estimating it, i.e., the Standard Error of Equating Difference (the SEED),
discussed in Chapter 5, then the linear equating function may be an accept-
able alternative to the curvilinear solution produced by the equipercentile
method.

Theorem 1.1 is a slight generalization and a more precise statement of
the well known fact that, when the two score distributions have the same
shape, the equipercentile and the linear equating functions are the same
(Angoff, 1971).

1.6 Data Collection Designs

We devote an entire chapter to the issues surrounding the way data are
collected for carrying out test equating. Here we simply indicate some of
the basic issues. As mentioned in Section 1.1, current test equating practice
requires explicit methods for separating the effects of examinee ability from
the assessment of the differences in the difficulty of the two tests. The
primary way that this is accomplished is through the use of special ways of
collecting the data used in the test equating process. Every test equating
includes a data collection design and one or more methods of using the data
to estimate the equating function. There are two basic ways that the data
collection design can control for, or take account of, examinee ability in test
equating. The first is by the use of “common examinees,” i.e., by having the
same (or similar) examinees take both tests. The data collection designs
that use this approach are called here “The Equivalent-Groups (EG),” “The
Single-Group (SG),” and “The Counterbalanced (CB)”Designs. These are
probably the oldest designs.

The other approach to controlling for examinee ability is to use “common
items” rather than common examinees. The data collection designs that use
this method are called here “The Non-Equivalent groups with Anchor Test
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FIGURE 1.1. The difference between the equipercentile and linear equating func-
tions from X to Y .

(NEAT)” Designs and can have both internal and external anchor tests.
They have been used since at least the 1940s.

The use of a particular data collection design is usually the result of
many different factors, including available sample sizes, the time available
for testing, test security issues, the possibility of practice or other order
effects and costs. The methods that we include in this book are the most
commonly used in practice.

1.7 Sample Estimates of the Equating Functions
and the Standard Error of Equating

All of our development so far in this chapter has been at the population
level, but in practice equating functions must be estimated using data from
samples. Estimated equating functions are sample estimates of population
quantities and are, therefore, subject to sampling variability. The way that
the sampling variability of equating functions is measured is by the Stan-
dard Error of Equating, or the SEE. In this section we briefly outline some
of the issues that arise in the estimation of equating functions and the
computation of the SEE.
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Suppose we consider an equating function that equates X to Y on T. As
we can see clearly in the definition of LinY (x) in (1.7), such population-level
equating functions will depend on various parameters of the population T.
In (1.7) these parameters are the means and standard deviations of X and
Y over T. For other equating functions other parameters are involved. To
reflect this, we denote a generic population equating function in a way that
specifically includes its dependence on population parameters, i.e.,

eY (x; πT ) = a generic population equating function, (1.19)

where πT denotes a vector of population parameters. If we wish to reverse
the direction of the equating function, and go from Y to X, then we can
denote this by eX(y; πT ) .

Typically, equating functions are estimated by substituting estimates of
the population parameters into (1.19), i.e.,

êY (x) = eY (x; π̂T ) , (1.20)

where π̂T denotes a sample estimate of πT .
Hence, the uncertainty in êY (x) derives from the uncertainty in the esti-

mate, π̂T . A standard way that this uncertainty is captured is through the
delta method (Rao, 1973; Bishop et al., 1975; Lehmann, 1999; von Davier,
2001; and Appendix A). In this approach, the limiting or asymptotic dis-
tribution of π̂T is first found from the Central Limit Theorem and then
the Taylor expansion of eY (x; πT ) in πT is used to find the asymptotic
distribution of eY (x; π̂T ) . The standard deviation of the asymptotic dis-
tribution of eY (x; π̂T ) is used as the Standard Error of Equating, i.e.,

SEEY (x) = asymptotic SD(eY (x; π̂T )) . (1.21)

The method of Kernel Equating discussed in this book includes an elegant
and consistent system for deriving the SEE’s for all of the standard data
collection designs used in test equating, and we use it to develop the useful
computing formulas for the SEE for Kernel Equating that are reported in
this book.

In addition, in Chapter 5, we introduce the concept of the Standard
Error of Equating Difference (the SEED). The SEED is the standard error
of the difference between two equating functions. In KE it can be computed
using methods similar to those for computing the SEE. In this book we give
several different uses for SEED’s.

1.8 A Summary of the New Material in This Book

While we were writing this book we found that we had to extend Ker-
nel Equating in several ways beyond what had been done before. We can
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now treat all the standard equating designs. In addition to the Equivalent
Groups (EG) and the Non-Equivalent groups with Anchor Test (NEAT)
Designs, the book now includes the Single-Group (SG) Design, the Coun-
terbalanced (CB) Design and gives a through treatment of Chain Equating
in the NEAT Design.

In addition to applying KE to more designs, three new theoretical break-
throughs arose as we developed material for the applied half of the book.
First, we extended the notion of the standard error of equating (the SEE)
for a single equating function, to the standard error of the difference be-
tween two equating functions—the standard error of equating difference
(the SEED). The SEED is a new tool, previously not available to users
of any test equating method. We apply the SEED to several problem ar-
eas: (a) linear versus nonlinear equating function decisions, (b) to give an
evenhanded discussion of Chain versus Post-Stratification Equating meth-
ods for the NEAT Design, and (c) to operationalize our new proposal for
the CB Design. We think the SEED will have wide applicability to other
equating problems.

Our second breakthrough is a new treatment of the CB Design in which
the decision to use part or all of the data collected in that design is given
a firmer statistical basis than ever before. Our third breakthrough is the
Design Function. This function characterizes each equating design and is
used to calculate both the SEE and the SEED’s. The Design Function was
a crucial ingredient that was missing from earlier work on KE. Finally, we
have made systematic use of matrix notation in the analysis of the SEE and
SEED’s for each design. We use this notation to generalize the computa-
tional formulas that incorporate matrix factorizations developed earlier for
the SEE’s of KE. This approach has made several complicated calculations
more easily analyzed than they would be otherwise and indicates the value
of using this more general approach to the analysis of equating methods.
In particular, the notion of the SE-vector unifies all of our calculations of
SEE’s and SEED’s throughout this book.



Part I

The Kernel Method of Test

Equating: Theory
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2
Data Collection Designs

Observed score test equating has two basic components, (i) the data collec-
tion design and (ii) the equating method used. This chapter is concerned
solely with (i), while Chapters 3, 4 and 5 are concerned with several as-
pects of (ii). Petersen et al. (1989) use the term data collection design and
we follow this usage rather than the older, equating experiment (Braun and
Holland, 1982). We will also use equating design (Kolen and Brennan, 1995)
or simply design synonymously with data collection design.

In this book we concentrate on a single, unified approach to observed-
score test equating, Kernel Equating (KE), and we show how it can be
applied to each of the commonly used data collection designs. In this chap-
ter we review the basic structure of each of these designs in a way that we
can exploit in the later chapters.

Our purpose is to develop a common framework to describe each of the
important equating designs in similar terms. This will allow the general
description of Kernel Equating, given in the next three chapters, to be
more easily connected to each of the designs discussed in Part II of the
book.

In order to control for differences in examinee ability or proficiency, each
data collection design must be able to provide estimates of the score prob-
abilities, r and s, of the two tests on a common target population, T (see
Chapter 1, Section 1.4). For some designs these estimates are straightfor-
ward, but for others they are indirect and depend on additional assump-
tions. The transformation between the score data for the two tests and the
pair of discrete score distributions on T, i.e., r and s defined in (1.3) in
Chapter 1, will be called the Design Function throughout this book. The
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Design Function is denoted by DF and maps the population score distri-
butions (estimated from the raw data) into r and s. As such, the DF maps
the (often higher dimensional) data into the (J +K)-dimensional vector of
score frequencies (

r
s

)
. (2.1)

In the Equivalent-Groups Design, the DF is simply the identity function. In
other designs, i.e., the Single-Group and Counterbalanced Designs, the DF
is a linear transformation; and in the Non-Equivalent groups with Anchor
Test Design (NEAT), the DF for the Post-Stratification approach is a non-
linear function of score probabilities. The DF for Chain Equating (CE), in
the NEAT Design, is slightly different from the others we discuss. In CE, r
and s are not actually estimated. Instead, there are intermediate DF’s that
apply to each link in the chain. We will develop the needed expressions in
our discussion of CE.

The standard error of equating, the SEE, also varies with the data collec-
tion design, as well as other factors. The effect of the equating design on the
SEE can be quite large. The SEE is also significantly affected by the way
that the score data are pre-smoothed prior to their transformation by the
DF into r̂ and ŝ. In this book, we follow Holland and Thayer (1987, 2000),
Livingston (1993a) and others by advocating the use of log-linear mod-
els for score distributions to estimate the univariate and bivariate score
distributions that arise from the different data collection designs. As we
will show in Chapter 5, the SEE for Kernel Equating has three parts, (i)
one that depends on Kernel Equating itself (i.e., on the use of the Kernel
Equating function), (ii) one that depends on the data collection design
(through the Design Function), and (iii) one that depends on the method
of pre-smoothing the raw data.

For each data collection design discussed in this chapter, we will (a) de-
scribe the structure of the resulting data set, (b) identify the assumptions
that underlie our analysis, (c) identify the target population on which the
observed score equating is being computed, (d) discuss the score probabili-
ties , {rj} and {sk}, that describe the score distributions of the two tests on
the target population and the Design Function through which they are ob-
tained from the data, and (e) mention any other material that is of special
relevance to the use of the equating design.

We will focus on these important designs: the Equivalent-Groups De-
sign (EG), the Single-Group Design (SG), the Counterbalanced Design
(CB), and several versions of the Non-Equivalent groups with Anchor Test
(NEAT) Design, with internal and external anchor tests.

In our discussion of the NEAT Design in this chapter we cover both
“Chain Equating” and “Post-Stratification Equating” methods (the latter
includes the KE version of both “Tucker’s method” and “frequency esti-
mation”).
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TABLE 2.1. Equivalent-Groups Design.

Population Sample X Y

P 1
√

P 2
√

2.1 The Equivalent-Groups Design (EG)

In the Equivalent-Groups (EG) Design, two independent random samples
are drawn from a common population of examinees, P , the test X is admin-
istered to one sample while test Y is administered to the other. Table 2.1
is the way that we will indicate that two different samples are drawn from
P with X administered to one and Y to the other, and no one taking both
X and Y. We will use similar figures as a short hand for describing all of
the other designs. A similar schematic notation for data collection designs
is used in Braun and Holland (1982), and Petersen et al. (1989).

The EG Design is attractive because of its simplicity. The population, P,
is usually easy to identify, and is the target population T. The two samples
provide data that can be used to estimate r and s directly. Moreover,
there are no additional assumptions to consider besides 2.1 and 2.2, below.
Nor are there issues of “practice, fatigue, learning” or other “order effects”
between the data for X and Y that must be considered in the use of
other designs. However, this simplicity comes with a price. The EG design
usually demands the largest sample sizes to achieve a given level of precision
as measured by the standard error of equating. In addition, the design is
not practical in those circumstances in which a test can not be reused for
reasons of test security. Assumption 2.1 says that the examinees can take
either test and if test security is a serious issue then it is usually not feasible
for an examinee to take a test that has already been given at an earlier test
administration.

The following assumptions underlie our analysis of the EG Design:

Assumption 2.1. There is a single population P of examinees who could
take either test.

Assumption 2.2. The two samples are independently and randomly drawn
from the common population of examinees, P.

If the test administration conditions (e.g., section time limits) are the
same for the two tests, spiraled sampling can be used to create the groups.
(A discussion of random vs. spiraled sampling is given in the last section
of this chapter). If Assumption 2.2 does not hold and the samples are not
similar with respect to the ability being measured, an unknown degree of
bias will be introduced in the equating process. This violates the basic
requirement of controlling for differences in examinee ability between the



22 2. Data Collection Designs

samples of examinees taking each test. In order to minimize the random
differences between the samples, the sample sizes need to be large.

As indicated earlier, because the two samples are drawn from a single
population, it follows that the target population, T, on which the observed-
score equating will be done, is exactly the population P, from which the
examinees are sampled.

Reiterating the notation introduced in Chapter 1, Section 1.2, we denote
the possible raw-score values of X and Y , by x1, . . . , xJ and y1, . . . , yK ,
respectively, and denote the score probabilities for X and Y by

rj = Prob {X = xj |T } and sk = Prob{Y = yk |T } (2.2)

where j = 1, . . . , J and k = 1, . . . , K.
Finally, denote by r the (column) vector given by (r1, . . . , rJ )t and by

s the (column) vector given by (s1, . . . , sK)t.
The Design Function is, in this case, very simple because in the EG

Design there is no further transformation of the data to obtain r and s,
i.e., they are estimated directly.

In the EG Design, the Design Function is given by(
r
s

)
= DF (r, s) =

(
IJ 0
0 IK

)(
r
s

)
, (2.3)

where IJ is a J × J identity matrix. Thus, the DF is the identity mapping
between ΩJ × ΩK and itself, where

ΩJ =

r ∈ IRJ : rj > 0 and
∑

j

rj = 1

 , (2.4)

i.e., ΩJ is the collection of all J-vectors with positive coordinates that sum
to 1. ΩK is defined analogously for K-vectors.

The Design Function is more complicated in the other equating designs.

2.2 The Single-Group Design (SG)

In the Single-Group (SG) Design, the two tests to be equated are admin-
istered to the same group of examinees drawn from a single population P.
Hence, a single random sample of examinees from P takes both tests X
and Y. This was probably the first type of equating design ever used and
addresses the need to control for examinee ability by testing the same ex-
aminees with both tests. Table 2.2 denotes this data structure in a manner
similar to Table 2.1 for the EG Design.

One of the advantages of the SG Design is that because each examinee
produces data for both tests, the groups taking both tests are identical,
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TABLE 2.2. The Single-Group Design.

Population Sample X Y

P 1
√ √

whereas, in the EG Design in Section 2.1, the groups are only as similar as
two random samples from P can be. This pairing of X- and Y -scores in
the SG Design can create a strong correlation between X and Y and can
result in smaller standard errors for the resulting equating functions that
arise in the SG Design. We will discuss this in more detail in Chapter 8.

Our analysis of the SG Design makes these two assumptions:

Assumption 2.3. There is a single population P of examinees who can
take both tests.

Assumption 2.4. A random sample from P is tested with both X and Y .

The SG Design is also simple, like the EG Design, but it introduces
stronger assumptions (i.e., Assumption 2.3). In practice, Assumption 2.4
is rarely more than a convenient fiction. The population P is usually not
clearly stated and, often, all that is really available is a sample of data from
examinees who took both tests. The SG design is rarely used to equate two
distinct parallel forms of the same test because it requires twice as much
testing time. It is usually applied to special situations that arise when there
are examinees who have two scores. Typical examples are when a part of
a test is equated to the whole test. This can arise when an item is deleted
from the score after equating has taken place. Another part/whole example
occurs when a subscore is equated to the total score of the test. In this
situation, the total score is equated to a previous test through some other
equating design. A different type of example arises when an essay or other
type of “free response” is regraded using a different scoring rubric than
the one used initially. Finally, it can occur that examinees have taken two
different tests at two different administrations and their data for both tests
can be linked up. This type of situation often arises when a concordance
between two different tests is being constructed. In addition, the SG Design
can play a role in more complicated designs such as in Chain Equating for
the NEAT Design.

Since the examinees are drawn from a single population, the target pop-
ulation, T, is again P, as it was for the EG Design.

As before, we denote the possible raw scores for X by xj , with j =
1, . . . , J, and those for Y by yk, with k = 1, . . . , K.

We define the joint probability distribution of X and Y over T (i.e., P )
as

pjk = Prob{X = xj , Y = yk |T }, (2.5)
j = 1, . . . , J, k = 1, . . . , K.
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Then the marginal probabilities for X and Y are given by:

rj = Prob{X = xj |T } =
∑

k

pjk

sk = Prob{Y = yk |T } =
∑

j

pjk. (2.6)

We let P denote the J by K matrix whose (j, k)-entry is pjk. Then from
(2.5) and (2.6) we see that the row sums of P are the rj ’s and the column
sums are the sk’s. As before, let r and s denote the (column) vectors of
the rj ’s and sk’s, respectively.

In order to estimate the equating function for the SG Design it is only
necessary to estimate the two vector parameters, r and s. In this respect
the SG Design is similar to the EG Design in that r and s can be esti-
mated directly without further assumptions. However, in order to properly
estimate the SEE for this case, we require an estimate of the full joint dis-
tribution, P. For this reason, we will base our analysis on an estimate of
P using the sample of examinees for whom we have scores for both X and
Y .

It is convenient at this point to introduce a notation that will arise in
other data collection designs, vectorizing the matrix P. We will use this
notation repeatedly. First, let

P = (p1, p2, . . . , pK), (2.7)

where pk denotes the kth column of P. Then define the JK-dimensional
vectorized version of P by:

v(P) =

 p1
...

pK

 . (2.8)

In (2.8), v(P) is created by stacking the columns of P, one on the top of the
other. We shall use the vectorized version of a matrix so often throughout
this book that it is important to be clear about how it is related to the ma-
trix being vectorized. P is a (J ×K)-matrix and v(P) is a JK-dimensional
column vector whose elements are the same as those of P. Equations (2.7)
and (2.8) show how this is done.

Here is a small example that illustrates what happens when we vectorize
a matrix. Suppose P is the following 3 by 2 matrix:

P =

 0.2 0.1
0.2 0.2
0.1 0.2

 ,
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then v(P) is the following 6-dimensional column vector:

v(P) =



0.2
0.2
0.1

−−−
0.1
0.2
0.2


.

The Design Function for the SG Design is the transformation of v(P) into r
and s. To express it as a linear function of v(P) we will define two matrices
of 0’s and 1’s, M and N, as follows.

M is the (J × KJ)-matrix

M =

 K times︷ ︸︸ ︷
IJ . . . IJ

 , (2.9)

where IJ is a J × J-identity matrix. N is the (K × KJ)-matrix

N =



K times︷ ︸︸ ︷
1t

J 0t
J . . . 0t

J
...

0t
J . . . 0t

J 1t
J

 , (2.10)

where 1J is a (column) J-vector of 1’s and 1t
J is its transpose. 0J is a

(column) J-vector of 0’s and 0t
J is its transpose. It is a straightforward

calculation to show that

r = M v(P) =
∑

k

pk = the row sums (2.11)

and

s = N v(P) =

 1t
Jp1
...

1t
JpK

 = the column sums. (2.12)

In the 2 by 3 illustration given above, M and N have the following form:

M =

 1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1

 ,
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N =
(

1 1 1 0 0 0
0 0 0 1 1 1

)
,

so that

r = Mv(P) =

 0.3
0.4
0.3


and

s = Nv(P) =
(

0.5
0.5

)
.

Hence, for the SG Design, the Design Function, DF, is given by(
r
s

)
= DF (P) =

(
M v(P)
N v(P)

)
=
(

M
N

)
v(P). (2.13)

In the 3 by 2 illustration given above the DF is given by

(
r
s

)
=


0.3
0.4
0.3

−−−
0.5
0.5

 = DF

 0.2 0.1
0.2 0.2
0.1 0.2

 .

In the SG case, the DF is a mapping of ΩJK into ΩJ × ΩK where ΩJ and
ΩK are described in (2.4) and

ΩJK =

P ∈ IRJK : pjk > 0 and
∑
jk

pjk = 1

 . (2.14)

For the SG Design the estimates of r and s come from estimates of the
bivariate distribution P, via (2.13).

The Single-Group Design is potentially affected by order effects because
one of the tests must be given first, and the other given second, to each
examinee. The EG Design avoids the possibility of order effects by giving
each examinee only one test. In our discussion of the SG Design we have not
mentioned or assumed anything about the effect of the order of taking tests
X and Y. In this book we assume one of two possibilities for the SG Design.
In the first case, we assume there is no effect of order. This is possible in
special circumstances. In the second case, we assume that each examinee
gets both tests in the same order, say X then Y. This situation arises in
Chain-Equating in the NEAT Design discussed later. In the second case,
the order is fixed for all examinees and “test Y ” means “test Y after taking
test X.” The next design we consider here explicitly counterbalances the
order of testing with X and Y.
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TABLE 2.3. The Counterbalanced Design.

Population Sample X1 Y1 X2 Y2

P 1
√ √

P 2
√ √

2.3 The Counterbalanced Design (CB)

In the Counterbalanced (CB) Design, two independent, random samples of
examinees from a single population P take both tests, X and Y, in different
orders. The first sample takes test X first (denoted in the following as X1)
and test Y second (denoted Y2), as in a Single-Group Design. The other
sample takes test Y first (denoted Y1) and test X second (denoted X2).

The intent of counterbalancing the order of testing is to insure that any
order effects are present equally in the scores obtained for both X and
Y. For this reason, if possible, the samples are of equal size, or nearly so.
Table 2.3 describes the data in the CB Design using the type of notation
we used in Tables 2.1 and 2.2. Comparing Tables 2.1, 2.2 and 2.3 we see
that the CB Design actually contains both of the two previously considered
designs, EG and SG. This implies that there are several ways to use the
data from a CB Design to equate X and Y. We will return to this point
shortly. The assumptions that underlie our analysis are given below.

Assumption 2.5. There is a single population P of examinees who can
take both tests, in either order.

Assumption 2.6. The two samples are independently and randomly drawn
from the common population of examinees, P.

Again, because the examinees are drawn from a single population, the
target population, T, is P, as in both the EG and the SG Designs discussed
earlier.

As mentioned earlier, the CB Design contains the EG and the SG Designs
within it. For example, comparing Tables 2.1 and 2.3 we see that there are
two (dependent) EG Designs, one for X1 and Y1, and another for X2 and
Y2. In addition, comparing Tables 2.2 and 2.3 we see that there are two
(independent) SG Designs, one for X1 and Y2, and another for X2 and Y1.
These four possible equatings are illustrate by Figure 2.1.

We may also ignore the two orders and pool the data from X1 and X2

(calling it simply X) and the data from Y1 and Y2 (calling it Y ), and
regard the data for X and Y as a SG Design in which order effects have
been “counterbalanced.”

Because of these different ways of regarding the CB Design, there are
several approaches to using the data from this design to equate tests. The
utility of each of these approaches depends on the nature and size of the
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FIGURE 2.1. The two EG and the two SG Designs within the CB Design.

order effects that may be present. Our prefered treatment of the CB De-
sign is new and somewhat different from prior methods. We will discuss
four possible approaches, the last of which is our suggestion for integrating
the others in a way that makes full use of the data in Table 2.3, when
appropriate.

1. The EG Design for X1 and Y1 only. This approach is really a last
resort. We mention it here for completeness because it throws away half
of the data and makes no use of the correlation between X and Y that
is implicit in the SG aspects of the CB Design. There are circumstances
where the counterbalancing is not effective and this approach may be the
only one that makes any sense. The data for X1 and Y1 are used rather
than those for X2 and Y2 because in actual use we would not expect both
tests to be given and the ones in the CB Design that are affected by order
(i.e., X2 and Y 2) are therefore irrelevant to the equating problem. Because
it introduces no new ideas we will not consider this approach further here,
but it will arise in Chapter 9.

2. The EG pooling method. There are two EG Designs within a CB De-
sign, X1 to Y1 and X2 to Y2. If the two equating functions appear similar
we may be inclined to average them rather than to use only the data from
the X1 to Y1 equating. Averaging two equating functions involves some
subtlety if the condition of symmetry is to be maintained. In addition, the
X1 to Y1 and the X2 to Y2 EG Designs are not independent of each other
in the CB Design so the two equating functions will be correlated to some
degree. This correlation will have an impact on the SEE for the average of
the two equating functions. We do not examine this effect in this book and
it might be a useful area for future research.

3. The pooled SG method. This is the approach mentioned above where
the order of the tests is ignored and the result is treated as an SG Design.
There is some subtlety to this approach, which is often ignored. One naive
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view is that by pooling together the “before and after” data for each test
any order effect is counterbalanced and can be ignored. This assumes that
a “canceling out” will occur. If there are order effects, then we expect that
the distribution of X1 and X2 will be different in some way (similarly for
Y 1 and Y 2). Hence, when we pool these two distributions and call the
result X we create a new distribution that belongs to no real test, some of
the time “X” is from X1 and some of the time X is from X2, similarly for
“Y .” We discuss a more careful version of this as our fourth, and preferred,
approach.

4. The two independent SG method. We regard this approach as the
most accurate in that it reflects the details of the sampling more faithfully,
and uses the data more completely, than the three other approaches. It
consists of separately pre-smoothing the data from the two SG Designs, for
(X1, Y 2) and (X2, Y 1), and then combining them by regarding X as a
stochastic mixture of X1 and X2, and Y as a stochastic mixture of Y 1

and Y 2. The target population, T, is the common one, P, from which the
two samples are drawn. We prefer this approach and now give more details
that show how it is closely related to the other three methods.

More on the two independent SG method. The two SG Designs within
the CB Design result in data for two joint distributions. The first is de-
noted P(12) for (X1, Y 2) from the first sample, and the second is P(21)

for (X2, Y 1), from the second sample. Both P(12) and P(21) are J by K
matrices (analogous to P in the SG Design) of the joint probabilities for X
and Y . Both X1 and X2 have the same set of possible raw-score values,
{xj}; similarly, Y 1 and Y 2 have the same set of possible raw-score values,
{yk}. In view of this, we use the following notation to denote the entries in
P(12) and P(21) :

p(12)jk = Prob{X1 = xj , Y 2 = yk |T },
p(21)jk = Prob{X2 = xj , Y 1 = yk |T }. (2.15)

By analogy with rj and sk from (2.2) and (2.6) we define

r1j = Prob{X1 = xj |T } =
∑

k

p(12)jk, (2.16)

s2k = Prob{Y 2 = yk |T } =
∑

j

p(12)jk, (2.17)

r2j = Prob{X2 = xj |T } =
∑

k

p(21)jk, (2.18)

s1k = Prob{Y 1 = yk |T } =
∑

j

p(21)jk, (2.19)

where j = 1, . . . , J and k = 1, . . . , K. We denote the corresponding vectors
of score probabilities by r1, s2, r2, and s1.
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Now we define the synthetic X-score probabilities rj by

rj = Prob{X = xj |T }
= wXProb{X1 = xj |T } + (1 − wX)Prob{X2 = xj |T }.(2.20)

The weight, wX , satisfies 0 ≤ wX ≤ 1, and needs to be specified. Similarly,
define the synthetic Y -score probabilities sk by

sk = Prob{Y = yk |T }
= wY Prob{Y 1 = yk |T } + (1 − wY )Prob{Y 2 = yk |T }, (2.21)

where 0 ≤ wY ≤ 1, is a second weight that needs to be specified. In both
cases, wX and wY indicate the weight put on the data that is not subject to
order effects. Recall that the target population, T, is P in the CB Design.
T also has this interpretation in (2.20) and (2.21).

We may express (2.20) and (2.21) in vector form as

r = wXr1 + (1 − wX)r2, (2.22)
s = wY s1 + (1 − wY )s2. (2.23)

The use of the weights, wX and wY , allow us to tailor this approach to
equal or, at least, to be similar to the other three approaches discussed
above. For example, if wX = 1 and wY = 1, we get exactly approach 1,
where X2 and Y 2 are completely ignored. To obtain an approach that is
similar to approaches 2 and 3, set wX = wY = 1

2 . This gives equal weight to
both sets of data. Setting wX = 1 and wY = 0 correspond to the SG Design
X1 −→ Y 2. There are other possibilities as well. Our preferred approach
to the CB Design is to vary the weights wX and wY , over the range [12 , 1]
to see how sensitive to them are the resulting equating functions and their
SEE’s.

It is natural to regard (wX , wY ) = (1, 1) as the default case, because
it is the most conservative use of the data in the CB Design. The case,
(wX , wY ) = (1

2 , 1
2 ), is probably the most generous in the use of the (X2, Y 2)-

data because it weights the two versions of X and Y equally. We can also
consider intermediate cases of interest, i.e., (wX , wY ) = (3

4 , 3
4 ), where only

one-fourth of the weight is put on the (X2, Y 2)-data that is possibly sub-
ject to order effects.

In Chapter 9 we illustrate a tool, a type of SEED, that measures the
standard error of the difference between the equating function obtained for
(wX , wY ) = (1, 1) and any other choice of (wX , wY ). This version of the
SEED can be used to give a basis for choosing wX and wY .

As in Section 2.2, define the vectorized P(12) by

v(P(12)) =

 p(12)1

...
p(12)K

 , (2.24)
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where p(12)k is the kth column of P(12). Define v(P(21)) in a similar manner.
Then, r1 and s2 are computed from the first SG Design as in (2.11) and

(2.12), i.e.,

r1 = M v(P(12)) and s2 = N v(P(12)), (2.25)

where M and N are defined in (2.9) and (2.10), respectively.
Analogously, r2 and s1 are computed from the second SG Design as in

(2.25), i.e.,

r2 = M v(P(21)) and s1 = N v(P(21)). (2.26)

Hence, the Design Function, DF, for the CB Design using the two indepen-
dent SG approach is(

r
s

)
= DF

(
P(12), P(21)

)
=

(
wXM (1 − wX)M

(1 − wY )N wY N

)(
v(P(12))
v(P(21))

)
. (2.27)

In this approach, DF is a mapping from ΩJK × ΩJK into ΩJ × ΩK where
ΩJK was defined in (2.14), and ΩJ was defined in (2.4).

In summary, the sequence for deriving estimates of r and s in this ap-
proach to the CB Design is as follows. First, we pre-smooth the joint dis-
tributions, P(12) and P(21), using log-linear models. Next, we compute the
implied estimates of r1, s2, r2, and s1 that come from the pre-smoothed
matrices, P(12) and P(12). Finally, we use the Design Function described
in (2.27) to obtain estimates of r and s. The choices of wX and wY were
discussed above and reflect how much weight we put on each source of data.

Our preference for the two independent SG method for the CB Design
is based on both its flexibility and its use of all the data, when this is
appropriate. By varying the weights, wX and wY , over a range we can
examine the sensitivity of the final equating function and its SEE to the
choice of weights. We illustrate this in Chapter 9, where we set wX =
wY = w.

It is appropriate here to compare our preferred approach to the linear
method described in Lord (1950) for use in the CB Design. Lord’s approach
is to use the data from X2 and Y 2, which are subject to order effects, but
to adjust them to be more comparable to X1 and Y 1. He does this by
introducing a strong model that assumes that each person’s value of X2

(or Y 2) is a constant “order effect” KX (or KY ) added to the X1 (or Y 1)
score they would have obtained had they been tested with X (or Y ) first.
Lord assumes that the order effects are the same for all examinees and are
proportional to the relevant standard deviations, that is

KX = CσX1 = CσX2 = CσX , (2.28)
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and

KY = CσY1 = CσY2 = CσY . (2.29)

The equality of σX1 and σX2 or of σY1 and σY2 follows from his constant
order-effect assumption.

Lord suggests simple method-of-moment estimates of all the relevant
parameters and applies them to the linear equating function.

Our mixture approach would produce almost the same estimated linear
equating function as the one that Lord proposed (when wX = wY = 1

2 )
except for the standard deviation estimates, σ̂X and σ̂Y . His are based on
σ̂2

X = 1
2 (s2

X1
+s2

X2
) and σ̂2

Y = 1
2 (s2

Y1
+s2

Y2
). Ours would be larger and would

add terms of 1
4 (X̄1− X̄2)2 and 1

4 (Ȳ 1− Ȳ 2)2 to each of σ̂2
X and σ̂2

Y , above.
When the order effects are small relative to σ̂2

Xi
and σ̂2

Yj
our and Lord’s

approach to the linear equating function in the CB design are very close.
Lord (1950) indicates that without making a strong model there is little

hope of using X2 and Y 2 in the equating, and that corresponding equiper-
centile methods that adjust for the effects of order are not available. We
believe that our proposal of the two independent SG method given above
does provide an equipercentile-type of approach to the CB Design. Fur-
thermore, it does not assume a strong model for the effect of order on
individual level test scores. In addition, it uses all of the data collected in
the CB Design to the extent that this is appropriate.

In Chapter 9 we discuss the “two independent SG method” for the CB
Design in more detail in a real example.

2.4 Non-Equivalent groups with Anchor Test
Design (NEAT)

As mentioned at the beginning of this chapter, in order to control for dif-
ferences in examinee ability, we need either equivalent groups of examinees,
who take both tests, or we need data on common items that are given along
with the two tests. The designs we have addressed in Sections 2.1–2.3 all
use “common examinees.” We now turn to designs that involve “common
items.”

In the Non-Equivalent groups with Anchor Test (NEAT) Design there
are two populations, P and Q, of test-takers and a sample of examinees
from each. The sample from P takes test X, the sample from Q takes test
Y, and both samples take a set of common items, the anchor test, A. This
design often is used when only one test form can be administered at one test
administration because of test security or other practical concerns. P and
Q are used to indicate that the two populations may not be “equivalent”
(i.e., the two samples are not from a common population).
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TABLE 2.4. Non-Equivalent groups with Anchor Test Design.

Population Sample X Y A

P 1
√ √

Q 2
√ √

It is usually advised that the anchor test be administered in the same
order to both samples, so that scores on the anchor test and on the other
tests are affected in the same way if there are order effects. The anchor
test is usually composed of items similar to those in X and Y in terms of
content and difficulty. The higher the correlation between scores on A and
scores on the tests to be equated, X and Y , the better the anchor test is for
equating. Angoff (1971) gives additional advice on designing anchor tests.
For a comparison of a variety of methods for treating the NEAT Design,
see Petersen et al. (1982) and Marco et al. (1983).

The data structure for the NEAT Design is described in Table 2.4, using
the notation we have developed in Tables 2.1–2.3.

From Tables 2.2 and 2.4 we see that NEAT Design also contains two
independent SG Designs. The two SG Designs within the NEAT Design
result in data for two joint distributions. The first is denoted by P for
(X, A) for the first sample drawn from P, and the second is denoted by
Q for (Y , A) for the second sample drawn from Q. P is a J by L matrix
and Q is a K by L matrix, whose entries are given by

pjl = Prob{X = xj , A = al |P}, (2.30)
qkl = Prob{Y = yk, A = al |Q}, (2.31)

where P = (pjl) and Q = (qkl).
We have tried to use a consistent notation to refer to the two popula-

tions, P and Q, as well as to the two joint distributions and their individual
score probabilities. P and pjl both refer to quantities from population P.
Q and qkl both refer to quantities from population Q. We hope there is
no confusion about this. It is important to keep the distinction between P
and Q in mind as well as the distinction between them and the target pop-
ulation, T, which we will describe shortly in (2.32). We hope that by using
p’s for “P -things” and q’s for “Q-things” that we can make the necessary
distinctions without burdening the notation with extra subscripts.

It should be pointed out that, while there are formally two SG Designs
within one NEAT Design, these involve two tests X and A, and Y and
A that are, in general, not parallel. The anchor test, A, is usually shorter
and less reliable than are either X or Y . In some applications certain item
types used in X and Y are not feasible to include in A.

The NEAT Designs are of two kinds, depending on whether the set of
common items is external or internal to the two tests, X and Y . An external



34 2. Data Collection Designs

anchor test is a separately timed test or test section that each examinee
takes in addition to taking one or the other of the tests to be equated.
Usually, scores on the external anchor test are not used in computing scores
on the tests to be equated. An internal anchor test is a subset of items
contained in both tests to be equated. Scores on this set of common items
are usually used in computing scores on the total tests, X and Y .

In our analysis of the NEAT Design we make the following assumptions:

Assumption 2.7. There are two populations of examinees P and Q who
can take one of the tests and the anchor.

Assumption 2.8. The two samples are independently and randomly drawn
from P and Q, respectively.

From Table 2.4 it can be seen that in the NEAT Design X is not ob-
served in the population Q, and Y is not observed in the population P.
To overcome this feature, all equating methods developed for the NEAT
Design must make additional assumptions of a type that does not arise in
the other equating designs.

In this book we examine two competing methods used in the NEAT
Design to equate X and Y. The first method is called Chain Equating
(CE) and we call the second method Post-Stratification Equating (PSE)
in this book. PSE is a version of the method called “frequency estima-
tion” (Angoff, 1971; Kolen and Brennan, 1995). It is closely related to the
“Tucker Method” of linear equating (Kolen and Brennan, 1995). Each of
these methods, CE or PSE, makes different assumptions to make up for the
fact that X is “missing” for Q, and Y is missing for P. Post-Stratification
Equating explicitly estimates {rj} and {sk} on a target population T that
is a mixture of P and Q. Chain Equating directly exploits the two SG De-
signs within the NEAT Design and produces the equating function directly
without first estimating {rj} and {sk}. However, the cdf’s, FT and GT , for
CE, are implicitly defined through the assumptions that justify CE as an
observed score equating method.

In this book we will investigate both CE and PSE methods. In this
section we will discuss the assumptions that underlie each of them and the
parameters of the final equating functions for both. In Chapters 3, 4, and 5
we show how to apply Kernel Equating to both of these methods. Finally,
in Chapters 10 and 11 we will show how to implement CE and PSE in
practice.

The rest of this section is structured as follows: first, we identify the
aspects of the NEAT Design that are common to both CE and PSE. Then,
in two separate subsections, we discuss how CE and PSE make use of the
data.

The target population, T, for the NEAT Design is a mixture of both P
and Q. We may think of T as a larger population that has P and Q as two
mutually exclusive and exhaustive strata. We will denote this mixture of



2.4 Non-Equivalent groups with Anchor Test Design (NEAT) 35

P and Q as
T = wP + (1 − w)Q, (2.32)

where 0 ≤ w ≤ 1 is the weight given to P. When w = 1 then T = P and
when w = 0 then T = Q. This definition of the target population coincides
with what Braun and Holland (1982) called the synthetic population.1

As we indicated earlier, we denote the possible raw scores for X by xj ,
for j = 1, . . . , J, those for Y by yk, for k = 1, . . . , K, and those of A by al,
for l = 1, . . . , L. The joint probabilities, pjl and qkl, are defined in (2.30)
and (2.31).

As we did before, for both the SG and CB Designs, we will vectorize P
and Q. Hence, we define the JL-vector v(P) and the KL-vector v(Q) as

v(P) =

 p1
...

pL

 and v(Q) =

 q1
...

qL

 , (2.33)

by stacking the columns of the matrix P = (pjl) and of the matrix Q = (qkl)
into two column vectors as before. Here the lth-columns of P and Q are
given by

pl =

 p1l

...
pJl

 and ql =

 q1l

...
qKl

 , (2.34)

for l = 1, . . . , L.
The rest of this section is structured into subsections as follows: Sec-

tion 2.4.1 describes Chain Equating; Section 2.4.2 describes the Post-Strati-
fication Equating; and Section 2.4.3 describes the issues that arise with an
internal anchor test. We finish with a section on the special case of an EG
Design that also has an anchor test. This is a special case of the NEAT
Design where the groups are, in fact, equivalent, i.e., P = Q.

2.4.1 Chain Equating (CE)

Chain Equating may be the oldest method used for the NEAT Design.
It is a simple extension of the ideas already present in the SG Design. In
Livingston et al. (1990), CE was shown to give reasonable results compared
to the other standard methods of treating the NEAT Design.

Chain Equating (CE) uses a two-stage transformation of X scores into Y
scores. First, it links X to A on P and then links A to Y on Q. We call these
maps “linking” because the test(s) and the anchor are not equally reliable,

1For a discussion of the relative merits of different choices of w see Kolen and Brennan
(1987), Angoff’s (1987) discussion, and their rejoiner, Brennan and Kolen (1987b).
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and therefore, violate requirement 2 mentioned in Chapter 1. These two
linking functions are then functionally composed to link X to Y through
A. In order for CE to make sense as an observed score equating method we
must identify T, the target population, and see what assumptions are made
in order for the score distributions of X and Y on T to be determined.
The target population, T, turns out to be irrelevant for CE. Any T of the
form (2.32) will result in exactly the same CE function.

Two assumptions, CE1 and CE2 below, make CE a valid observed-score
equating method in the sense specified at the end of Section 1.4. They
concern the linking functions between X and Y and the anchor, A. These
two assumptions do not directly provide information about the parameters
{rj} and {sk}; however, they are important for understanding the way CE
makes use of the data from the NEAT Design, and for comparing it to the
PSE method. The cumulative distribution functions that appear in the two
assumptions, (CE1) and (CE2), were defined in Chapter 1. We repeat them
here:

F (x) = Prob(X ≤ x |T ), FP (x) = Prob(X ≤ x |P ),
G(y) = Prob(Y ≤ y |T ), GQ(y) = Prob(Y ≤ y |Q),
H(a) = Prob(A ≤ a |T ), HP (a) = Prob(A ≤ A |P ),

HQ(a) = Prob(A ≤ A |Q).

We assume that F, G, and H (with and without subscripts) have all been
continuized (i.e., made continuous and strictly increasing as discussed in
Section 1.4 and operationalized for KE in Chapter 4). We use subscripts
“P” and “Q” to indicate that the cdf’s F, G, and H are computed on them,
except that we do not use the subscript T when referring to the target
population (see Chapter 1 for details on the notation used throughout the
book).

Assumption 2.9. (CE1): Given any target population T, the link from
X to A is population invariant, i.e.,

H−1
P (FP (x)) = H−1 (F (x)) . (2.35)

In (2.35), H−1 (F (x)) denotes the equipercentile function linking X to
A on the population T, while H−1

P (FP (x)) denotes this linking on P.
In this subsection we will use the composition of functions repeatedly.

To simplify the notation we will use “◦” to denote this.
Equation (2.35) implicitly defines the cdf of X on T as

F (x) = H
(
H−1

P (FP (x))
)
, (2.36)

or
F (x) = H ◦ H−1

P ◦ FP (x). (2.37)

Because we can, in principal, construct H, HP , and FP based on the data
in the NEAT Design, equation (2.37) shows how to compute F from them.
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Assumption 2.10. (CE2): Given any target population T, the link from
A to Y is population invariant, i.e.,

G−1
Q (HQ(a)) = G−1 (H(a)) , (2.38)

or
G−1

Q ◦ HQ = G−1 ◦ H. (2.39)

Again, (2.39) implicitly defines the cdf of Y on T as

G(y) = H ◦ H−1
Q ◦ GQ(y),

or, taking inverses,

G−1(u) = G−1
Q ◦ HQ ◦ H−1(u). (2.40)

We define the Chain Equating function, eY (CE), as follows:

eY (CE)(x) = G−1 ◦ F (x). (2.41)

Then we apply (2.40) and (2.37) to (2.41) to get

eY (CE)(x) = G−1
Q ◦ HQ ◦ H−1 ◦ H ◦ H−1

P ◦ FP (x). (2.42)

Because H−1 ◦ H = I, the identity function, we have

eY (CE)(x) = G−1
Q

(
HQ

(
H−1

P (FP (x))
))

, (2.43)

which is the function obtained by functionally composing the “equiper-
centile link” from X to A on P with the equipercentile link from A to
Y on Q. Because (2.41) defines the equipercentile equating function that
equates X to Y on T, our analysis shows that under the additional assump-
tions, (CE1) and (CE2), eY (CE)(x) is an observed-score equating function
defined on T, and not merely an ad hoc, but plausible, chaining together
of linking functions.

We note that H, which depends on the target population, T, cancels
out in the formula (2.42). In a sense then, eY (CE)(x) is assumed to apply
to any T of the form (2.32). Through CE1 and CE2, CE is defined to
be Population Invariant (which is one of the requirements of an equating
procedure—see Chapter 1, Section 1.1). However, this is only strictly true
for populations that are mixtures of P and Q in the sense of (2.32), and not
for subpopulations of P or Q which cannot be represented by (2.32)(see
von Davier et al., 2003, for a discussion about the population invariance of
equating functions applied to CE).

Chain equating does not involve any new ideas beyond those used in
the Single-Group (SG) Design. It simply functionally composes or “chains
together” the results from the two SG Designs.
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The cdf’s in (2.43), FP , HP , HQ, and GQ require estimates of four sets of
score probabilities: rP = (rPj), tP = (tPl), tQ = (tQl), and sQ = (sQk), for
j = 1, . . . , J, k = 1, . . . , K, and l = 1, . . . , L. These marginal probabilities
for X and A in P, and Y and A in Q are given by

rPj = Prob{X = xj |P} =
∑

l

pjl,

tPl = Prob{A = al |P} =
∑

j

pjl,

tQl = Prob{A = al |Q} =
∑

k

qkl,

sQk = Prob{Y = yk |Q} =
∑

l

qkl. (2.44)

As in the case of SG Design, in order to formally write the marginal prob-
abilities of X and Y in terms of the vectorized arrays, v(P) and v(Q), we
will make use of the two matrices, M and N, of 0’s and 1’s defined in (2.9)
and (2.10).

rP = MP v(P) and tP = NP v(P), (2.45)

where MP is a (J × JL)-matrix similar to the one in (2.9) and NP is a
(L × JL)-matrix, with rows that contain 1t

J as in (2.10). Analogously, sQ

and tQ can be computed as linear functions of v(Q) :

sQ = MQ v(Q) and tQ = NQ v(Q), (2.46)

where MQ, a (K × KL)-matrix, and NQ, a (L × KL)-matrix, are defined
analogously to MP and NP .

The linear transformations in (2.45) and (2.46) describe the two De-
sign Functions that arise when the equating is carried out through Chain
Equating. Hence, the first Design Function, DFP is defined by(

rP

tP

)
= DFP (P) =

(
MP

NP

)
v(P), (2.47)

and the second Design Function, DFQ is defined by(
tQ

sQ

)
= DFQ (Q) =

(
NQ

MQ

)
v(Q). (2.48)

The Design Function DFP maps ΩJL into ΩJ×ΩL and the Design Function
DFQ transforms ΩKL into ΩL × ΩK , where the Ω’s have been defined in
(2.4) and (2.14).

In (2.43) we see that eY (CE)(x) depends on all four sets of score probabil-
ities, rP , tP , tQ, and sQ. Hence the “full” Design Function is the mapping
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from

(P, Q) to


rP

tP

tQ

sQ

 .

It is given by
rP

tP

tQ

sQ

 = DF (P, Q) =
(

DFP (P))
DFQ (Q)

)

=


(

MP

NP

)
0

0
(

NQ

MQ

)
(

v(P)
v(Q)

)
. (2.49)

2.4.2 Post-Stratification Equating (PSE)

In Post-Stratification Equating (PSE), we first estimate the marginal dis-
tributions, r and s, of both X and Y on the target population T, which
is a specific mixture of P and Q in the form of (2.32), and then compute
the equating function from r and s.

As mentioned earlier in this section, the target population in the NEAT
Design is defined in (2.32), i.e.,

T = wP + (1 − w)Q,

where 0 ≤ w ≤ 1 is the weight that defines T. Unlike Chain Equating, in
PSE the choice of w can affect the resulting equating function.

The probabilities rj and sk on T are computed based on the conditional
probabilities in the two strata (i.e., P and Q) of T, i.e.,

rj = Prob{X = xj |T } = wrPj + (1 − w)rQj , (2.50)
sk = Prob{Y = yk |T } = wsPk + (1 − w)sQk, (2.51)
tl = Prob{A = al |T } = wtPl + (1 − w)tQl. (2.52)

In (2.50) through (2.52), the probabilities rPj , sQk, tPl, and tQl, may be
computed via (2.44). The other two probabilities,

rQj = Prob{X = xj |Q} (2.53)

and
sPk = Prob{Y = yk |P} , (2.54)

are not directly estimable from the data collected in the NEAT Design.
However, they are needed in order to use PSE. They are obtained, in PSE,
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by conditioning on the anchor-test scores and using the assumptions PSE1
and PSE2, below. We denote the conditional distributions of X given A
in P, and of Y given A in Q, by

rP (xj | al) = Prob{X = xj |A = al, P} (2.55)
sQ(yk | al) = Prob{Y = yk |A = al, Q}. (2.56)

Likewise we define rQ(xj | al) and sP (yk | al) analogously to (2.55) and
(2.56). The assumptions made by PSE will allow estimation of rj and sk.
These two assumptions are stated next.

Assumption 2.11. (PSE1): rQ(xj |al) = rP (xj |al) so that for any tar-
get population, T, the conditional distribution of X given A is population
invariant, and therefore

rj =
∑

l

rP (xj | al)tl. (2.57)

In (2.57) tl is defined on T by equation (2.52) where its dependence on
w is explicit.

Assumption 2.12. (PSE2): sP (yk |al) = sQ(yk |al) so that for any tar-
get population, T, the conditional distribution of Y given A is population
invariant, and therefore

sk =
∑

l

sQ(yk | al)tl. (2.58)

Once the score probabilities, rj and sk, are computed on T by reweighting
by t, as indicated in (2.57) and (2.58), the rest of PSE is easy. Simply
continuize the resulting F and G, and compute the equating function. This
will be discussed more carefully in Chapter 11.

Note that the equating function for PSE, eY (PSE)(x), can depend on
the choice of T, unlike the equating function for chain equating, eY (CE)(x).
Therefore, PSE can be different from CE. As von Davier et al. (2003)
show, CE and PSE can also be identical in particular circumstances that
are interesting from a practical point of view.

The Design Function for Post-Stratification Equating is more compli-
cated than those for the other designs because it involves conditional dis-
tributions. We summarize this in Theorem 2.1

Theorem 2.1. Under the Assumptions 2.11 and 2.12, the Design Function
for PSE is given by (

r
s

)
= DF (P, Q) (2.59)
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where

r = r (P, Q, w) =
∑

l

[
w +

(1 − w)(tQl)
tPl

]
pl, (2.60)

and

s = s (P, Q, w) =
∑

l

[
(1 − w) +

w(tPl)
tQl

]
ql. (2.61)

In (2.60) and (2.61) tPl and tQl are column sums of P and Q, respectively,
while pl is the lth column of P and ql is the lth column of Q.

Proof. Start from the assumptions about rj and sk in (2.57) and (2.58),
express the conditional probabilities as ratios of joint and marginal proba-
bilities and simplify the result.

As before, pjl and qkl are population parameters that must be estimated
from the data. r̂ and ŝ will be computed from (2.60) and (2.61), respec-
tively. These estimates will be used to compute the equating functions, and
their covariance matrix will be used for computing the SEE (see Chap-
ter 11).

2.4.3 Internal Anchor Tests and Structural Zeros

The anchor test in a NEAT Design can be either external or internal to the
scores, X and Y . From the point of view of Kernel Equating, the two cases
are identical in every respect but one. Both involve two populations, P and
Q (Assumption 2.7), and the samples from the two populations are assumed
to be independent and drawn randomly from them (Assumption 2.8). The
data collection design described in Table 2.4 applies to either an internal
or an external anchor test.

When the score, A, is external to X, it come from a separate test or
separate test section and because of this the value of A does not determin-
istically restrict the value of X in any way. Of course, if an examinee gets
a high score on A, we would also expect him or her to get a high score on
X as well, but the relationship is not deterministic or forced. An internal
anchor test is different in this respect. Suppose for example that X, Y and
A are all “number-right” scores and that X = X∗+A, while Y = Y ∗+A.
Then, the “common part” of X and Y , A, is the internal anchor test score,
while X∗ and Y ∗ are the “unique parts” of X and Y , respectively. Because
A is a part of X , the score on A can directly force the score on X to avoid
certain values. For number-right scores this is easy to see. If A = 5, then
because X∗ can not be negative we must have X ≥ 5. In this example, X
must always equal or exceed A, it can never be less than A. This deter-
ministic relationship between X and A results in “structural zeros” in the
system of joint probabilities, {pjl}. A structural zero is a value of pjl that
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must be zero because the combination of X = xj and A = al is impos-
sible. This is very different from a sample frequency that just happens to
be zero due to sampling variability (i.e. sampling zeros). Structural zeros
arise in a variety of ways in joint distributions (Bishop et al., 1975), and a
“part-whole” relationship between two variables, as illustrated by internal
anchor tests, is one of these.

While we have demonstrated how structural zeros can arise with number-
right scores, they can arise with any type of internal anchor test and any of
the usual scoring systems. In number-right scoring the effect of the internal
anchor on the structural zeros is easy to see, and Holland et al. (1989) show
how to locate where they are in the matrix, P = (pjl). In “rounded formula
scores” it is harder to give a simple algorithm for locating the structural
zeros, but they are always there when the anchor test is internal.

The reason for mentioning structural zeros at all is that when they are
present, a proper pre-smoothing will not make any of them nonzero. In the
univariate case impossible cells (i.e., structural zeros) are just eliminated
and ignored, but in the bivariate case it is the combination of two values,
one for X and one for A, that is impossible, and so special procedures and
models are used to deal with them.

In the examples of Part II of this book we do not include the case of an
internal anchor test even though they often arise in practice. Our excuse
for this incompleteness is that the only special issue that an internal anchor
test would raise for us is the technique for properly pre-smoothing the re-
sulting two-way arrays of frequencies. Examples of fitting distributions and
frequency tables with structural zeros is discussed in many places includ-
ing Holland and Thayer (2000), Bishop et al. (1975), Haberman (1979),
Fienberg (1980), and Agresti (1990), among others. With such thorough
attention to structural zeros elsewhere, we did not feel we needed to give a
detailed example of an internal anchor test in this book.

We should mention in closing this subsection that the Single-Group De-
sign is another place where structural zeros can occur in special applica-
tions. The cases we are referring to also arise when there is a part-whole
relationship between X and Y . A common example is when one or a few
items have been deleted from a test after it has been equated. In this case,
Y is the score on the whole test and X is the score on the part that is
remaining after the items have been deleted. In such a situation, it is clear
that the joint distribution of X and Y can have many structural zeros, and
this may need to be taken into account when pre-smoothing their joint dis-
tribution. In such situations, linear equating is often used, and this avoids
pre-smoothing with structural zeros.

In many settings, it is usually unwise to ignore structural zeros, but
for applications to Kernel Equating it is possible that there are important
cases where attention to them makes little difference either to the estimated
equating function or to estimates of its standard error. We have not exam-
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ined this issue and believe that it may be an interesting topic for future
research with practical consequences.

2.4.4 The EG Design with an Anchor Test

It sometimes happens that an EG Design also includes an anchor test. This
is formally like a NEAT Design except that P = Q. When P = Q and if T
is defined by (2.32), then T = P = Q and both sets of assumptions, CE1
& CE2 and PSE1 & PSE2, are automatically true. In addition, the two
approaches, CE and PSE, will lead to identical equating functions. What
will be different between these two approaches will be the SEE. PSE makes
use of the correlation between X and A and between Y and A, in a way
that is different from CE. Our comparison of CE and PSE in Chapter 11
suggests, however, that the SEE’s for CE and PSE can be very similar.

2.5 Random versus Spiraled Samples

In all of our analyses, we assume that all samples are drawn randomly from
the relevant population(s). In actual practice this is rarely done. Instead,
when equivalent groups are needed to take different tests, forms for the
various tests are alternated in bundles for distribution to examinees (i.e.,
“spiraled”). The spiraled sampling method results, ideally, in adjacent-
sitting examinees getting different tests. It often produces samples that
are “more equivalent” than simple random sampling would yield because
it is more like proportionate stratified random sampling where the strata
are the rooms used for testing. For this reason we use the term “Equivalent
Groups” rather than earlier “Random Groups” (Angoff, 1971) to refer to
the EG Design.

The use of spiraled sampling has wider applicability than the case of the
EG Design. Our repeatedly used assumption that the samples are random
is an approximation, but one that is widely used. To our knowledge, no
tractable analysis of the results of spiraled sampling exists. In addition, as
far as its implications for the SEE is concerned, the use of the random sam-
pling approximation is conservative in the sense that the actual standard
errors are smaller under spiraled sampling than they are computed to be
under simple random sampling. How much smaller is not known and de-
pends on factors that are usually not available to the analyst. However, we
believe that approximating spiraled samples by random sampling assump-
tions does not lead to substantial overestimates in the resulting SEE’s. This
is, of course, an interesting topic for further research.
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TABLE 2.5. Classification of Equating Designs Based on the Number of Testing
Populations Involved and the Number of Samples Used.

1 sample 2 samples
One SG EG

population CB
EG with anchor

Two CE in NEAT
populations PSE in NEAT

2.6 Summary

This chapter classifies the Equating Designs in order to show the similari-
ties and differences between them. For example, the NEAT Design can be
viewed as containing the EG Design as a special case when P = Q and A
has only a single score value. Similarly the CB Design contains both EG
and SG Designs in it.

Another approach to classifying the designs is based on the estimation
of the parameters in the pre-smoothing step, i.e., the numbers and type of
the distributions to be estimated—univariate (EG) and bivariate (SG, CB,
and NEAT).

We can also classify the designs by the number of populations and sam-
ples that are involved. Table 2.5 identifies some of the various ways Equat-
ing Designs may be classified.

Some designs are simple, i.e., involve a single population of examinees,
have less assumptions, but need either larger sample sizes (EG), or require
the same people to take two test forms at the same time (SG and CB).
Other designs are more complicated, i.e., involve two populations of test
takers, make use of an anchor test, and require that additional assumptions
be fulfilled (i.e., NEAT). These complexities are often compensated by their
increased versatility.



3
Kernel Equating: Overview,
Pre-smoothing, and
Estimation of r and s

This and the next two chapters describe the kernel method of test equat-
ing, Kernel Equating (KE). KE is a unified approach to test equating based
on a flexible family of equipercentile-like equating functions that contains
the linear equating function as a special case. The name “Kernel Equat-
ing” arises because of its use of the well-studied methods of nonparametric
density estimation using a Gaussian kernel (Tapia and Thompson, 1978;
Silverman, 1986). Kernel Equating is “equipercentile-like” because it gen-
eralizes certain features of the equipercentile method described by Angoff
(1971), Kolen and Brennan (1995), and Chapter 1, Section 1.4.

We view KE as having five separate steps or parts, each of which involves
distinct ideas. We will briefly describe each step and then discuss each one
more thoroughly in this and the next two chapters. In this chapter our goal
is to give a clear account of pre-smoothing by log-linear models and the
basic estimation phase of the equating process. Chapters 4 and 5 continue
our description of KE.

In Chapter 7 through Chapter 11 we apply KE to each of the specific
data collection designs in common use, using real data to illustrate our
methods.

3.1 The Five Steps of Kernel Equating: Overview

Step 1: Pre-smoothing. In this step, estimates of the relevant univariate
and/or bivariate score probabilities are obtained by fitting appropriate sta-
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tistical models to the raw data obtained by the data collection design. This
is a purely statistical phase in which various models for the data are tried
out and one is selected to give an adequate fit to the data. In Section 3.2 we
illustrate this approach and focus on the use of log-linear models (Holland
and Thayer, 2000). In Part II of this book we describe the model-fitting
aspects of pre-smoothing for all important equating designs.

Step 2: Estimation of the score probabilities. Here, the score probabilities
on the target population, T, are obtained from the score distributions esti-
mated in Step 1. In Step 2, a crucial role is played by the Design Function
that characterizes each design.

The Design Function, DF, is a linear or nonlinear transformation of the
estimated score distributions from Step 1 into the estimated score prob-
abilities, r̂ and ŝ, for test X and Y on the target population, T (using
the notation introduced in Chapter 1). The Design Functions for the data
collection designs used in this book are given explicitly in Chapter 2 and
summarized in Chapter 5. The Design Function for Chain Equating in the
NEAT Design is somewhat different from those of the other methods and
designs. In Chain Equating, r and s are not computed directly. However,
Design Functions do play an intermediate role in Chain Equating. This will
be discussed in more detail in Section 3.3.

Step 3: Continuization. In this step, we determine continuous approxima-
tions, F̂hX (x) and ĜhY (y), to the estimated discrete cdf’s, F̂ (x) and Ĝ(y).
Here we need to choose the bandwidth parameters, hX and hY . It should be
emphasized that continuization is not a statistical estimation procedure.
Rather, in continuization we are attempting to decide which continuous
cdf, F̂hX (x), is “closest,” in some appropriate sense, to the estimated dis-
crete cdf, F̂ (x). In Section 4.1 we describe two criteria for automatically
selecting hX and hY that we have found useful in practice. Continuization
is closely related to “post-smoothing” (Kolen and Brennan, 1995).

Step 4: Equating. In this phase, the estimated equating function is formed
from the two continuized cdf’s, F̂hX (x) and ĜhY (y), using formulas (1.12)
that describes the “general” equipercentile equating function, i.e.,

êY hXhY (x) = Ĝ−1
hY

(F̂hX (x)).

Once Steps 1 to 3 are completed, Step 4 is an automatic calculation that
requires no additional judgment or input. It is in Step 4 that the data
on both tests, X and Y, are finally combined into the equating function.
Chapter 4 is concerned with Steps 3 and 4 of Kernel Equating. In addition
to computing êY hXhY (x) in the Equating Step, we also investigate or diag-
nose how well êY hXhY (X) transforms the discrete distribution of X into
the discrete distribution of Y .

Step 5: Calculating the Standard Error of Equating. The explicitness of KE
results in an elegant formula for the standard error of equating (the SEE)
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for any equating design. We give a method for the computation of the SEE
that is based on the estimated standard errors for the score probabilities
that are available if they are obtained using log-linear models as described
in Section 3.2. In addition, we give a general formula for the standard error
of the difference (the SEED) between the equating functions that corre-
sponds to two different choices of the bandwidth parameters, hX and hY .
This can be used to aid in the decision of whether the estimated equating
function is sufficiently close to a straight line that the linear equating func-
tion can be used instead of a curvilinear one. The SEED can also be used in
the CB Design to decide on how to use the data that is possibly subject to
order effects. Chapter 5 is concerned with the issues of statistical accuracy
measured by the SEE and the SEED.

3.2 Pre-smoothing Using Log-Linear Models

The raw score data obtained in each of the data collection designs described
in Chapter 2 can be used to estimate the appropriate score probabilities
for that design.

The estimation of score probabilities is a purely statistical problem in
the sense that the appropriate score probabilities are well-defined parame-
ters and hence their estimates should have desirable statistical properties.
Fairbank (1987), refer to this as “pre-smoothing” and we adopt this termi-
nology. While it is true that the estimates of the score probabilities ought
to exhibit appropriate degrees of smoothness, this can be achieved in vari-
ous ways. We regard pre-smoothing as a problem of statistical estimation of
the relevant score probabilities. There are at least four statistical properties
that might be considered in the choice of the estimated score probabilities.
We list them below.

• Consistency: As sample sizes increase, the estimates ought to con-
verge, in an appropriate sense, to the population values.

• Efficiency: Given the sample sizes involved, the deviations of the
estimated score probabilities from the population values ought to
be as small as possible. Of course these deviations always involve a
random element, and the problem is to keep it to a minimum in an
appropriate average sense.

• Positivity: For each possible score the estimated score probabilities
ought to be positive. For most tests, estimating a score probability to
be zero is unreasonable. (There are exceptions that occur in special
problems that arise in the NEAT Design with an internal anchor
test and in some applications of the SG Design. This is discussed in
Chapters 8, 10, and 11.)
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• Integrity: When possible, the integrity of the sample mean, variance,
and possibly other sample moments ought to be preserved in the
estimated score distributions. This property is closely related to the
mean and variance matching property of linear equating and which
is desirable for equipercentile methods as well.

The approach to score probability estimation that we will use in this
book is to fit a sequence of parametric, log-linear models to the data and
to make appropriate diagnoses of these fitted models until one is found that
describes the data “well enough” with as few parameters as possible. The
log-linear models described in Rosenbaum and Thayer (1987) and in Hol-
land and Thayer (1987, 2000) are especially useful because they are flexible
enough to fit the types of univariate and bivariate score distributions that
arise in practice and to smooth them in reasonable ways. More special-
ized models such as the negative hypergeometric (Keats and Lord, 1962)
or those based on item response theory (Lord, 1955b, 1980) are more re-
strictive and do not adequately describe many data sets. Log-linear models
are well-behaved and relatively easy to estimate because they are exponen-
tial families of discrete distribution and may be estimated by maximum
likelihood using efficient iterative techniques. Because these models are ex-
ponential families, maximum likelihood estimation forces the equality of
certain sample and estimated moments.

Bivariate distributions, useful for SG, CB, and NEAT Designs, are also
easily estimated using the class of log-linear models. Holland and Thayer
(2000) discuss these models in detail.

The models for estimating univariate or bivariate score distributions usu-
ally fit various power moments of the distributions. The power moments
are useful because of the wide familiarity of distributional measures based
on the first four power moments—i.e., mean, variance, skewness and kur-
tosis. In our experience, it is often necessary to include power moments
as high as five or six to obtain good fits to univariate data distributions,
although this clearly depends on several factors including the sample size,
N. Log-linear models that use the power moments are also called polyno-
mial log-linear models (Hanson, 1996). However, the power moments are
not the only ones that have utility in fitting (univariate) distributions. A
very useful class of alternative moments is the class of “subset moments”
which is described in Appendix C. Such moments are useful when some of
the cells frequencies are different in systematic ways from the others. This
happens when the frequencies exhibit nonrandom features such as “teeth”
or “gaps” spaced at regular intervals along the score scale (a phenomena
that often arise for formula scored tests). We give a detailed example of
such a case in Chapter 10. Finally, these models automatically satisfy the
positivity and integrity conditions listed above. Careful data analysis using
these models also leads to the consistency and efficiency conditions being
satisfied as well.
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The data that arise in the designs described in Chapter 2 are either
univariate or bivariate frequency distributions. In the rest of this section
we will briefly outline the estimation procedure for a univariate distribu-
tion. This estimation problem arises in the Equivalent-Groups Design. In
Appendix B we will briefly outline the estimation of bivariate score distri-
butions. This estimation problem arises in the SG Design, CB Design, and
in the NEAT Designs. For more extensive discussions of these models and
how to use them to fit univariate and bivariate distributions we refer the
reader to Holland and Thayer (2000). Fitting both univariate and bivariate
score distributions to real data is illustrated in each of Chapters 7—10.

3.2.1 Estimating a Univariate Score Distribution

In this subsection we briefly indicate the relevant aspects of estimating
a univariate score distribution using log-linear models. Our discussion is
based on Holland and Thayer (2000), and to be both concrete and simple
we will assume the data come from an EG Design, described in Chapter 2.

Samples. The raw data obtained from an EG Design can be summarized
as two sets of univariate frequencies:

nj = number of examinees in the sample with X = xj ,
mk = number of examinees in the sample with Y = yk.

We denote the two sample sizes by N =
∑

j nj and M =
∑

k mk.
If we regard the data {nj} and {mk} as coming from two independent

random samples from very large populations, then we may make the fol-
lowing distributional assumption.

Assumption 3.1. The vectors n = (n1, . . . , nJ )t and m = (m1, . . . , mK)t

are independent and they each have multinomial distributions, i.e.,

Prob(n) =
N !

n1! . . . nJ !

∏
r

nj

j , (3.1)

Prob(m) =
M !

m1! . . . mK !

∏
smk

k . (3.2)

We use {rj} and {sk} as the score probabilities in Assumption 3.1 be-
cause in the EG Design the samples are, by definition, from the target
population, T. In the EG Design r and s are estimated directly from n
and m, respectively.

Assumption 3.1 will be approximately satisfied in those cases where it
is reasonable to regard the data as a random sample without replacement
from a larger population for which each possible value is, indeed, “possible”
if not actually observed. Sometimes the data represent the entire popula-
tion of test takers of a given test. In such cases it may still be useful to use
Assumption 3.1 to smooth out inessential irregularities in the pattern of the
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frequencies in order to focus on their main features. In many testing appli-
cations the actual population is not well specified, and instead of random
samples, the samples are obtained by spiraling, as described in Section 2.5.

Under the assumption of a multinomial distribution, the log-likelihood
function for r is

Lr =
∑

j

nj log(rj). (3.3)

A similar formula hold for Ls.

Log-linear models. To estimate the population parameters, r, using a log-
linear model we make this assumption:

Assumption 3.2. The vector r satisfies a log-linear model

log(rj) = α + uj + bt
jβ, (3.4)

where β is a Tr-vector of free parameters, uj is a known constant, α is the
normalizing constant selected to make the sum of rj equal to one, and bt

j

is the transpose of bj . bj a Tr-vector of known constants, where Tr is the
number of free parameters used to estimate r.

The model in (3.4) may be written in matrix form as:

log(r) = α + u + Btβ, (3.5)

where u is a known J-vector, B = (b1, . . . , bJ) is a Tr × J-matrix (a
“design matrix”) of known constants, and β is a Tr-dimensional vector of
parameters. Hence, in this book, the columns of the matrix B, are denoted
by bj with j = 1, . . . , J, while the entries of the matrix B are denoted by
bij , with i = 1, . . . , Tr. The same type of model assumptions are made for
s.

The role of u is to specify a “null” distribution for the exponential family
that holds when the parameter β = 0. In practice u = 0 is often a useful
choice (Holland and Thayer, 2000, discuss other possibilities for u.). Log-
linear models based on power moments have bij = (xj)i, for i = 1, . . . , Tr,
where (xj)i is the ith-power of the scores xj , j = 1, . . . , J. Other examples
of choices of bij include those of the form bij = IS(xj), where IS(xj) is a
0/1-indicator variable of the form

IS(xj) =
{

1 if xj in S,
0 if otherwise.

(3.6)

A fundamental restriction is that Tr ≤ J − 1 and Ts ≤ K − 1, i.e., that
the number of the parameter is less than the number of the possible scores
values. In our examples in Part II of this book, Tr and Ts are much smaller
than J − 1 and K − 1.
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Estimation of r and s. The models specified by (3.5) are well-behaved
exponential families of discrete distributions and the vector parameter, β,
may be estimated by maximum likelihood. Maximum likelihood estimation
proceeds by maximizing the log-likelihood function given in (3.3). When
a log-linear model of the form (3.4) is substituted for log rj in (3.3), Lr

becomes a well-behaved function of β, Lr(β), and can be maximized by
differentiating Lr and solving the resulting likelihood equations, i.e., by
solving

∂Lr

∂β
= 0 (3.7)

for β. The solution, β̂, is the maximum likelihood estimate (mle) of β. The
estimator of rj is r̂j = rj(β̂), and is also called the mle (or mle fitted value)
of the cell probability, rj .

Denote the mles of r and s based on n and m, by r̂ and ŝ. Equation
(3.7) implies the well-known “moment matching” property of log-linear
models, i.e., that the mle r̂ satisfies the condition that the sample and
fitted moments (specified by the rows of B) are matched perfectly, i.e.,∑

j

bij(nj/N) =
∑

j

bij r̂j , (3.8)

for i = 1, . . . , Tr.
Analogous moment matching holds for sk. This property is very useful. It

allows users to choose B to fit the moments of n that describe the important
features of its shape. Holland and Thayer (1987, 2000) show that with 2
to 6 parameters, i.e., fitting 2 to 6 moments, these models can adequately
describe a wide variety of univariate score distributions.

Assessing model fit. In order to be a useful summary of the data, a model
must obviously fit the data. Holland and Thayer (2000) describe several
tools for assessing the fit of log-linear models for score distributions. In
the examples used in Chapters 7—11 we will illustrate some of them. One
of the important reasons for obtaining a model that fits well in the pre-
smoothing step is that the results from this model will be carried through
to the estimation of the standard error of equating (SEE). A model that
does not fit adequately may not produce an accurate SEE.

Covariance matrix of r̂. This special topic is included here because we
will regularly exploit a computationally useful matrix factorization of the
covariance matrix of r̂ and ŝ that was derived in Holland and Thayer
(1987).

We are assuming (Assumption 3.1) that n and m are independent and
we further assume here that r̂ and ŝ are estimated separately (i.e., that the
models for r and s do not share any common parameters across the two
independent samples so that r depends only on n and s depends only on
m). This is summarized in
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Assumption 3.3. The estimates, r̂ and ŝ, are obtained separately, so that

Cov(r̂, ŝ) = Σr̂, ŝ = 0. (3.9)

Under Assumption 3.3 we only need to compute estimates of the asymp-
totic covariance matrix of r̂, Σr̂, and of ŝ, Σŝ.

Applying well-known results from Lehmann (1983) and Barndorff-Nielsen
(1978), Holland and Thayer (1987) derived the result summarized in The-
orem 3.1.

Theorem 3.1. When r̂ is the mle of a log-linear model for r, the estimated
covariance matrix Σr̂ = Cov(r) can be computed as

Σr̂ = CrCt
r (3.10)

where Cr is the J by Tr matrix

Cr = N− 1
2 D√

rQ.

The diagonal matrix, D√
r, has the diagonal entries

√
r̂j , and Q is the

J × Tr orthogonal matrix that comes from the following QR-factorization

[D√
r −

√
r̂ r̂t]Bt = QR.

Q is a J ×Tr-matrix with orthogonal columns, R is a Tr ×Tr upper trian-
gular matrix, and B is the B-matrix from (3.5).

The details of the proof of Theorem 3.1 can be found in Holland and
Thayer (1987, p. 18). A discussion of the QR factorization of a rectangular
matrix can be found in Dongarra et al. (1979) and Epperson (2002).

Hence, if the model used for estimating r has Tr parameters and the
model used for estimating s has Ts parameters, then two matrices, a J×Tr-
matrix, Cr, and a K × Ts-matrix, Cs, may be derived so that

Σr̂ = CrCt
r and Σŝ = CsCt

s. (3.11)

Formula (3.10) expresses the potentially large (J ×J) estimated covariance
matrix, Σr̂ , in terms of the much smaller (J ×Tr) matrix Cr. For all of the
standard error calculations in this book the factors, Cr and Cs, give simple
computational formulas that substantially reduce the size of the arrays that
must be manipulated. These matrix factors, and others like them, are used
throughout this book in the computation of standard errors.

The estimation procedure for a bivariate distribution is described in the
Appendix B.

3.3 Estimation of the Score Probabilities

In Chapter 2 we give the Design Functions (DF) for the data collection
designs that are discussed in this book. We repeat them here for summary
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purposes and refer to Chapter 2 for the details and notation. The DF maps
the population scores probabilities relevant to the data collected in a design
into r and s, the score probabilities for X and Y on the target population,
T.

EG Design. In the EG Design, the DF is given by(
r
s

)
= DF (r, s) =

(
IJ 0
0 IK

)(
r
s

)
.

SG Design. For the SG Design the DF is given by(
r
s

)
= DF (P) =

(
M
N

)
v(P).

CB Design. The Design Function, for the CB Design using the two inde-
pendent SG approach, is(

r
s

)
= DF

(
P(12), P(21)

)
=

(
wXM (1 − wX)M

(1 − wY )N wY N

)(
v(P(12))
v(P(21))

)
.

NEAT Design—CE. There are two levels of Design Functions that arise
when the equating is carried out through Chain Equating in a NEAT De-
sign. At the first level, there are two Design Functions that are from the
two SG Designs inside the NEAT Design, denoted DFP and DFQ. DFP is
defined by (

rP

tP

)
= DFP (P) =

(
MP

NP

)
v(P),

and DFQ is defined by(
tQ

sQ

)
= DFQ (Q) =

(
NQ

MQ

)
v(Q).

At the second level, these two Design Functions are combined into a single
function 

rP

tP

tQ

sQ

 = DF (P, Q) =
(

DFP (P)
DFQ(Q)

)

=


(

MP

NP

)
0

0
(

NQ

MQ

)
(

v(P)
v(Q)

)
.
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NEAT Design—PSE. The Design Function for PSE in a NEAT Design is
given by (

r
s

)
= DF (P, Q; w) =

(
r(P, Q, w)
s(P, Q, w)

)
where

r (P, Q, w) =
∑

l

[
w +

(1 − w)(tQl)
tPl

]
pl,

and

s (P, Q, w) =
∑

l

[
(1 − w) +

w(tPl)
tQl

]
ql .

The most important aspect of the DF in this book is its Jacobian, i.e.,
the matrix of the first derivatives of the Design Function with respect to the
parameters r and s. In the case of Chain Equating in a NEAT Design the
derivatives are with respect to the parameters rP , tP , tQ, and sQ. These
Jacobians are given in detail in Chapter 5.



4
Kernel Equating: Continuization and
Equating

In this chapter, we discuss that part of Kernel Equating from which its
name derives, i.e., continuization by use of Gaussian kernel smoothing. In
addition, we will briefly cover how to compute the final KE function once
the continuization step is finished and how to assess the ability of this equat-
ing function to match the discrete distributions of êY (X) and Y . In this
book, we will reserve the notation, eY (x) and eX(y) for the KE functions
for equating X to Y and Y to X, respectively, on the target population,
T. Even though the KE function is a type of equipercentile equating func-
tion, we will reserve the notation, EquiY (x), to refer to any version of the
equipercentile equating function. The previous chapter covered the issues
involved in pre-smoothing and the estimation of r and s from the pre-
smoothed data. In the next chapter we will discuss the statistical accuracy
of the estimated eY (x) using the SEE and the SEED.

4.1 Continuization

A distinctive feature of Kernel Equating is its explicit consideration of the
need to change the step-function cdf’s of X and Y on T into approx-
imating continuous cdf’s in order to solve the basic equations (1.11) or
to compute the inverse function in G−1(F (x)). The traditional “percentile
rank” approach to equipercentile equating treats this as a problem of linear
interpolation, but in KE we identify it as an explicit step in the equating
process.



56 4. Continuization and Equating

The cumulative distribution functions (cdf’s) of the score distributions
for X and Y in (2.2) are defined as

F (x) = Prob(X ≤ x) =
∑

j, xj≤x

rj , (4.1)

G(y) = Prob(Y ≤ y) =
∑

k, yk≤y

sk, (4.2)

where x, y ∈ IR. These discrete cdf’s have jumps at each score value, xj or
yk.

Because X has a discrete distribution, the graph of F (x) is flat for any
x ∈ [xj , xj+1) and has a jump of size rj at xj . Similarly the graph of G(y)
is flat for any y ∈ [yk, yk+1) and has a jump of size sk at yk. In the cases
that arise in practice the discrete set of values that F (x) and G(y) take
on only rarely coincide. This means that in practice it never occurs that
F (x) = u and G(y) = u for the same value of u in (0, 1). This problem
was mentioned earlier in Section 1.4. If F (x) and G(y) are continuous and
strictly increasing for all x and y ∈ IR this problem does not arise, and
F (x) = u = G(y) can always be solved for y, i.e.,

y = G−1(F (x)), (4.3)

where G−1 denote the inverse of G defined by: y = G−1(u) if and only if
u = G(y).

All methods of equipercentile-type equating, including KE, must address
this problem of discreteness. In this section we first give the formulas used
to continuize F and G and then provide some motivating discussion for
this approach.

4.1.1 Gaussian Kernel Smoothing of Discrete Distributions

Let Φ(z) denote the cdf of the standard Normal (mean zero, variance one)
or Gaussian distribution and let hX be a positive number. µX and σ2

X

denote the mean and variance, respectively, of X over T. Define aX by

a2
X =

σ2
X

σ2
X + h2

X

. (4.4)

Then the Gaussian kernel smoothing of the distribution of X has a cdf
given by

FhX (x) =
∑

j

rjΦ(RjX(x)), (4.5)

where

RjX(x) =
x − aXxj − (1 − aX)µX

aXhX
, (4.6)
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and the constant, hX , is the “bandwidth” of FhX . It is evident that FhX (x)
is a continuous cdf for any hX > 0 because it is a weighted average of
Normal cdf’s, and it has a density function, fhX (x), found by differentiating
FhX (x) in x, i.e.

fhX (x) =
∑

j

rjφ (RjX(x))
1

aXhX
, (4.7)

where φ(·) is the standard Normal (or Gaussian) density function.
While formulas (4.5), (4.6), and (4.7) may appear somewhat strange at

first, they are reasonably tractable for computations using a computer. In
a similar manner, G may be continuized using GhY defined as

GhY (y) =
∑

k

skΦ (RkY (y)) , (4.8)

where

RkY (y) =
y − aY yk − (1 − aY )µY

aY hY
, (4.9)

and GhY (y) has the density function

ghY (y) =
∑

k

skφ (RkY (y))
1

aY hY
. (4.10)

Next we motivate these definitions of FhX (x) and GhY (y) and show some
of the senses in which they “approximate” F and G, respectively.

In this book we reserve the term “continuous distribution” to refer to
one that has a density function (with respect to Lebesgue measure) that is
positive over all of IR. A reoccurring example is any Normal distribution
N (µ, σ2) with σ2 > 0. If X is a discrete random variable, V is independent
of X and has the Normal N (0, 1) distribution then X + hXV is an ap-
proximation to X that approaches X when hX is small. However, because
V has a continuous distribution it is intuitively evident that X + hXV is
continuously distributed as well. A clearer argument why X + hXV has a
continuous distribution is evident from the proof of Theorem 4.1, below.
The new random variable X + hXV has the same mean or expected value
as X because V has mean 0, so it “approximates” X in this sense (same
mean) for any hX . However, Var(X + hXV ) = σ2

X + h2
X > σ2

X so that
X +hXV does not have the same variance as X for any hX > 0. It is easy
to linearly transform X + hXV so that both the mean and the variance of
the transformed approximation to X are the same as those for X for any
hX . This transformation is given by

X(hX) = aX(X + hXV ) + (1 − aX)µX , (4.11)
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where aX was defined in (4.4). It is a useful exercise for the reader to show
that E(X(hX)) = E(X) and that Var(X(hX)) = Var(X), for any hX > 0.

Analogously, we define the random variable, Y (hY ),

Y (hY ) = aY (Y + hY W ) + (1 − aY )µY , (4.12)

where W is independent of Y and has the N (0, 1) distribution. Y (hY ) is
an approximation to Y in the same way that X(hX) approximates X. In
(4.12), aY is defined similarly to aX in (4.4) using µY and σY .

The bandwidths, hX or hY , are positive constants that we are free to
select to achieve some useful purpose. We use Theorem 4.1 to summarize
the behavior of X(hX) as hX → 0 and hX → ∞. As hX varies over (0, ∞),
X(hX) ranges from X to the N (µX , σ2

X) distribution so that, for large hX ,
X(hX) is a “Normal approximation” to X.

Theorem 4.1. Given the above notation, the following statements hold:

(a) lim
hX→0

aX = 1, (4.13)

(b) lim
hX→∞

aX = 0, (4.14)

(c) lim
hX→∞

hXaX = σX , (4.15)

(d) lim
hX→0

X(hX) = X, (4.16)

(e) lim
hX→∞

X(hX) = σXV + µX . (4.17)

When hX > 0, then X(hX) has a continuous distribution with a cdf that
we denote by

FhX (x) = Prob{X(hX) ≤ x}. (4.18)

We will regard
{FhX (x), for hX > 0},

as a family of continuous approximations to the discrete cdf F (x).
Theorem 4.2, below, shows that the cdf of X(hX) is exactly the con-

tinuized version of F given earlier in (4.5) and (4.6). The proof of Theo-
rem 4.2 is simple but instructive so we include it.

Theorem 4.2. If X(hX) is defined by (4.11) and FhX (x) is the cdf in
(4.18) then

FhX (x) =
∑

j

rjΦ (RjX(x)) ,

where

RjX(x) =
x − aXxj − (1 − aX)µX

aXhX
.

Thus, the Gaussian kernel continuization of F defined in (4.5) is exactly
the cdf of X(hX).
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Proof.

FhX (x) = Prob{X(hX) ≤ x}

= Prob{aX(X + hXV) + (1 − aX)µX ≤ x}

= Prob{aXhXV ≤ x − aXX − (1 − aX)µX}

=
∑

j

Prob{aXhXV ≤ x − aXxj − (1 − aX)µX |X = xj}rj

=
∑

j

Prob{V ≤ x − aXxj − (1 − aX)µX

aXhX
}rj

=
∑

j

rjΦ
(

x − aXxj − (1 − aX)µX

aXhX

)
.

Theorem 4.3. Using the notation of Theorem 4.2, RjX(x), defined in
(4.6), has the following approximate forms when hX is either very small or
very large:

(a) RjX(x) =
x − xj

hX
+ o(hX) as hX → 0, (4.19)

(b) RjX(x) =
x − µX

σX
− σX

hX

xj − µX

σX

+ o(
σX

hX
) as hX → ∞. (4.20)

In (a) the remainder term, o(hX), is small compared to hX as hX → 0,
and in (b) the remainder term, o(σX/hX), is small compared to σX/hX as
hX → ∞.

The proof of 4.3 is straightforward and we omit it.
The results in Theorem 4.3 combined with those of Theorem 4.2 show

that the analytical expression for FhX (x) given in (4.5) and in Theorem 4.2
behaves in the same manner as suggested in Theorem 4.1, parts (d) and
(e). As hX → 0, RjX(x) has a rapid change from large negative to large
positive at x = xj so that FhX (x) is nearly a discrete step function with a
jump of rj at xj . On the other hand, as hX → ∞, RjX(x) = [(x−µX)/σX ]
plus an error that is small if σX/hX is small. In the latter case, FhX (x)
is nearly the Normal cdf, Φ((x − µX)/σX). Theorem 4.3 part (b) suggests
that the proper measure of “hX is large” is when σX/hX is small. We will
make use of this observation and regard hX as large whenever σX/hX is
less than 0.1, i.e., hX > 10σX .
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As mentioned earlier it is easy to show that the mean and variance of
X(hX) exactly match those of the original discrete random variable X .
To study the sense in which the family of cdf’s, {FhX (x), forhX > 0},
approximates F it is of some interest to know how the higher moments
of X(hX) differ from those of X . It is, however, the cumulants of X(hX)
rather than its moments that have the simplest relationship to those of X .
The j-th cumulant of a distribution is the coefficient of (t)j/j! in the Taylor
expansion (about zero) of the natural logarithm of its moment generating
function. See Kendall and Stuart (1977) for a thorough discussion of cu-
mulants. It is well-known that the first and second cumulants are the mean
and variance respectively, of the distribution. Furthermore, the third and
fourth cumulants are related to the usual measure of skewness and kurtosis
by

k3X = 3rd cumulant of X = σ3
X skew(X); (4.21)

k4X = 4rd cumulant of X = σ4
X kurt(X); (4.22)

where

skew(X) = E
(

X − µX

σX

)3

; (4.23)

kurt(X) = E
(

X − µX

σX

)4

− 3. (4.24)

The third and higher cumulants of any Normal distribution are all zero.
In addition, cumulants have the property that the cumulants of the sum
of two independent random variables is the sum of their respective cumu-
lants. Thus, the cumulants share the summation property of variances for
moments higher than the second. Cumulants beyond the first are not af-
fected by adding a constant to the random variable, and multiplication
by a constant merely changes the cumulants by multiplying them by the
corresponding power of the constant—the pth power for the pth cumulant.

Theorem 4.4 shows the relationship between the cumulants of X(hX)
and those of X. The proof can be found in Holland and Thayer (1989,
p. 47).

Theorem 4.4. If kj(hX) denotes the j-th cumulant of X(hX), and kjX

denotes the j-th cumulant of X, then for j ≥ 3 we have

kj(hX) = (aX)jkjX , (4.25)

where aX is defined in (4.4).

We may interpret Theorem 4.4 as saying that the higher cumulants of
X(hX) are all smaller in absolute size (i.e., more like those of the Normal
distribution) than the corresponding cumulants of the original distribution
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of X. This is because

(aX)j < 1 if hX > 0.

Thus, X(hX) has cumulants that are more like those of X when hX is
small and more like those of the N (µX , σ2

X) when hX is large.

4.1.2 Choice of the Bandwidth

There is a variety of ways to select the “bandwidth,” hX . Perhaps the
easiest is to always use a specific fixed value. Two useful examples are
hX = ∞ and hX = 0.33. When hX is large (i.e., hX > 10σX), FhX is a
“Normal approximation” to F, that is

FhX (x) ≈ Φ
(

x − µX

σX

)
. (4.26)

When both hX and hY are large, the resulting Kernel Equating function
is the linear equating function (this is discussed more in Section 4.2). The
choice of hX = 0.33 was originally motivated to simulate the traditional
percentile rank method of equipercentile equating. When hX is this small
(i.e., hX = 0.33) FhX (x) is a close continuous approximation to F which is
a discontinuous jump function. This has both positive and negative conse-
quences. For example, as mentioned in the previous subsection, the smaller
hX is, the closer the distribution of X(hX) is to that of X. On the other
hand, the smaller hX is, the less the density function fhX (x) in (4.7) tracks
the shape of the score probabilities of X, {rj}. Figures 4.1 and 4.2 illustrate
this well. In Figure 4.2 we show two different KE density functions that
approximate the discrete distribution described by the histogram in Fig-
ure 4.1. In Figure 4.2 the smaller bandwidth, hX = 0.33, results in a very
“spikey” density function that looks less like Figure 4.1 than the smoothed
density (hX = 0.622) does.

While a fixed choice of hX is convenient, it ignores the idea that the dis-
tribution that FhX (x) specifies should approximate the distribution that F
specifies. To do this we have developed two automatic ways of choosing hX

that do attend to the shape of the resulting approximating density func-
tion. Our approaches both use the density function, fhX (x), to approximate
the score probabilities, {rj}. It is easiest to motivate this in the case when
the scores are consecutive integers such as “number right scoring” where,
x1 = 0, x2 = 1, . . . , xJ = J − 1. We will make that assumption here, as
we do in our examples in Part II. We create a histogram from {(rj , xj)}
in the following way. There are series of J class intervals of width 1 with
xj at the midpoint of its interval. The height of histogram for the jth class
interval is rj . The area of the histogram-bar for the jth class interval is
rj times the interval’s width, which is just 1 in this simplest case. On the
other hand, fhX (xj) is the height of the density function at the score xj .
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FIGURE 4.1. Histogram from the pre-smoothed {(r̂j , xj)}.

The product of the interval width times the height of the density, fhX (xj),
should be similar to rj times the interval width if fhX (x) mirrors the shape
of the frequencies, rj . To choose hX automatically, we propose selecting it
to minimize

PEN1(hX) =
∑

j

(
r̂j − f̂hX (xj)

)2

. (4.27)

Our experience suggests that use of PEN1 leads to values of hX that are
two or three times as big as hX = 0.33. Figure 4.2 illustrates this well.
In Figure 4.2 we have graphed the density, fhX (x), for hX = 0.33 and
for the hX that minimizes (4.27) in a particular example (0.622). As we
mentioned earlier, the spikey look of f0.33(x) compared to f0.622(x) shows
that the latter better approximates the histogram in Figure 4.1 than the
former. PEN1(hX) can be minimized using a variety of different algorithms,
but we will not discuss them here.

In certain cases, in particular when the rj exhibit “teeth,” “gaps,” or
other nonrandom nonsmoothness, it is necessary to smooth fhX (x) more
than PEN1 will accomplish. Our approach is to prevent the density fhX (x)
from having more than a few modes. We do this by penalizing choices of
hX that allow the derivative of fhX (x), which we denote by f ′

hX
(x), to have

a sign change near several score values, xj . The function f ′
hX

(x), is given
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FIGURE 4.2. Density fhX (xj) for two hX values, hX = 0.33 and the optimal hX ,
which in this case is 0.622.

by

f ′
hX

(x) =
∂fhX

∂x

= −
∑

j

rjφ (RjX(x))
1

(aXhX)2
(RjX(x)) , (4.28)

where RjX(x) was defined in (4.6).
We use the penalty function

PEN2(hX) =
∑

j

Aj(1 − Bj), (4.29)

where Aj = 1 if f ′
hX

(x) < 0 a little to the left of xj , and Bj = 0 if
f ′

hX
(x) > 0 a little to the right of xj . Thus we get a penalty of 1 for every

score point where fhX (x) is “U-shaped” around it. What “near” means is
a parameter of PEN2(hX). In our own work we set “near” to mean ± 1

4 of
a score point and evaluate f ′

hX
at xj ± 1

4 in computing Aj and Bj , above.
We may combine the two penalties with a weight such as

PEN1(hX) + K × PEN2(hX). (4.30)
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This will force the histogram and the density to be near each other but
will keep the density from having too many zero derivatives. We have used
K = 1 in our examples. The bigger K is, the fewer modes the resulting
density function will have.

The combined penalty function in (4.30) provides a useful solution to
the problem of “grinding down teeth” in an estimated score distribution.
“Teeth” or “gaps” in the raw score distribution can arise in the estimation
or pre-smoothing phase of the equating process. (See Chapter 10 for an
example that has “gaps” in the score probabilities.) Our recommendation
is to preserve these features of the data during pre-smoothing so that the
models that are fit to the raw data actually do fit it, rather than “grinding
down the teeth” at the pre-smoothing stage. Our rationale for this recom-
mendation is that in order for the standard errors that come out of the
pre-smoothing phase to be valid, the model has to fit the data. However,
it is rarely plausible to keep the teeth in fhX (x) and FhX (x) and so we
recommend that they be removed in the continuization step. The penalty
function in (4.30) will do this.

4.2 Equating

Once F̂hX and ĜhY are in hand, it is a relatively straightforward process to
compute the Kernel Equating functions via the KE analog of the definition
of EquiY (x) in Chapter 1, i.e.,

êY (x) = eY (x; r̂, ŝ) = G−1
hY

(FhX (x; r̂); ŝ)

= Ĝ−1
hY

(F̂hX (x)). (4.31)

Analogously, the KE equating function for equating Y to X on T is given
by

êX(y) = eX(y; r̂, ŝ) = F−1
hX

(GhY (y; ŝ); r̂)

= F̂−1
hX

(ĜhY (y)). (4.32)

The computational issue for (4.31) and (4.32) is the accuracy with which
the inverse functions F̂−1

hX
(·) and Ĝ−1

hY
(·) need to be computed. However,

due to the smooth form of both F̂hX and ĜhY Newton’s method can be
used effectively to solve this problem.

The next theorem (see also Holland and Thayer, 1989) demonstrates that
when hX and hY are both large, the KE functions closely approximate the
standard linear equating function.

Theorem 4.5. If eY (x) is defined by (4.3) then

lim
hX , hY →∞

eY (x) = µY +
σY

σX
(x − µX) = LinY (x).
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Proof. From (4.14), as hX and hY → ∞, FhX (x) and GhY (y) approach
these Normal cdf’s

FhX (x) → Φ
(

x − µX

σX

)
,

GhY (y) → Φ
(

y − µY

σY

)
.

Hence

G−1
hY

(u) → µY + σY Φ−1(u),

where Φ−1(u) is the inverse of the standard Normal cdf, therefore

eY (x) → µY + σY Φ−1

(
Φ
(

x − µX

σX

))
,

= µY + σY

(
x − µX

σX

)
.

Thus, the KE functions estimated in (4.31) and (4.32) provide equipercentile-
type equating functions that can be linear or nonlinear depending on the
actual form of the score distributions. In addition, because LinY (x) is a
limiting form of a KE function, we are able, in the next chapter, to find
a standard error for the difference between êY (x) and L̂inY (x). This can
assist in choosing between a linear and equipercentile equating function.
Due to Theorem 4.5, whenever we refer to a KE function as linear we al-
ways mean choosing the bandwidths, hX and hY , to exceed 10 times their
respective standard deviations, σX and σY .

Diagnosing the effectiveness of eY (x). Once we have computed eY (x), we
can ask how well does it work when applied to X and Y rather than to
X(hX) and Y (hY ) The equating function, eY (x), is designed to perfectly
transform the entire continuous distribution of X(hX) into the continuous
distribution of Y (hY ). But, of course, we should really only care about what
this transformation does to the discrete distribution of X. Equating X to
Y is the problem, X(hX) and Y (hY ) are just tools to facilitate this.

Thus, we need to compare these two discrete distributions, {(eY (xj), rj)}
and {(yk, sk)}. We note that the equating process cannot alter the score
probabilities, rj . All that is altered is the location of the possible values of
X, from xj to eY (xj). In addition, it is unlikely that the sets of possible
values of eY (X) and Y will coincide to any appreciable degree.

There are at least two different ways that could be used to compare the
distribution of eY (X) to that of Y . The first is to compare the moments
of these two distributions. The second is to compare their discrete cdf’s.
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These two cdf’s are

Fe(X)(y) =
∑

j: eY (xj)≤y

rj and G(y) =
∑

k: yk≤y

sk. (4.33)

The difference Fe(X)(y)−G(y) gives the amount by which Fe(X)(y) misses
G(y) for each value, y. In our work, we have not used these cdf’s for compar-
ing the two discrete distributions, but they are certainly worth considering.
In our work we have concentrated on the first approach using moments.

To compare the moments of Y and eY (X) we use the Percent Relative
Error in the pth moments, the PRE(p), which we now define. First, let the
moments of Y and eY (X) be denoted by

µp(Y ) =
∑

k

(yk)psk and µp(eY (X)) =
∑

j

(eY (xj))prj , (4.34)

then the PRE(p) is

PRE(p) = 100
µp(eY (X)) − µp(Y )

µp(Y )
. (4.35)

Our experience shows that for p = 1 and 2 the PRE(p) is quite small,
but not zero. This is due to the fact that the first two moments of X
and Y are preserved by X(hX) and Y (hY ). In our work we have routinely
examined the first 10 moments of Y and eY (X). As p increases, the PRE(p)
usually increases as well, but, as will be seen in the detailed examples of the
chapters in Part II of the book, they are often remarkably small when the
continuization step has been done carefully (for example, see Table 7.5 in
Chapter 7). Thus, while it is impossible to turn the discrete distribution of
X exactly into that of Y , via an observed score equating function, it can be
done well enough to make the first ten moments of these two distributions
almost indistinguishable.



5
Kernel Equating: The SEE and the
SEED

In this chapter, we discuss the last step of the equating process, computing
the Standard Error of Equating, the SEE. We derive general results that
can be applied to all of the equating designs discussed in this book. Our
goal here is to develop our way of computing the SEE for KE as generally
as we can, so that the features of the SEE for the several equating designs
can be put on a common footing and compared. Except for the early work
of Lord (1950, 1955a), which was done under the assumption that all of
the test scores were Normally distributed, we do not believe that such a
comprehensive analytic discussion of the SEE has been done before. Liou
et al. (1997) discuss the standard error of equating for KE in the NEAT
Design. They take a different point of view from the approach we follow in
this chapter.

We also include the special features needed to discuss the SEE for Chain
Equating in the NEAT Design. In addition, we will discuss a new concept,
the SEED, or the Standard Error of Equating Difference, which can be
used in many designs to compare two KE functions, (e.g., to compare the
KE function obtained using a penalty function to determine hX and hY

to the linear KE function obtained using large values of hX and hY .) The
SEED can assist the analyst in making decisions about equating functions.

In the previous two chapters we covered the issues involved in pre-
smoothing, and the estimation of r and s (Chapter 3) as well as con-
tinuization and the computation and assessment of the Kernel Equating
functions (Chapter 4).



68 5. Kernel Equating: The SEE and the SEED

5.1 Introduction

As outlined in Section 1.7, estimated equating functions are estimates of
population quantities and are, therefore, subject to sampling variability
that arises from the fact that the estimate of the equating function would
have been different had different random samples of examinees been se-
lected in the data collection design. The standard error of equating, the
SEE, measures this uncertainty in the estimated equating function.

As we indicated in (4.31), the KE function depends on both r and s, the
estimated score probabilities for X and Y over T. (The slight modifications
for Chain Equating in the NEAT Design is discussed in Section 5.3.4 and
Chapter 10.) These two vectors of score probabilities, in turn, depend on the
data collection design and the sample data collected with it, as explained
in Chapter 2.

As indicated in Section 1.7, the SEE is based on the large sample distri-
bution of êY (x), and it is the variance of this large sample (or asymptotic)
distribution of êY (x) that is used in the computation of the SEE. Strictly
speaking the formulas that we develop for the SEE in this book are more
valid for larger sample sizes, and their utility for smaller sample sizes is a
useful topic for further research.

Finally, in our calculation of the SEE for a KE function, we will assume
that the bandwidths, hX and hY , are fixed values and are not functions of
r and s. This is only an approximation when hX and hY are obtained by
minimizing a penalty function, as discussed in Section 4.1.2. It is a useful
approximation, we think, but further research is necessary to investigate
the degree to which the minimization affects estimates of the SEE. Such
an investigation is beyond the scope of this book, but it is worth further
research.

With this understanding, we denote the SEE for equating X to Y by

SEEY (x) = σ̂Y (x) =
√

Var(êY (x)), (5.1)

and the SEE for equating Y to X by

SEEX(y) = σ̂X(y) =
√

Var(êX(y)), (5.2)

where the equating functions are given by (4.31) and (4.32).
Formula (1.20) is useful to recall because it emphasizes that for fixed

choices of hX and hY , all of the randomness or uncertainty in êX(y) or
êY (x) comes from the estimation of r and s.

Lord (1950) gives formulas for the SEE in the case of linear equating for
several equating designs. Strictly speaking, Lord’s formulas are valid only
under the assumption that the scores are Normally distributed. Braun and
Holland (1982) give the general asymptotic formula for the SEE for the
linear equating function for the EG Design. Kolen (1985) derives formulas of
similar generality for the SEE for linear equating in the NEAT Designs with
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both internal and external anchor tests. Lord (1982) gives the SEE for the
equipercentile equating function in the case of the EG Design. He assumes
no pre- or post-smoothing in his derivations. Jarjoura and Kolen (1985) give
formulas for the SEE for equipercentile equating in the case of an anchor
test (also called the frequency estimation method). Their formulas also
assume no pre- or post-smoothing. Thus, the currently available formulas
for the SEE for equipercentile equating are not flexible enough to take
into account the variance reduction implicit in pre- and post-smoothing.
Studies of the usefulness of pre- and post-smoothing are given in Fairbank
(1987), Kolen (1984) and Kolen and Jarjoura (1987), and few practitioners
would now leave out pre-smoothing (see, e.g., Livingston, 1993a), except
when dealing with the enormous samples that can arise in large testing
programs.

Our approach to computing the SEE for KE uses the explicit formulas
for the equating functions given in (4.3), and (4.31) and the estimated co-
variance matrices, Σr̂, Σŝ, and Σr̂, ŝ. We derive formulas that are valid ap-
proximations for all of the types of equating designs described in Chapter 2.
In all of our analyses, we assume that the C-matrices (see Theorem 3.1)
for computing Σr̂, Σŝ, and Σr̂, ŝ are available. Thus our SEE’s reflect the
data collection design (through the Design Function), the method of es-
timating the population score probabilities, i.e., pre-smoothing (through
the C-matrices), and the formula used for the equating function. In this
regard, our formulas for the SEE for the Kernel Equating are more satisfac-
tory than the earlier derivations of the SEE for equipercentile equating. As
mentioned earlier, being based on large sample approximations, all of these
SEE’s, both ours and those referenced, are strictly valid for large samples
of examinees, but in small samples they may often be the only measure
of uncertainity available. The usefulness of the SEE for small samples is a
good topic for future research.

5.2 The δ-Method Divides the Problem in Three

At this point we believe it is useful to stand back and look at the trans-
formation that starts with the (pre-smoothed) data and ends up with the
estimated equating function, êY (x). The material in this section will be
modified appropriately for the case of Chain Equating in Section 5.3.4.

We begin with the Design Function that transforms the pre-smoothed
score distributions from the original equating design into r and s, the
distributions of X and Y on T, respectively. In order to have a general
formulation we let R and S stand for the vectors of pre-smoothed score
distributions. Table 5.1 indicates the interpretation of R and S for each
equating design. For example, in the EG design, R is just the vector r
and S is s (see (2.3)). However, in the CB design R is v(P(12)) and S
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TABLE 5.1. The Vectors R and S Across Four Data Collection Designs.

EG SG CB NEAT

R̂ r̂ v(P̂) v(P̂(12)) v(P̂)

Ŝ ŝ — v(P̂(21)) v(Q̂)

is v(P(21)), where v(P(12)) and v(P(21)) are defined in (2.24). In the SG
design, R is v(P) and there is no S (see (2.7) and (2.8) for the definition
of v(P) and (2.13) for the definition of the Design Function for the SG
Design). In order to accommodate the SG Design in what follows we make
the convention in the SG Design that S is an arbitrary vector that has no
influence on either r or s. This will give us the correct formulas for the
Jacobian matrix that are the important consequence of this integration of
the four designs into a common framework. The vectorized versions of P
and Q, v(P) and v(Q), for the NEAT Design, were defined in (2.33).

In this general framework we denote a general Design Function as(
r̂
ŝ

)
= DF

(
R̂, Ŝ

)
. (5.3)

Furthermore, we assume that R and S are estimated independently so
that Cov(R̂, Ŝ) = 0. We also assume that the “C-matrices”, CR and CS ,
are available, so that

ΣR̂ = Cov(R̂) = CRCt
R, (5.4)

ΣŜ = Cov(Ŝ) = CSCt
S . (5.5)

Thus,

Cov
(

R̂

Ŝ

)
=

(
CRCt

R 0
0 CSCt

S

)
=

(
CR 0
0 CS

)(
Ct

R 0
0 Ct

S

)
= CCt, (5.6)

where

C =
(

CR 0
0 CS

)
. (5.7)

Hence,

Cov
(

R̂

Ŝ

)
= CCt. (5.8)
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TABLE 5.2. The C-Matrices, CR and CS , and JX , KY , TX , and TY Across Four
Data Collection Designs.

EG SG CB NEAT

CR Cr CP C(12) CP

CS Cs — C(21) CQ

JX J JK JK JL

KY K — JK KL

TX Tr TP T(12) TP

TY Ts — T(21) TQ

The matrix C is (JX +KY ) by (TX +TY )-matrix when JX is the dimension
of R, KY the dimension of S, TX the number of parameters estimated in
R̂ and TY the number of parameters estimated in Ŝ. We use this notation
to include all the designs in Chapter 2. For example, in the EG Design
JX = J while in the NEAT Design JX = JL. For the SG Design JX = JK
and KY is arbitrary because S is.

Table 5.2 identifies the interpretation of CR and CS in each of the designs
using the notation from Chapters 2 and 3, as well as the values of JX and
KY , and of TX and TY .

The matrices Cr and Cs are described in Theorem 3.1 and are part of the
output of the univariate pre-smoothing procedure described in Section 3.2.
The matrices CP , CQ, C(12), and C(21) are also described by Theorem
3.1 and they are part of the bivariate pre-smoothing procedure outlined in
Appendix B.

We use the δ-method, described in Appendix A, to calculate the asymp-
totic variance, Var(êY (x)), whose square root is the SEEY (x). To use the
δ-method we need three ingredients. The first is denoted by JeY , the Jaco-
bian matrix of the equating function defined in (4.31).

The Jacobian, JeY , is a (1 × (J + K))-row vector whose entries are the
first derivatives of eY (x; r, s) with respect to each component of r and s,
i.e., ∂eY /∂rj and ∂eY /∂sk. The array, JeY , does not depend on the data
collection design, and has the same form for all KE equating functions.

The second ingredient needed to calculate Var(êY (x)) is the Jacobian
matrix of the Design Function, JDF. This Jacobian does depend on the data
collection design. When the DF is a linear transformation, as it is for the
EG, SG, and CB Designs, then the Jacobian is identical with the matrix
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that specifies the Design Function (see Table 5.3). In Post-Stratification
Equating for the NEAT Design, the DF is a nonlinear function and its
Jacobian requires the computation of the derivatives of r and s with respect
to the elements of v(P) and v(Q), given in (2.60) and (2.61). This Jacobian
is given in Table 5.4.

Note that JeY is a vector, because eY (x) is a real-valued function, while
JDF is a matrix of dimension (J + K)× (JX + KY ). Using the notation for
matrix derivatives (see Appendix D) we may express JeY and JDF as

JeY =
(

∂eY

∂r
,

∂eY

∂s

)
, (5.9)

and

JDF =

 ∂r
∂R

∂r
∂S

∂s
∂R

∂s
∂S

 . (5.10)

The matrix derivatives in (5.9) and (5.10) have the following dimensions:
∂eY /∂r is 1 by J, and ∂eY /∂s is 1 by K (so that JeY is 1 × (J + K));
∂r/∂R is J by JX , and ∂r/∂S is J by KY ; ∂s/∂R is K by JX , and ∂s/∂S
is K by KY . We will make use of (5.9) and (5.10) in Section 5.3.1, below.

The final ingredient in the calculation of V ar(êY (x)) is the asymptotic
covariance matrix of the pre-smoothed score frequencies obtained by the
data collection design. We have already mentioned this covariance matrix
and the key matrix factorization given in (5.8). We shall exploit the C-
matrix factorization of the covariance matrix of the pre-smoothed score
distributions in Theorem 5.1.

The next theorem gives the most general form of our results in order to
include all of the designs used in this book.

Theorem 5.1. If
(

R̂

Ŝ

)
is approximately Normally distributed as

N
((

R
S

)
, ΣR̂, Ŝ

)
,

where

ΣR̂, Ŝ = Cov
(

R̂

Ŝ

)
= CCt, (5.11)

then for each x, êY (x) = eY (x; r̂, ŝ), given by (4.31), is also approximately
Normally distributed as

N
(
eY (x; r, s), JeY JDFCCtJt

DFJt
eY

)
, (5.12)

where JeY and JDF are the Jacobian matrices described above and C is the
factor of the covariance matrix of R̂ and Ŝ given in (5.8).
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Moreover, the expression,

JeY JDFC, (5.13)

in (5.12), is a row vector of dimension 1 by (TX + TY ) so that (5.12) can
be simplified to

Var(êY (x)) = ||JeY JDFC||2, (5.14)

where ||v||2 =
∑

j v2
j denotes the square of the Euclidian norm of the

vector, v.

The vector, JeY JDFC, is usually considerably smaller than most of the
others that have arisen in the discussion so far. It is only as long as the num-
ber of parameters used in fitting the data in the pre-smoothing step. Ex-
pression (5.14) is a key result. It expresses Var(êY (x)) in terms of JeY , JDF

and C. Two of these depend on the data collection design, JDF and C, while
JeY does not. This is how the δ-method “divides the problem in three.”

The vector, JeY JDFC, is so important in our analysis that we give it a
special name, the SE-vector. The SE-vector is used to compute both the
SEE’s and the SEED’s that arise in this book.

The product, JDFC, represents the contribution of the equating design
to the variance, while JeY represents the contribution of the choice of band-
width hX and hY and the final calculation of êY (x).

The standard error of equating of êY (x) is just the length of the SE-
vector, i.e.,

SEEY (x) = ||ĴeY ĴDFC ||, (5.15)

where ||v|| =
√∑

j v2
j denotes the Euclidian norm of the vector v.

5.3 The SEE and the SEED for Kernel Equating

In this section we derive the SEE for the EG, SG, and CB Designs and
for Post-Stratification Equating (PSE) in the NEAT Design. We do this
by applying the general result (5.14) from Theorem 5.1 to each of these
designs and methods. Subsections 5.3.1 and 5.3 2 are concerned with the
SEE while subsection 5.3.3 modifies the results of those sections to the case
of the SEED. The SEE and the SEED for Chain Equating in the NEAT
Design are addressed in Section 5.4.

5.3.1 Computing JeY
for Kernel Equating

In this subsection we show how to compute JeY , and we do this in two steps:
First, we compute the derivatives of the equipercentile equating function
for any sufficiently smoothly continuized cdf’s, F and G. Second, we will
compute the derivatives for the specific F and G used in KE.
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Derivatives for smooth cdf’s, F and G. The formulas given in the next
lemma can be used for any sufficiently smooth equipercentile equating
function based on (1.10). However, we state it in a form that is conve-
nient for our application to KE. Lemma 5.1 is proved using the chain rule
and implicit differentiation, and so we omit the proof.

Lemma 5.1. If eY (x; r, s) = G−1(F (x; r); s) then

∂eY

∂rj
=

1
G′

∂F (x; r)
∂rj

, (5.16)

∂eY

∂sk
= − 1

G′
∂G(eY (x); s)

∂sk
, (5.17)

where

G′ =
∂G(eY (x); s)

∂y
(5.18)

is the density of G evaluated at eY (x).

The use of matrix notation is helpful when dealing with Jacobians (see
Appendix D) . We use the notation ∂F/∂r to denote the J-dimensional row
vector whose entries are the J derivatives ∂F (x; r)/∂rj . Similarly, ∂G/∂s
is a K-dimensional row vector whose entries are ∂G(eY (x); s)/∂sk.

We may use this matrix notation to write (5.16) and (5.17) more com-
pactly and show the relationship to JeY .

JeY =
(

∂eY

∂r
,

∂eY

∂s

)
=

1
G′

(
∂F

∂r
, −∂G

∂s

)
. (5.19)

Similar results hold for eX(y; r, s) = F−1(G(y; s); r), with the roles of F
and G reversed, i.e., the Jacobian JeX , for equating Y to X, is,

JeX =
(

∂eX

∂r
,

∂eX

∂s

)
=

1
F ′

(
−∂F

∂r
,

∂G

∂s

)
. (5.20)

Next we evaluate ∂F/∂r and ∂G/∂s for KE.

JeY for Kernel Equating. Examining the formulas from Lemma 5.1 and
making use of the fact that F and G are similar in form, there are really
only two cases to consider, ∂F/∂x and ∂F/∂rj. ∂F/∂x is the density of F,
F ′ = f, but ∂F/∂rj is the derivative of F with respect to a score probability
and is not a probability density function. All of the other derivatives can
be found by substitution. Lemma 5.2 summarizes the results.

Lemma 5.2. If F (x; r) = FhX (x) is given by (4.5) then

∂F (x; r)
∂rj

= Φ (RjX(x; r)) − MjX(x; r)
∂F (x; r)

∂x
(5.21)
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TABLE 5.3. The Entries in JDF for the EG, SG and CB Designs.

EG SG CB

∂r
∂R IJ M wXM

∂s
∂R 0 N (1 − wY )N

∂r
∂S 0 0 (1 − wX)M

∂s
∂S

IK 0 wY N

and

∂F (x; r)
∂x

= F ′
hX

(x) = fhX (x)

=
∑

j

rjφ (RjX(x; r))
1

aXhX
, (5.22)

where

RjX(x; r) =
x − aXxj − (1 − aX)µX

aXhX
, (5.23)

MjX(x; r) =
1
2
(x − µX)(1 − a2

X)z2
jX + (1 − aX)xj , (5.24)

and

zjX =
xj − µX

σX
. (5.25)

As usual, φ(z) in (5.22) is the N (0, 1) density, Φ(z) in (5.21) is the N (0, 1)
cumulative distribution function, and fhX (x) is the density function given
in (4.5).

Only the details of the derivation of (5.21) are at all complicated and
these are given in Holland and Thayer (1989, p. 34). The derivatives, ∂G/∂y
and ∂G/∂sk, are analogous to the results in Lemma 5.2 with X replaced
by Y , F replaced by G, and r by s.

To obtain JeY for KE, substitute (5.21) and the appropriate modification
of (5.21) for ∂G/∂s into (5.19); G′ is just the density of G and is analogous
to the density of F given in (5.22).
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TABLE 5.4. The Entries in JDF for the Case of the PSE for the NEAT Design.

PSE for the NEAT Design

∂r
∂p

l
wlP IJ − (1 − w)(tQl/tPl)[(tPl)−1pl]1t

J

∂s
∂pl

w[(tQl)−1ql]1
t
J

∂r
∂ql

(1 − w)[(tPl)−1pl]1t
K

∂s
∂q

l
wlQIK − w(tPl/tQl)[(tQl)−1ql]1t

K

5.3.2 Applying the General Formula for the SEE to Specific
Equating Designs

In this section we develop a formula for the SEE that holds for any suffi-
ciently smooth method of equipercentile equating in the equating designs
that are considered in this book. Of course KE satisfies this requirement
and we will apply these general results to KE in Chapters 7—11. In the
NEAT Design, the Chain Equating (CE) approach requires the results of
the SG Design plus a summation of the results from the two links in the
chain. We discuss the CE case in more detail in Section 5.4.

To clarify this development we consider the product JDFC in (5.15).
Repeating (5.10) we have

JDF =

 ∂r
∂R

∂r
∂S

∂s
∂R

∂s
∂S


Then the product JDFC is

JDFC =

 ∂r
∂R

∂r
∂S

∂s
∂R

∂s
∂S

 CR 0

0 CS



=

 ∂r
∂R

CR
∂r
∂S

CS

∂s
∂RCR

∂s
∂SCS

 , (5.26)

or

JDFC =
(

UR US

VR VS

)
, (5.27)
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TABLE 5.5. The Entries for JDFC for EG, SG, and CB Designs.

EG SG CB

UR Cr U wXU(12)

VR 0 V (1 − wY )V(12)

US 0 0 (1 − wX)U(21)

VS Cs 0 wY V(21)

where the U’s and V’s denote the corresponding entries in (5.26). The
values of the U’s and V’s are given in Tables 5.5 and 5.6 for the EG, SG,
CB, and for PSE in the NEAT Design.

If we combine (5.27) with (5.19) we obtain the following important for-
mula for the SE-vector that applies to the EG, SG, and CB Designs and
for PSE to the NEAT Design:

JeY JDFC =
1
G′

(
∂F

∂r
UR − ∂G

∂s
VR,

∂F

∂r
US − ∂G

∂s
VS

)
. (5.28)

It is easy to see that the SE-vector in (5.28) is a 1 by (TX + TY ) row
vector, even though its component matrices are much larger, in general.
Theorem 5.2 applies (5.28) to obtain a general formula for the SEE for KE
in a variety of equating designs.

Theorem 5.2. If eY (x; r, s) = G−1(F (x; r); s) then the SEEY (x) for the
data collection designs, EG, SG, CB and PSE for the NEAT Design, can
be written as:

SEEY (x) =
1
G′

[∥∥∥∥ ∂F

∂r
UR − ∂G

∂s
VR

∥∥∥∥2

+
∥∥∥∥ ∂F

∂r
US − ∂G

∂s
VS

∥∥∥∥2
]1/2

(5.29)

where ||v||2 =
∑

i v2
i is the squared Euclidian norm of the vector v and UR,

US , VR, and VS are the matrices in Tables 5.5 and 5.6.

Equation (5.28) and Theorem 5.2 are general results. To apply them to
a specific equating design we need to specify the entries in JDF and JDFC
for that design. Table 5.3 summarizes the values of JDF for the EG, SG
and CB Designs. In these three designs, the Design Function is linear so
that JDF is just its matrix. The entries in Table 5.3 come from (2.3), (2.13),
and (2.27) from Chapter 2. For Post-Stratification Equating (PSE) in the
NEAT Design, the Design Function is nonlinear and is given by (2.59),
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(2.60), and (2.61). Its Jacobian is more complicated than for the other
three cases.

To display the JDF for the NEAT/PSE case we need a little more prepa-
ration. The structure of the derivative matrix, ∂r/∂R, is determined by
the partitioning of R = v(P) by the L columns of P. It has the form

∂r

∂R
=
(

∂r

∂p1

, . . . ,
∂r

∂pL

)

where ∂r/∂pl is the J by L matrix of partial derivatives of r with respect
to the elements of the lth column of P, pl (see Appendix D). It therefore
suffices to display the following four partial derivative matrices of r and s :
∂r/∂pl, ∂s/∂pl, ∂r/∂ql, and ∂s/∂ql. These are displayed in Table 5.4.

In Table 5.4 we use the notation

wlP = w + (1 − w)(tQl/tPl), (5.30)
wlQ = (1 − w) + w(tPl/tQl), (5.31)

where

tPl = Prob{A = al |P} =
∑

j

pjl (5.32)

and

tQl = Prob{A = al |Q} =
∑

k

qkl. (5.33)

In addition, in Table 5.4, pl is the lth column of P, ql is the lth column of
Q, I is an identity matrix and 1 is a column vector of 1’s.

While the Jacobian of the DF, JDF, is of some independent interest, it
is its product with the matrix C that has all the information relevant to
the SEE (and the SEED) for each equating design.

Table 5.5 summarizes the matrix entries for JDFC, the U’s and the V’s
indicated in (5.27), for the EG, SG, and CB Designs.

In Table 5.5, we use the following definitions. CPk, C(12)k, and C(21)k

are matrix-blocks in CP , C(12), and C(21), respectively. CPk and C(12)k

are J by TX dimensional, while C(21)k is J by TY dimensional, using the
definitions of TX and TY in Table 5.2.
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In addition, U, V, U(12), V(12), U(21), and V(21) are defined by:

U = MCP =
∑

k

CPk,

V = NCP =

 1t
JCP1

...
1t

JCPK

 ,

U(12) = MC(12) =
∑

k

C(12)k,

V(12) = NC(12) =

 1t
JC(12)1

...
1t

JC(12)K

 ,

U(21) = MC(21) =
∑

k

C(21)k,

V(21) = NC(21) =

 1t
JC(21)1

...
1t

JC(21)K

 .

In Table 5.6 we use the following definitions:

UP = MP CP =
∑

l

CPl,

U∗
P =

∑
l

(tQl/tPl)CPl,

UQ = MQCQ =
∑

l

CQl,

U∗
Q =

∑
l

(tPl/tQl)CQl,

vt
P l = 1t

JCPl and vt
Ql = 1t

KCQl.

Furthermore, tPl and tQl are the score probabilities for A in P and Q
given in (5.32) and (5.33), while pl and ql are the lth columns of the bivari-
ate score probabilities, P = (pjl) and Q = (qkl), respectively. Finally, CPl

and CQl are the matrix blocks of CP and CQ. CPl is J by TP dimensional,
while CQl is K by TQ dimensional.

5.3.3 The Standard Error of the Difference Between Two
Kernel Equating Functions

In this subsection we state a result that is analogous to formula (5.14) and
which allows us to compute a standard error for the difference between two
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TABLE 5.6. The Entries for JDFC for the Case of PSE for the NEAT Design.

UR wUP + (1 − w)U∗
P − (1 − w)

∑
l(tQl/tPl)t−1

Pl plv
t
P l

VR w
∑

l t
−1
Ql qlv

t
P l

US (1 − w)
∑

l t
−1
Pl plv

t
Ql

VS (1 − w)UQ + wU∗
Q − w

∑
l(tPl/tQl)t−1

Ql qlv
t
Ql

Kernel Equating functions. This standard error can be used to inform de-
cisions about the final form of an equating function. In particular, because
the linear equating function, LinY (x), defined in Section 1.3, is a limiting
form of the KE functions, the standard error of the difference between it
and another KE function can be computed using the results of Theorem 5.3,
below. When the difference is small compared to this standard error then
it may be reasonable to consider using the simpler LinY (x) than eY (x). Of
course, in KE, LinY (x) is computed using (4.31) with large bandwidths,
rather than formula (1.7).

To set things up, suppose e1(X) and e2(X) denote two equating functions
that have the KE form (4.31) but differ due to their values of hX and hY .
We are interested in

Var (ê1(x) − ê2(x)) . (5.34)

Theorem 5.3, below, shows that if we have computed the SE-vectors for
ê1 and ê2, i.e., the vectors Je1JDFC and Je2JDFC from (5.13), then we
already have the ingredients for the SEED for the difference between ê1

and ê2.

Theorem 5.3. If ê1(x) and ê2(x) are given by (4.31) but have different
values for the bandwidths, hX and hY , then

Var (ê1(x) − ê2(x)) = || (Je1 − Je2 )JDFC ||2
= ||Je1JDFC− Je2JDFC ||2, (5.35)

where Je, JDF, and C are as given in Theorem 5.1.

The proof of Theorem 5.3 is similar to that of Theorem 5.1 except that
it exploits the relationship Je1−e2 = Je1 − Je2 .

Using Theorem 5.3 we define the “standard error of equating difference,”
the SEED, as

SEEDY (x) =
√

Var (ê1(x) − ê2(x))
= ||Je1JDFC− Je2JDFC ||. (5.36)
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Hence, the SEED is the length of the difference between the two SE-vectors.
Our use of the C-matrices of Theorem 5.1 and elsewhere is motivated by

the result in (5.15) and (5.28). These provide computationally efficient ways
of computing the SEE and SEED using the SE-vectors. Theorem 5.3 can be
generalized slightly to accommodate more complicated differences between
ê1 and ê2 than the bandwidth differences from the continuization process.
In the CB Design, the choice of wX and wY affect the Jacobian of the DF
as well as the final choices of the bandwidths. In this case, Je1JDF1C and
Je2JDF2C need to be computed first, and then subtracted, i.e.,

Var (ê1 − ê2) = ||Je1JDF1C− Je2JDF2C ||2. (5.37)

In Chapter 11, we will also consider a choice of e1 and e2 where e1 is
derived from Chain Equating assumptions, while e2 is derived from Post-
Stratification Equating assumptions. Formula (5.37) applies in that case as
well, when we interpret the SE-vector for CE properly.

5.4 The SEE and SEED for Chain Equating

Chain equating is different in important ways from the other KE methods
we have considered so far. It is a two-step procedure that combines the
results of two SG linkings into an equating of X to Y. From the point of
view of computing the SEE and the SEED, its most notable difference from
the other designs is that r and s, the vectors of score probabilities for X
and Y on the target population, T, are never directly computed. Thus,
the Design Function and its Jacobian, JDF, which plays such an important
role in computing the SEE and the SEED for the other designs, is of a
different character in CE. In addition, the equating function, eY (CE)(x), is
a composition of two other linking functions, so that it does not directly
have the form of (4.31), and, instead, involves the composition of four
continuized cdf’s and their inverses (see below), rather than just two, as
the equating function does in the other KE cases we have discussed.

However, it is desirable to make as much use as we can of the fact that
CE is constructed from two simpler SG linkings. Our approach to the SEE
and SEED for CE exploits these connections to the simpler SG case, and
makes use of results that we have established for the SG Design.

The equating function for CE has the form

eY (CE)(x; rP , tP , tQ, sQ) = eY (eA(x; rP , tP ); tQ, sQ), (5.38)

where eA(x) = eA(x; rP , tP ) is the SG link from X to A on P using the
first SG Design, and eY (a) = eY (a; tQ, sQ) is the SG link from A to Y on
Q, using the second SG Design. The two links in the chain of CE each have
the usual KE form:

eA(x; rP , tP ) = H−1
hAP

(FhXP (x; rP ); tP ) (5.39)
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and
eY (a; tQ, sQ) = G−1

hY Q
(HhAQ(a; tQ); sQ). (5.40)

The Jacobians of eA(x; rP , tP ) and eY (a; tQ, sQ) may be computed from
formula (5.19) using suitable reinterpretations of F, G, r, and s. We de-
note them as JeA(x) and JeY (a), respectively. The Jacobian of eY (CE),
JeY (CE)(x), may be formed from JeA(x) and JeY (a). To see this, we first
note that the Jacobian of eY (CE) is a row vector of the derivatives of
eY (CE)(x; rP , tP , tQ, sQ) with respect the four sets of score probabilities,
rP , tP , tQ, and sQ, (in that order), rather than for just r and s as we had
in the other designs. Next, let e′Y (a) denote the derivative of eY (a) with
respect to a, i.e.,

e′Y (a) =
∂eY

∂a
(a). (5.41)

Then, the chain rule for partial differentiation allows us to express JeY (CE)

as
JeY (CE)(x) = (e′Y (a)JeA(x), JeY (a)) . (5.42)

There is a slight complication in (5.42) concerning where the derivatives
in it are to be evaluated. The rule is “set all a’s to eA(x).” If we do this,
(5.42) becomes

JeY (CE)(x) = (e′Y (eA(x))JeA(x), JeY (eA(x))) . (5.43)

The left side of (5.43) is [1×(J +L+L+K)]-dimensional, and the right side
has two components. The first, e′Y (a)JeA(x), is [1 × (J + L)]-dimensional,
because e′Y (a) is a scalar and JeA(x) is [1 × (J + L)]-dimensional, and the
second, JeY (a), is [1 × (L + K)]-dimensional. Hence, both sides of (5.42)
result in [1 × (J + 2L + K)]-dimensional row vectors.

In order to use the δ-method to evaluate the approximate variance of
eY (CE) we need the joint covariance matrix of the vector of score probability
estimates, 

r̂P

t̂P

t̂Q

ŝQ

 . (5.44)

The covariance matrix for the partitioned vector in (5.44) is easily obtained
from the Design Function for the SG Design applied to the separate covari-
ance matrices of v(P̂) and v(Q̂). First of all, because v(P̂) and v(Q̂) are
independent we only need to find the covariance matrix

Cov
(

r̂P

t̂P

)
= DP Dt

P (5.45)
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separately from the covariance matrix

Cov
(

t̂Q

ŝQ

)
= DQDt

Q. (5.46)

In (5.45) and (5.46) we adapt the notation from Table 5.5 for the SG Design
and let

DP =
(

UP

VP

)
=
(

MPCP

NP CP

)
=
(

MP

NP

)
CP (5.47)

and

DQ =
(

VQ

UQ

)
=
(

NQCQ

MQCQ

)
=
(

NQ

MQ

)
CQ. (5.48)

The matrix factors, DP and DQ, are (J + L) by TP dimensional and (L +
K) by TQ dimensional, respectively. In (5.47) and (5.48) the U’s and V’s
come from Table 5.5, but we add the subscripts P and Q to identify the
population to which each refers.

UP = MP CP =
∑

l

CPl and UQ = MQCQ =
∑

l

CQl,

and

VP = NPCP =

 1tCP1

...
1tCPL

 and VQ = NQCQ =

 1tCQ1

...
1tCQL

 .

Thus, the joint covariance matrix of the vector of score probabilities in
(5.44) is DDt, where

D =
(

DP 0
0 DQ

)
. (5.49)

Now we can combine the Jacobian of eY (CE)(x) with D to get the SEE
for Chain Equating. In analogy with (5.14), the asymptotic variance of
êY (CE)(x), is

Var(êY (CE)(x)) = ||JeY (CE)D ||2. (5.50)

Hence, the SE-vector for the case of CE is JeY (CE)D.
However,

JeY (CE)D = (e′Y JeA , JeY )D = (e′Y JeADP , JeY DQ) (5.51)

and each of the vector components of the right side of (5.51) is exactly of the
form of (5.13) with JDFC replaced by DP or DQ. This observation allows
us to use the methods already developed for the SG Design to compute
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the SEE for CE. The essential ingredient is the SE-vector, JeY (CE)D. From
(5.51) we have

Var(êY (CE)(x)) = || e′Y JeADP ||2 + ||JeY DQ ||2, (5.52)

and each term of (5.52) is related to the asymptotic variance of one of the
links in the CE chain. Thus,

||JeY DQ ||2 = Var(êY (a)) = SEE2
Y (a) (5.53)

and

||e′Y JeADP ||2 = [e′Y (a)]2Var(êA(x)) = [e′Y (a)]2SEE2
A(x). (5.54)

Evaluating a at a = eA(x) we get

Theorem 5.4. The Standard Error of Equating for CE in the NEAT De-
sign can be expresses in terms of the SEE’s for each link in the chain as
follows:

SEE2
Y (CE)(x) = [e′Y (eA(x))]2SEE2

A(x) + SEE2
Y (eA(x)). (5.55)

In (5.55), for KE the value of e′Y (eA(x)) can be computed as

e′Y (eA(x)) =
H ′

Q(eA(x))
G′

Q(eY (CE)(x))
, (5.56)

where H ′
Q(a) and G′

Q(y) are the densities of HQ(a) and GQ(y), respectively.

Using the formulas for the SEE’s of the SG links, we may express the
SEE for CE in a form that is similar to the one given in Theorem 5.2 for
the other designs. This is summarized in Theorem 5.5, below.

Theorem 5.5. The SEEY (x) for Chain Equating used in the NEAT Design
can be written as

SEEY (x)2 =
(

1
H ′

P

)2 ∥∥∥∥ ∂FP

∂r
UP − ∂HP

∂t
VP

∥∥∥∥2

+ (e′Y (eA(x)))2
(

1
G′

Q

)2 ∥∥∥∥∂HQ

∂t
VQ − ∂GQ

∂s
UQ

∥∥∥∥2

. (5.57)

In Theorem 5.5, FP and HP are the continuized cdf’s of X and A, respec-
tively, on P ; HQ, GQ are the continuized cdf’s of A and Y , respectively,
on Q; and H ′

P and G′
Q are the densities of HP and GQ. In addition, the

matrices UP , UQ, VP and VQ correspond to the U and V matrices for
the two SG Designs (see Table 5.5). UP and UQ also appear in Table 5.6
for the PSE for the NEAT Design. The vectors vt

P l and vt
Ql in Table 5.6

are the rows of VP and VQ, respectively.



5.4 The SEE and SEED for Chain Equating 85

What about the SEED for CE? The key ingredient is the SE-vector,
JeY (CE)D, given in (5.51). If êY (CE)1(x) and êY (CE)2(x) denote two CE
functions obtained through (5.38) but using different sets of the four band-
widths, then

Var(êY (CE)1(x) − êY (CE)2(x)) = ||JeY (CE)1D − JeY (CE)2D ||2. (5.58)

As in the other designs, the SEED is the length of the difference between
the SE-vectors.

Thus, once JeY (CE)D can be computed for a given set of bandwidths, the
SEED is easy to obtain from it for two different choices of the h’s. This
also provides an alternative to (5.55) for computing the SEE for CE, i.e.,
formula (5.50).
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6
Kernel Equating versus Other
Equating Methods

In this chapter we compare Kernel Equating (KE) to the two other im-
portant methods of observed-score test equating—linear equating and the
percentile rank method (PRM) of equipercentile equating. Our analysis is
primarily a theoretical comparison rather than a comparison of numerical
results in particular cases.

In general terms we believe that there are two major areas where KE
can be viewed as an improvement on the older methods. First, because it
makes consistent use of pre-smoothing as well as smooth transformations
of the data, KE will often have smaller standard errors and be less subject
to sampling variability than the other methods. Thus, it is well suited to
applications where the sample sizes are small, but it can also intelligently
handle any sample size.

Second, KE is a consistent system that develops equating functions and
their estimated standard errors in a similar way across all of the commonly
used data collection designs. The five steps of observed score test equating,
outlined in Section 3.1, are common to all such methods, but they are
sometimes not recognized as such. KE is built to attend clearly to each
of these steps in a consistent and data-sensitive way. In the rest of this
chapter, we will not dwell on these two claims in specific cases, but will
discuss the differences between KE and the other two methods.

There is one area where KE is not as satisfactory as either linear or the
PRM method. This is in the ease of computation. Both linear equating
and PRM were created in the years before there were computers, and for
this reason they can be graphed or calculated by hand once certain simple
statistics are available. KE is a child of the computer age and reflects all
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of the tools that are implied by that status. We do not feel that this is
a particularly important drawback. In the situations where test equating
is a routine part of the work of psychometricians, hand calculations are
not particularly useful. Computer programs are already processing the test
data in many other ways prior to and after equating, so computer programs
to implement KE can fit into many operational equating systems.

6.1 KE versus Linear Equating

The linear equating function, LinY (x), defined in Section 1.3, i.e.,

LinY (x) = µY + (σY /σX)(x − µX), (6.1)

is a general method that must be tailored to each equating design. Thus,
there is no single linear equating method, but what is actually computed
will vary from design to design. We briefly review these calculations next.

In the EG and SG Designs, the same formulas are used to estimate the
parameters of (6.1), namely,

µ̂X = X̄,

µ̂Y = Ȳ ,

σ̂X = sX ,

σ̂Y = sY .

For the CB Design, Lord’s suggestion for linear equating is to estimate the
parameters in (6.1) by

µ̂X = (X̄1 + X̄2)/2,

µ̂Y = (Ȳ1 + Ȳ2)/2,

σ̂X =
√

(s2
X1

+ s2
X2

)/2,

σ̂Y =
√

(s2
Y1

+ s2
Y2

)/2,

where we use our notation from Chapter 2 for the data in the CB Design.
In the NEAT Design, Tucker’s method of linear equating is an example

of the Post-Stratification method of equating. It weakens the assumptions
PSE1 and PSE2 (see Section 2.4.2) to the assumption that the regressions
of X and Y on the anchor test are population invariant and then adds
the further assumptions that they are linear and have constant residual
variances. These assumptions are then used to derive estimates of the pa-
rameters of the linear equating function in (6.1) over a particular target
population of the form T = wP + (1 − w)Q, from (2.32).

Finally, in the NEAT Design, Chain Linear Equating is a linear version of
the Chain Equipercentile method described in Section 2.4.1. In this method,
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linear equating functions are computed for each of the two SG Designs and
then functionally composed to get a final, linear, equating function. That
this approach can be interpreted as an observed score equating method
follows from the discussion in Section 2.4.1 where the equipercentile ver-
sion of Chain Equating is emphasized. The assumptions, CE1 and CE2,
of Section 2.4.1, are weakened so that only the linear equating functions
on each population are assumed to be population invariant. The resulting
linear equating function has the form

LinY (CE)(x) = µY Q + (σY Q/σAQ)µAP

+[(σY Q/σXP )(σAP /σAQ)](x − µXP ). (6.2)

Thus, linear equating is not a single method. It is shaped by the structure
of the equating design. This is also true of KE as indicated in Chapter 2
and explained more fully in each of the chapters of Part II of this book.

However, there is one thing that is true of all uses of KE. If the band-
width values, hX and hY , used in the continuization step, are large (at
least 10σ in many applications) then the KE equating function, eY (x), will
be a linear equating function because the continuizations will be Normal
approximations to F and G. Theorem 1.1 insures this because F and G
will have the same shape, i.e., Normal. Thus, in every equating design con-
sidered here, KE will be linear if the bandwidths used in the continuization
step are large enough.

For this reason, for every design considered in this book KE contains
the linear equating functions as the special case that arises when the band-
widths are taken to be large. (As we see in some of our examples in Part
II, even relatively small bandwidths can lead to nearly linear KE equating
functions.) In a sense then, KE is linear equating when the continuization
is done in a particular way. On the other hand, the data may not support a
continuization that leads to linear equating. In this sense, KE is more data
sensitive than linear equating is. The SEED, discussed in Chapter 5, is a
new tool, unique to KE, for evaluating the degree to which KE and linear
equating agree.

However, KE can differ from ordinary linear equating even when large
bandwidths are deemed acceptable. While the two equating functions will
be identical in most case, their standard errors of equating (SEE’s) may
not be. Due to pre-smoothing the score distributions, it can arise (in the
EG Design) that the SEE for KE will differ from the SEE for linear equat-
ing computed from the formulas in Braun and Holland (1982). This is due
to the assumptions that are made in deriving these SEE formulas. Pre-
smoothing can force the higher moments of the score distributions to be
determined from the lower ones and this can result in different computed
SEE’s for KE and the usual SEE’s for linear equating. We expect that if
the models selected for the score distributions in the pre-smoothing step
actually fit the data well, then this will result in more accurate and smaller
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SEE’s for the KE versions of linear equating compared to the usual formu-
las for these standard errors. While we have not explored this issue fully,
we believe that these differences in SEE’s are probably marginal in most
cases. But examination of these possible differences are worthy of further
investigation.

6.2 KE versus the Percentile Rank Method of
Equipercentile Equating

The percentile rank method (PRM) is described in Angoff (1971) and Kolen
and Brennan (1995) and it is often called “the equipercentile method.” It is
easiest to discuss this method when the possible scores of X and Y are both
sets of consecutive integers, as will arise for “number right” scoring and for
formula scores that are rounded to integer values. These are both common
forms of raw scores and for that reason in this chapter we will restrict
our attention to the case of raw scores that are consecutive integers. In
this chapter, rather than the graphical procedure described by Angoff, we
consider the “analytical procedure” for equipercentile equating described
in Kolen and Brennan (1995, p. 42), but we will try to make our description
of it as similar as possible to KE for comparison purposes.

Just as linear equating is not a single method, and must reflect the
equating design, so too is any method of equipercentile equating, including
KE and the percentile rank method (PRM). A properly executed version
of any equipercentile equating method will involve attention to the pre-
smoothing and estimation steps of observed score equating described in
Section 3.1. Equipercentile methods must reflect the equating designs and
will explicitly or implicitly use the Design Function appropriate to the
design to estimate r and s. Where PRM and KE differ is in the way that
they continuize F and G.

6.2.1 The Percentile Rank Method of Continuizing F and G

The percentile rank method may be viewed as a way of continuizing the
discrete distributions of X and Y in much the same way that formula
(4.11) describes continuization for KE. We suppose that we add to X an
independent random variable, UX , that is uniformly distributed over the
interval [− 1

2 , 1
2 ]. Because the possible values of X are assumed here to be

consecutive integers, the result will be a random variable,

X∗ = X + UX , (6.3)

that has a continuous, strictly increasing cdf concentrated on the interval
[x1 − 1

2 , xJ + 1
2 ]. We can do the same with Y , i.e.,

Y ∗ = Y + UY , (6.4)
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where UY is independent of Y . Y ∗ is a random variable with a continuous,
strictly increasing cdf concentrated on the interval [y1− 1

2 , yK + 1
2 ]. It should

be emphasized that we do not actually add UX and UY to X and Y , but
rather the continuization process can be viewed as if this had been done.
What UX and UY do is spread out the discrete probability at each score
point continuously over the unit interval around it, [xj − 1

2 , xj + 1
2 ]. We let

F ∗ and G∗ be the cdf’s of X* and Y *, respectively.
Using these continuized cdf’s, the percentile rank method produces its

version of the equipercentile equating function via the same type of formula
used in KE, i.e.,

PRMY (x) = G∗−1
(F ∗(x)). (6.5)

While F ∗ and G∗ are continuous and strictly increasing over their ranges,
they are piecewise-linear functions that are (usually) not differentiable at
each half-integer in their range. Kolen and Brennan (1995, p. 41, Figure 2.4)
graphically illustrate this phenomenon. The cdf, F ∗, has a density function
which is just the usual histogram that spreads the score probability rj over
the unit interval centered at the score point, xj . Similarly for G∗.

PRMY (x) inherits its piecewise-linear character from those of F ∗ and
G∗, which is also graphically illustrated in Kolen and Brennan (1995, p. 41,
Figure 2.5). The need to further smooth PRMY (x) has been noticed from
its earliest uses and graphical ways of doing this are suggested by Angoff
(1971). Kolen and Brennan discuss various analytical methods that have
been proposed to smooth PRMY (x). This type of “post-smoothing” differs
from “pre-smoothing” (Chapter 3) in that it is not intended to remove
sampling variability but is used, instead, to remove the inherent roughness
(i.e., the piecewise-linear aspect) of PRMY (x). This roughness would exist
even if all sampling variability had been removed by pre-smoothing the
sample data.

6.2.2 Some Facts About PRM

The reader might first ask, why do we continually refer to (6.5) as the
“percentile rank method” when, so far at least, there has been no mention
of percentile ranks. The answer is that percentile ranks are implicit in
formulas (4.1) and (4.2) applied to F ∗ and G∗. The cdf, F ∗, for example,
has the following value at xj

F ∗(xj) =
∑
i<j

ri +
1
2
rj , (6.6)

where rj is defined in (1.3).
This is discussed in Kolen and Brennan (1995) and shown analytically

in Holland and Thayer (1989). Thus, the value F ∗(xj) is exactly the usual
definition of the percentile rank of a score, i.e., the “percent below” plus
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“one-half the percent at” the given score, i.e., xj . The uniform distribution
of UX insures the linear interpolation of the scores between the integer
scores.

So, the reason we call PRMY (x) in (6.5) the “percentile rank method” is
that it linearly interpolates around each of the percentile ranks to compute
the equated values.

6.2.3 Distributional Characteristics of PRM

Next, we might ask if there is any guarantee that X∗ shares any distribu-
tional characteristics of X? Here is what can be said. First of all, X and
X∗ do share the same mean value, µX , because UX has mean zero. The
same is true for Y and Y ∗. Second of all, we can not really say the same
about the variances of X and X∗ (or Y and Y ∗). In fact, we easily see
from (6.3) and (6.4) that

Var(X∗ |T ) = Var(X |T ) +
1
12

,

Var(Y ∗ |T ) = Var(Y |T ) +
1
12

. (6.7)

In practice, this discrepancy is easily observed, but it is also small, so that
it is possible to confuse it with round-off error and similar numerical details
of the computations.

Once we see that X∗ is not guaranteed to match even the second moment
of X, it is evident that the sense in which X∗ is supposed to approximate
the distribution of X is vague (and similarly for Y and Y ∗).

However, it is the nearness of the distributions of Y and the transformed
X, PRMY (X), that is of chief importance. The failure of the percentile
rank method of continuization to match even the variances of the distri-
butions suggests that development of this procedure for equating was not
driven by clear distribution-matching goals. In fact, the entire effort to
post-smooth PRMY (x), in the usual ways that this is attempted, does not
explicitly address the need to make the smoothed result more closely match
the distribution of Y than PRMY (X) does. In fact, the discussion of An-
goff suggests that post-smoothing is more esthetic than oriented toward
the goal of matching the score distributions of PRMY (X) and Y in any
sense.

6.2.4 The Issue of the Finite Range

Finally, we need to address the issue of the finite ranges of F ∗ and G∗.
While there is an obvious sense in which F ∗ linearly interpolates between
the scores from x1 to xJ , what happens outside this range is settled by an
arbitrary decision. The fact that F ∗(x) is zero below x1− 1

2 is an artifact of
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how the continuization process is done in the percentile rank method. KE
shows that it could be done in a different manner with different results. Be
that as it may, the direct consequence of this finite range for F ∗ and G∗ is
that PRMY (x) maps all x less than or equal to x1− 1

2 into y1− 1
2 and all x

greater than or equal to xJ + 1
2 into yK + 1

2 . This fact is often stated more
loosely as PRMY (x) maps the top raw-score of X to the top raw-score of
Y , and the lowest raw-score of X to the lowest raw-score of Y . If two tests
differ sufficiently in difficulty, this property is usually not desirable. It is
intuitively evident that the highest score on a much harder test ought to
correspond to a score above all of the raw scores on an easier one. This last
point is often made in support of linear equating rather than equipercentile
equating. Linear equating is not subject to the restriction that the equating
function must map the two raw-score ranges onto each other. For this
reason, linear equating is often seen as something different from curvilinear
or equipercentile equating. Our view is influenced by Theorem 1.1, which
shows that linear equating is the linear approximation to any equipercentile
method based on continuization and which matches the first two moments
of the continuized X and Y distributions. For us, LinY (x) is just a special
case of KE.

Other authors, such as Kolen and Brennan (1995), regard the fact the
range of possible equated X-scores lies within [y1 − 1

2 , yK + 1
2 ] as a virtue

of PRM not always shared by linear equating, and, therefore, by KE. We
respectfully disagree with such a position.

6.3 Viewing PRM from the KE Perspective

Using the approach described in Chapter 3 one might make the follow-
ing suggestions regarding the percentile rank method. First of all, it is
probably useful to add a linear transformation, in the spirit of (4.11), to
X∗ = X + UX and to Y ∗ = Y + UY , so that the new X∗ and Y ∗

can actually match the first two moments of the X and Y . These linear
transformations will necessarily change the ranges of the X∗ and Y ∗ from
[x1 − 1

2 , xJ + 1
2 ] and [y1 − 1

2 , yK + 1
2 ] to other intervals. Secondly, efforts

to post-smooth PRMY (x) ought to focus on changing PRMY (x) in a way
that makes the distribution of PRMY (X) closer to that of Y in some well
defined sense. In KE, post-smoothing of the equating function is unneces-
sary because whatever additional smoothing is necessary is carried out in
the continuization phase. The choices of the bandwidths, and the penalty
functions used to do this are the way that KE makes explicit the sense in
which the continuous distributions approximate the original discrete ones.
Once these approximations are chosen, the equating function automatically
follows and is as smooth as necessary. Linear equating fits in as a limiting
case that may be all that is needed. Finally, the finite range property of
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PRMY (x) can be changed if the continuization process is altered to use
a distribution other than the uniform at the top and bottom scores. For
example, the Normal distribution, N (0, h) could be used at these points
where h is a bandwidth parameter that can be manipulated to achieve var-
ious goals. However, once we have gone this far, we have almost turned the
percentile rank method into KE and our suggestion would be to go all the
way to KE rather than to alter PRMY (x) in a piecemeal way.

6.4 Some Desirable Features of KE Not Shared by
PRM

Perhaps the nicest feature of KE is that it includes smooth mathematical
functions for every aspect of the equating process. While it is true that one
can give a formula for the piecewise-linear form of PRMY (x), this is much
less useful than the ones for KE simply because it needs to be defined for
each segment of the domain of PRMY (x).

We have exploited the formulas that come with KE to accomplish several
goals. First, it allows us to produce something like a formula (i.e., (4.31))
for the equating function instead of reducing it to a table of correspondence
between the raw scores of X and Y . The advantage of this is that we do
not need to interpolate the entries in the table when chaining together
several equating functions. We call (4.31) “something like a formula” for
the equating function because we still need to numerically invert GhY (y) to
obtain eY (x) from the formula for GhY (y). Because of the smooth nature
of GhY (y), however, this is easily done using Newton’s method for solving
u = GhY (y) for y.

In order to store eY (x), all we need to store are (a) the parameters of the
log-linear models used to pre-smooth the raw score distributions, and (b)
the values of the selected bandwidths, hX and hY . From these quantities,
FhX and GhY can be computed, GhY then inverted at the appropriate val-
ues and eY (x) computed for any value x that is needed, including fractional
ones.

Thus, KE reduces the problem of computing a sequence of equatings
over a period of time to the storage of the parameters for each equating
in the sequence along with specific computer programs to use these stored
parameters to compute the values of the needed equating functions. Linear
equating also allows this as well, but in a much simpler manner. All that
needs to be updated at each new equating are the slope and intercept of
LinY (x) if we use formula (1.7).

Another consequence of the nature of the mathematical formulas for KE
is that it works easily with log-linear pre-smoothing to give useful standard
errors in a consistent manner for all of the usual designs. It is known that
using log-linear models to pre-smooth score data pays off handsomely in



6.4 Advantages of KE over PRM 95

reducing the standard errors for equating functions, but KE allows us to
quantify this reduction using well-established methods.

The analysis that we give regarding the SEE in Chapter 5 can be applied
to other equating methods besides KE, and it is an interesting research
question as to whether there are continuizations methods other than Gaus-
sian kernel smoothing that result in smaller standard errors. We suspect
this is not a topic that will lead to much of an improvement in KE.

Finally, we should mention that, because LinY (x) is a limiting form for
KE, we can use the formula for the SEED to give a standard error for the
difference between the equating functions obtained using KE and LinY (x).
This gives a useful statistical tool to help make the “linear/curvilinear”
equating decision. To do this using PRMY (x) is quite complicated, so that
most equating decision processes in practice must rely solely on guesses,
experience and intuition to choose between PRMY (x) and LinY (x).

We point out that some of the objections to equipercentile equating
do not apply to the kernel method of equating. By varying the choice of
the bandwidths, hX and hY , we may achieve a wide variety of equating
functions that are “in between” the traditional linear and equipercentile
functions.

Furthermore, depending on the choice of hX and hY , the equating func-
tions need not map the top and bottom scores on X onto the top and
bottom scores of Y . Moreover, the equating functions given by (4.31) and
(4.32) are defined for all x and y and are not restricted to the raw score
intervals, i.e., [x1, xJ ] and [y1, yK ], (see Chapter 4 for details). Thus, they
can be used in sequences of equatings that involve equated values outside
of the raw score ranges.
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7
The Equivalent-Groups Design

In Section 2.1, we introduced the Equivalent-Groups (EG) Design and we
indicated which population parameters have to be estimated in order to
compute the equating function. In the Equivalent-Groups Design, two in-
dependent random samples are drawn from a common population of ex-
aminees, P , the test X is administered to one sample while test Y is ad-
ministered to the other. In Chapters 3, 4, and 5 we described the five steps
of Kernel Equating (KE) that must take place for all equating designs:
pre-smoothing, estimation of the score probabilities, continuization of the
cumulative distribution functions (cdf’s), computing the equating function,
the standard error of equating (SEE) and the standard error of equating
difference (SEED). In this chapter, we apply KE to the Equivalent-Groups
Design.

We illustrate KE for the EG Design using an example described in Hol-
land and Thayer (1989, p. 19). Using these data, we will go through the
details of the five steps described in Chapters 3, 4, and 5.

Table 7.1 gives the raw sample frequencies of number-right scores for two
parallel, 20-item-mathematics tests given to two samples from a national
population of examinees.

The samples were obtained by spiraling the two forms together (see Sec-
tion 2.5 for a discussion of spiraling).

The data in Table 7.1, are sample frequencies for two univariate distri-
butions. We denote the two sets of sample frequencies by

nj = number of examinees with X = xj ,
mk = number of examinees with Y = yk.
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TABLE 7.1. Score Frequencies for X and Y for Two Equivalent Samples of
Examinees. Example 1, EG Design.

Score X-frequencies Y -frequencies
0 1 0
1 3 4
2 8 11
3 25 16
4 30 18
5 64 34
6 67 63
7 95 89
8 116 87
9 124 129
10 156 124
11 147 154
12 120 125
13 129 131
14 110 109
15 86 98
16 66 89
17 51 66
18 29 54
19 15 37
20 11 17

Total 1453 1455
Mean 10.82 11.59
SD 3.81 3.94

Skewness 0.0026 −0.0626
Kurtosis 2.53 2.50

In this example, x1 = 0, x2 = 1, . . . , x21 = 20; similarly, for yk. The two
sample sizes are given by

N =
∑

j

nj = 1453 and M =
∑

k

mk = 1455.

From Table 7.1 we can see that test Y, with a mean of 11.6 (±0.1) is about
one raw-score point easier than test X, which has a mean of 10.8 (±0.1).
Here and in Chapters 8, 9, and 10, when we report sample averages, we
also indicate their accuracy by (± one standard error). In this example, the
single zero in the Y -frequencies would prevent the raw sample proportions
from satisfying the positivity condition described in Chapter 3.

The sample proportions, (nj/N) and (mk/M) , are estimates of the pop-
ulation parameters, rj and sk, respectively. However, the raw sample pro-
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portions are rarely as satisfactory as smoothed proportions based on a
good model for the data. They need not satisfy the positivity condition
mentioned earlier. Of course, they always satisfy the consistency and in-
tegrity conditions, and, when M and N are very large, the raw sample
proportions may be acceptable estimates of the population score probabil-
ities. Even when M and N are very large, when there are many possible
scores, i.e., when J and K are also large, smoothed sample proportions are
usually preferable.

7.1 Pre-smoothing

In this section we illustrate how the method of pre-smoothing described in
Section 3.2 applies to the data from an EG Design. We will indicate how
to estimate two univariate distributions by fitting log-linear models having
power moments of the sample distributions for their sufficient statistics.

Using the tools for assessing model fit for univariate score distributions
(as described in Chapter 3 as well as in Holland & Thayer, 2000) we selected
the following log-linear models for this example:

log(rj) = αr +
Tr∑
i=1

βri(xj)i (7.1)

and

log(sk) = αs +
Ts∑
i=1

βsi(yk)i, (7.2)

where Tr = 2, Ts = 3. The β’s are the log-linear (or “natural”) parameters,
and αr and αs are the normalizing constants selected to make the sum of
rj and of sk, respectively, equal to one.

In this case, the estimators of {rj} preserve two moments (Tr = 2) of the
X-distribution and the estimators of {sk} preserve three moments (Ts = 3)
of the Y -distribution. This reflects the differences in the skeweness for the
two distributions as seen in the Table 7.1.

Table 7.2 shows the fitted frequencies and Freeman-Tukey residuals (Bish-
op et al., 1975) for the models described in (7.1) and (7.2). The likelihood
ratio chi-square statistic for {rj} is 18.35 on 18 degrees of freedom while
that for {sk} is 20.24 on 17 degrees of freedom. These values suggest that,
overall, the fits of these two models are quite good. To get a more detailed
look at these fits we examine the Freeman-Tukey residuals from Table 7.2.
These residuals should behave roughly like independent standard Normal
deviates if the models fit adequately. Since these residuals lie between −2
and +2, and show no pattern, we conclude that the fitted probabilities from
these models are improved estimates of the population distributions in the
sense of “consistency” and “stability” described in Chapter 3.
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TABLE 7.2. Fitted Score Frequencies and Freeman-Tukey Residuals for X and
Y . Example 1, EG Design.

Score X-Fitted* FT Residuals Y -Fitted** FT Residuals
0 3.30 −1.35 1.71 −1.80
1 6.44 −1.44 3.77 0.22
2 11.77 −1.10 7.65 1.16
3 20.17 1.06 14.24 0.51
4 32.43 −0.39 24.44 −1.34
5 48.89 2.04 38.75 −0.74
6 69.10 −0.22 56.98 0.81
7 91.57 0.38 77.91 1.24
8 113.79 0.23 99.35 −1.25
9 132.58 −0.73 118.54 0.96
10 144.83 0.93 132.72 −0.75
11 148.36 −0.09 139.87 1.19
12 142.49 −1.94 139.15 −1.21
13 128.32 0.08 131.10 0.01
14 108.35 0.18 117.31 −0.76
15 85.79 0.05 100.00 −0.18
16 63.69 0.32 81.46 0.84
17 44.33 1.00 63.60 0.33
18 28.93 0.06 47.73 0.91
19 17.71 −0.60 34.54 0.45
20 10.16 0.33 24.18 −1.52

Total 1453 1455
Mean 10.82 11.59
SD 3.81 3.94

Skewness −0.0648 −0.0626
Kurtosis 2.70 2.57

Note: * 2-moment fit; ** 3-moment fit.

Comparing the summary statistics at the bottom of Tables 7.1 and 7.2
we see that the “two-moment fit” for the X-score distribution preserves the
mean and the standard deviation of the raw data but not the skewness or
kurtosis. For the “three-moment fit” for the Y -score distribution, the mean,
standard deviation and the skewness are preserved but not the kurtosis.

The observed and the fitted distributions of X and Y are plotted in Fig-
ure 7.1 and Figure 7.2. In Figure 7.1 the largest discrepancies between
the raw and fitted frequencies occur for xj = 5 and xj = 12, which
have Freeman-Tukey (FT) residual values of 2.04 and −1.94, respectively—
within the expected noise level for this sample size. The discrepancies in
Figure 7.2 have even smaller FT residual values. These additional exami-
nations of the data support the use of the two models we selected.
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FIGURE 7.1. The observed and the fitted distributions of X. Example 1, EG
Design.

In addition to the estimated score probabilities, r̂j and ŝk, the output of
a satisfactory log-linear model program will include the “C-matrices” that
are the essential information needed to compute the standard errors of r̂j

and ŝk and which are used to compute the SEE and the SEED described
in Chapter 5. In many of our examples the C-matrices are too large to
be included in our discussion, but for this example the two C matrices
are relatively small (i.e., 21 × 2 and 21 × 3, respectively). They are given
(multiplied by 1000) in Table 7.3.

We denote the estimated covariance matrices of r̂ and ŝ by Σr̂ and Σŝ.
Then, from (3.10), it follows that for the log-linear models fitted in this
example there is a 21 × 2 matrix, Cr, and a 21 × 3 matrix, Cs, such that

Σr̂ = CrCt
r and Σŝ = CsCt

s. (7.3)

Because the two samples are independent, Σr̂ŝ = 0.

7.2 Estimation of the Score Probabilities

In the EG Design the estimated score probabilities {r̂j} and {ŝk} are ob-
tained directly on the target population and there is no need to further
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FIGURE 7.2. The observed and the fitted distributions of Y . Example 1, EG
Design.

transform the smoothed estimators that we already have. This is reflected
by the fact that the Design Function in (2.3) is the identity transformation.

Table 7.4 gives the smoothed values of {r̂j} and {ŝk} to four significant
digits; they are obtained by dividing the fitted frequencies in Table 7.2 by
the respective sample sizes.

7.3 Continuization

The cdf’s corresponding to the score probabilities, {rj} and {sk} in (2.2)
are step functions with jumps at the possible values of X and Y :

F (x) = Prob(X ≤ x) =
∑

j, xj≤x

rj ,

G(y) = Prob(Y ≤ y) =
∑

k, yk≤y

sk. (7.4)

In (7.4) x and y range over all real numbers, IR, whereas xj and yk are
the possible values of X and Y . We obtain F̂ and Ĝ by substituting the
estimates r̂j and ŝk, for rj and sk in (7.4).
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TABLE 7.3. The Matrices, Cr and Cs that Contribute to the Computation of Σ̂r

and Σ̂s. Example 1, EG Design. (Actual values have been multiplied by 1000.)

Cr Cs

1 2 1 2 3
0 −0.169 −0.316 −0.091 −0.184 −0.285
1 −0.300 −0.490 −0.183 −0.330 −0.429
2 −0.492 −0.688 −0.336 −0.527 −0.545
3 −0.748 −0.864 −0.560 −0.745 −0.546
4 −1.049 −0.942 −0.850 −0.915 −0.346
5 −1.349 −0.839 −1.170 −0.950 0.093
6 −1.579 −0.499 −1.460 −0.764 0.707
7 −1.659 0.074 −1.639 −0.325 1.319
8 −1.521 0.789 −1.635 0.319 1.690
9 −1.144 1.476 −1.408 1.035 1.629
10 −0.562 1.944 −0.968 1.645 1.084
11 0.128 2.047 −0.380 1.986 0.189
12 0.799 1.746 0.259 1.968 −0.785
13 1.328 1.129 0.845 1.603 −1.540
14 1.636 0.371 1.293 0.991 −1.865
15 1.702 −0.331 1.560 0.282 −1.704
16 1.566 −0.832 1.644 −0.381 −1.149
17 1.300 −1.072 1.575 −0.892 −0.383
18 0.986 −1.077 1.401 −1.205 0.394
19 0.687 −0.924 1.172 −1.323 1.029
20 0.443 −0.701 0.931 −1.287 1.443

TABLE 7.4. Estimated Score Probabilities for X and Y on the Target
Population. Example 1, EG Design.

Score r̂j ŝk Score r̂j ŝk

0 0.0023 0.0012 11 0.1021 0.0961
1 0.0044 0.0026 12 0.0981 0.0956
2 0.0081 0.0053 13 0.0883 0.0901
3 0.0139 0.0098 14 0.0746 0.0806
4 0.0223 0.0168 15 0.0590 0.0687
5 0.0336 0.0266 16 0.0438 0.0560
6 0.0476 0.0392 17 0.0305 0.0437
7 0.0630 0.0535 18 0.0199 0.0328
8 0.0783 0.0683 19 0.0122 0.0237
9 0.0912 0.0815 20 0.0070 0.0166
10 0.0997 0.0912
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FIGURE 7.3. The continuized distributions F̂hX and ĜhY . Example 1, EG De-
sign.

The cdf’s, F̂ and Ĝ, are continuized using the technique in (4.5) and
(4.8), and the continuized cdf’s, F̂hX and ĜhY , are what we shall actually
use to equate X to Y .

Figure 7.3 shows the cdf’s F̂hX and ĜhY for this example.
As shown in Section 4.1.2, we choose hX by minimizing the criterion

from (4.30), i.e.,

PEN1(hX) + K × PEN2(hX),

with PEN1 and PEN2 defined in (4.27) and (4.29), respectively. The weight
K was set to 1. The value for for hY is obtained in a similar way. The
smoothed score distributions displayed in Figures 7.1 and 7.2 are unimodal
so that there was no effect of PEN2 in this example. The resulting optimal
values of hX and hY were determined solely by PEN1 and were 0.622 and
0.579, respectively.

7.4 Equating

Once the continuous approximations, F̂hX and ĜhY , are obtained, it is a
straightforward process to compute the equating functions via (4.31) and
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(4.32). The values of the inverse functions, F̂−1
hX

(·) and Ĝ−1
hY

(·), need to be
computed for the relevant values of their arguments.

The equating function for equating X to Y is

êY (x) = Ĝ−1
hY

(F̂hX (x)),

and for equating Y to X is

êX(y) = F̂−1
hX

(ĜhY (y)).

We usually need the value of the equating function only for each raw score
of X. Hence, we need to compute

êY (xj) = Ĝ−1
hY

(uXj),

where uXj = F̂hX (xj) and

êX(yk) = F̂−1
hX

(uY k),

where uY k = ĜhY (yk).
The two equating functions computed in the example are plotted in Fig-

ure 7.4. The differences between these two equating functions and their
corresponding linear equating functions, for both X to Y and from Y to
X are plotted in Figure 7.5.

As the graphs reveal, both êY (x) and êX(y), are nearly linear in this
example. The maximum difference between the equating functions obtained
using KE and the linear equating function occurs (see Figure 7.5) at x =
y = 20. This difference is less than a raw score point for either direction of
the equating.

The equating function, eY (x), is supposed to match the distribution of
eY (X) (i.e., the Kernel Equating function evaluated at the discrete values
of X) to that of Y , but as we have indicated this is not completely possible
because the two distributions are discrete. As we discuss in Section 4.2, we
may investigate how well êY (X) approximates the distribution of Y by
comparing the first several moments of êY (X) to the corresponding ones
of Y , using r̂ and ŝ to make the moment calculations.

Table 7.5 gives the differences between these moments expressed as a
percent of the size of the moment of the score being “equated to” (i.e.,
PRE(p)) as discussed in Section 4.2. The moments range from the first to
the tenth. Table 7.5 gives values for the equating in both directions, X to
Y and Y to X . As we can see, the discrepancy between these moments
ranges from 0.01 to 0.67 percent for the X to Y equating and from −0.01
to −1.71 percent for the Y to X equating. These differences are very small
and indicate how well KE achieves the matching of eY (X) and Y and of
eX(Y ) and X .
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FIGURE 7.4. The equating functions êX(y) and êY (x). Example 1, EG Design.

TABLE 7.5. Difference Between the Moments of the Equated Distribution and
the Target Distribution Expressed as Percent Relative Error, PRE(p). Example 1,
EG Design.

Percent Relative Error
Moments (X to Y ) (Y to X)

1 0.01 −0.01
2 0.01 −0.02
3 0.02 −0.05
4 0.04 −0.11
5 0.07 −0.21
6 0.13 −0.37
7 0.22 −0.58
8 0.33 −0.88
9 0.48 −1.25
10 0.67 −1.71

7.5 Standard Error of Equating

In order to compute the SEE of the equating function computed above, we
will apply Theorem 5.4 from Chapter 5.
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FIGURE 7.5. The differences between the KE (“Equi”) and linear equating func-
tions from X to Y and from Y to X. Example 1, EG Design.

The main result is equation (5.29), which we repeat here,

SEEY (x) =
1
G′

[∥∥∥∥ ∂F

∂r
UR − ∂G

∂s
VR

∥∥∥∥2

+
∥∥∥∥ ∂F

∂r
US − ∂G

∂s
VS

∥∥∥∥2
]1/2

.

From Table 5.5 we see that in the EG Design UR = Cr, VS = Cs, and
US = VR = 0. Inserting these values into the expression above yields

SEEY (x) =
1
G′

[∥∥∥∥ ∂F

∂r
Cr

∥∥∥∥2

+
∥∥∥∥ ∂G

∂s
Cs

∥∥∥∥2
]1/2

, (7.5)

where the matrices Cr and Cs were described in Section 3.2.1, in (3.10)
and (3.11), and are given in this chapter’s example, in Table 7.3.

Thus, in the EG Design, the computational ingredients of the SEE are
G′, || ∂F

∂r Cr ||2, and || ∂G
∂sCs ||2. The vectors ∂F/∂rCr and ∂G/∂sCs are

of dimension Tr and Ts, respectively, which in this example are 2 and 3.
Formulas for ∂F/∂r and ∂G/∂s are given in Lemma 5.2 in Chapter 5.

Table 7.6 displays the standard error of equating for the two equating
functions, equating both X to Y and Y to X, evaluated at various score
values. In this example, the SEE’s range from 0.07 to 0.28 raw-score points.
In Figure 7.6 we plot the SEE for the equating function form X to Y only.
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TABLE 7.6. Standard Error of Equating for Equating Y to X and for Equating
X to Y . Example 1, EG Design.

Y -Score SEEX(y) X-Score SEEY (x)
0 0.145 0 0.220
1 0.225 1 0.289
2 0.275 2 0.287
3 0.279 3 0.266
4 0.261 4 0.241
5 0.235 5 0.217
6 0.210 6 0.197
7 0.190 7 0.181
8 0.174 8 0.171
9 0.164 9 0.165
10 0.157 10 0.162
11 0.154 11 0.162
12 0.153 12 0.165
13 0.155 13 0.172
14 0.161 14 0.183
15 0.171 15 0.195
16 0.184 16 0.204
17 0.199 17 0.199
18 0.210 18 0.170
19 0.205 19 0.119
20 0.144 20 0.070

7.6 Deciding Between êY (x) and L̂inY (x)

Combining (4.26) and the Theorem 1.1, when the bandwidths hX and
hY are both large, the KE equating function closely approximates the
standard linear equating function because the shape difference function
in Theorem 1.1 is then nearly identically zero. In this example, L̂inY (x)
was computed by choosing hX = hY = 20.

In Figure 7.7 we plot R(x), the difference

R(x) = eY (x) − LinY (x), (7.6)

from (1.16). This shows how different the KE estimated equating function,
êY (x), is from the KE estimated linear equating function, L̂inY (x). In this
case they are not far apart over the range of X-raw score, 0 to 20.

To assess how this small difference compares to its uncertainty, we plot
it along with ±2SEED(x), the standard error of equating difference defined
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FIGURE 7.6. Standard error of equating for êY (x). Example 1, SG Design.

in Chapter 5 as

SEED2(x) = Var
(
êY (x) − L̂inY (x)

)
(7.7)

= ||JeY JDFC− JLinY JDFC ||2, (7.8)

where

JeY JDFC =
1
G′

(
∂F

∂r
Cr, −∂G

∂s
Cs

)
. (7.9)

The formula for JLinY
is the same as for JeY , with the difference that

hX = hY = 20 in this example. Formula (7.8) can be simplified in exactly
the same way that we derived (7.5) in order to produce a useful computing
formula for the SEED.

This example shows that, for all but the highest two raw-scores, the linear
equating function is an acceptable alternative to the curvilinear equating
function. However, for x = 19 and 20 the difference exceeds two times the
standard error of the difference between L̂inY (x) and êY (x). This could be
used to support the choice of êY rather than L̂inY in this case.
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8
The Single-Group Design

This chapter illustrates how to carry out the five steps of Kernel Equating
(KE) for the Single-Group (SG) Design. In Section 2.12 we discussed the
assumptions underlying this design and the population parameters that
have to be estimated for computing the equating function.

We illustrate KE for the SG Design using an example from Holland et
al. (1989). Using these data, we will go through the details of the steps
described in Chapters 3, 4 and 5.

Table 8.1 gives the raw sample frequencies of number-right scores for two
parallel, 20-item mathematics tests that were both given to a sample from
a national population of examinees, at one administration. The data from
Table 8.1 are the marginal frequencies from the bivariate frequencies given
in Table 8.2.

Because each examinee in the sample has two test scores, the sample
data consists of bivariate (X, Y )-frequencies, i.e.,

njk = number of examinees with X = xj and Y = yk.

In this example, x1 = 0, x2 = 1, . . . , x21 = 20; similarly, for yk. The sample
size is

N =
∑
j, k

njk = 1453.

From the summary statistics at the bottom of Table 8.1 we can see that
test Y, with a mean of 10.39 (±0.1) is about half of a raw-score point harder
than test X, which has a mean of 10.82 (±0.1).

Table 8.2 shows the observed bivariate distribution. For this example,
the sample correlation between X and Y is 0.775.
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TABLE 8.1. Score Frequencies for X and Y for a Single Sample of Examinees.
Example 2, SG Design.

Score X-Frequencies Y -Frequencies
(Total) (Total)

0 1 0
1 3 0
2 8 12
3 25 24
4 30 41
5 64 57
6 67 92
7 95 100
8 116 119
9 124 143
10 156 149
11 147 153
12 120 146
13 129 127
14 110 92
15 86 76
16 66 56
17 51 38
18 29 19
19 15 9
20 11 0

Total 1453 1453
Mean 10.82 10.39
SD 3.81 3.59

Skewness 0.0026 −0.0056
Kurtosis 2.53 2.48
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TABLE 8.2. Bivariate Score Frequencies for X (Rows) and Y (Columns) for a Single Sample of Examinees. Example 2, SG Design.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
2 0 0 1 0 2 1 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 8
3 0 0 1 5 6 3 8 1 1 0 0 0 0 0 0 0 0 0 0 0 0 25
4 0 0 2 7 4 6 4 3 1 3 0 0 0 0 0 0 0 0 0 0 0 30
5 0 0 3 3 5 12 14 8 9 6 3 1 0 0 0 0 0 0 0 0 0 64
6 0 0 1 4 10 9 12 9 8 10 4 0 0 0 0 0 0 0 0 0 0 67
7 0 0 1 3 5 7 16 16 11 17 10 5 3 0 1 0 0 0 0 0 0 95
8 0 0 1 1 3 8 16 14 12 24 20 11 3 3 0 0 0 0 0 0 0 116

9 0 0 0 1 3 4 8 19 20 17 17 13 11 9 2 0 0 0 0 0 0 124
10 0 0 0 0 1 2 6 14 20 19 28 24 17 11 9 3 2 0 0 0 0 156
11 0 0 0 0 1 3 3 6 13 17 21 23 27 14 13 2 2 1 1 0 0 147
12 0 0 0 0 0 1 0 5 11 14 16 26 18 11 10 3 3 1 1 0 0 120
13 0 0 0 0 0 0 1 4 8 8 20 21 19 16 13 9 6 3 1 0 0 129
14 0 0 0 0 0 0 0 1 4 3 3 17 18 26 11 21 4 1 1 0 0 110
15 0 0 0 0 0 0 1 0 1 3 4 10 12 15 15 10 10 3 1 1 0 86
16 0 0 0 0 0 0 0 0 0 1 1 1 11 12 8 13 10 7 1 1 0 66
17 0 0 0 0 0 0 0 0 0 0 2 1 5 4 8 9 11 5 3 3 0 51
18 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 4 4 11 4 1 0 29
19 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 2 2 3 3 1 0 15
20 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 3 3 2 0 11

Total 0 0 12 24 41 57 92 100 119 143 149 153 146 127 92 76 56 38 19 9 0 1453
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FIGURE 8.1. The observed and the fitted distributions of X. Example 2, SG
Design.

The raw sample proportions, (njk/N) are unsmoothed estimates of the
population parameters, pjk, of the joint distribution of X and Y .

8.1 Pre-smoothing

The pjk are assumed to follow a log-linear model. The log-linear model has
the form

log(pjk) = α +
TX∑
i=1

βXi(xj)i +
TY∑
i=1

βY i(yk)i + βXY xjyk, (8.1)

where pjk are the probabilities from (2.5).
First, we fit the model from (8.1) setting βXY to zero (i.e., assuming that

the marginal distributions of X and Y are independent). This is equivalent
to separately fitting models, similar to those from (7.1) and (7.2), to the
marginal distributions of X and Y .

This way, we first find the most suitable number of parameters, i.e.,
moments, to fit for each marginal distribution. In this example we decided
to choose TX = TY = 3 based on the size of the Freeman-Tukey residuals
(see Table 8.3).
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FIGURE 8.2. The observed and the fitted distributions of Y . Example 2, SG
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TABLE 8.3. Fitted Score Frequencies for X and Y for a Single Sample of Ex-
aminees. Example 2, SG Design.

X-Fitted FT Residuals Y -Fitted FT Residuals
0 2.3 −0.78 2.29 −2.19
1 5.17 −0.93 5.27 −3.70
2 10.47 −0.72 10.86 0.40
3 19.22 1.27 20.31 0.83
4 32.32 −0.37 34.68 1.06
5 50.01 1 .88 54.38 0.38
6 71.57 −0.52 78.55 1.48
7 95.03 0.02 104.78 −0.45
8 117.4 −0.11 129.34 −0.90
9 135.26 −0.97 147.99 −0.39
10 145.7 0.86 157.19 −0.64
11 147.07 0.01 155.24 −0.16
12 139.44 −1.68 142.76 0.29
13 124.46 0.42 122.39 0.43
14 104.81 0.52 97.87 −0.58
15 83.44 0.30 72.94 0.38
16 62.9 0.42 50.49 0.79
17 44.93 0.91 32.25 1.01
18 30.39 −0.21 18.83 0.09
19 19.42 −1.00 9.93 −0.22
20 11.67 −0.12 4.67 −3.44

Total 1453 1453
Mean 10.82 10.39
SD 3.81 3.59

Skewness 0.0026 −0.0056
Kurtosis 2.66 2.74

Second, we fit the model from (8.1) with TX = TY = 3 and one interac-
tion term.

This model fits the first three moments (mean, variance, and skewness)
for the two (univariate) marginal distributions and one moment for the
interaction (i.e., the correlation between X and Y ).

Table 8.3 shows the fitted frequencies and Freeman-Tukey residuals for
the two univariate (marginal) distributions. The likelihood ratio chi-square
statistic for the model in (8.1) is 242.73 on 433 nominal degrees of freedom.
The nominal degrees of freedom are not very helpful in this example because
there are many very small fitted and observed values in an array as big as
the one shown in Table 8.2. It is obvious that the observed value of the
likelihood ratio chi-square statistic is much smaller than would be likely
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from the chi-square distribution with 433 degrees of freedom. To get a
better look at the fit of the model, we examine the Freeman-Tukey (FT)
residuals for the two marginal distributions, X and Y , in Table 8.3. These
residuals should behave roughly like independent standard Normal deviates
if the models fit adequately. These residuals lie between −1.68 and +1.88 for
the X-fitted frequencies. For the Y -fitted frequencies there are three larger
FT residuals corresponding to the zero frequencies observed for Y = 0, 1,
and 20. The FT residuals for these Y -values are −2.19, −3.70, and −3.44.
We conclude that the fitted probabilities from these models are improved
estimates of the population distributions in the sense of “consistency” and
“stability” described in Chapter 3, but there may be some problems for the
extreme values of Y .

Comparing the summary statistics at the bottom of Tables 8.1 and 8.3
we see that the “three-moment fit” for the X-score and the Y -score dis-
tributions preserves the mean, the standard deviation and the skewness
but not the kurtosis, as they are expected to do. In addition, the bivariate
fitted distribution in Table 8.4 has the same correlation (0.775) as the raw
frequencies in Table 8.2. The observed and the fitted marginal distributions
of X and Y are plotted in Figure 8.1 and Figure 8.2.

For a more detailed examination of the fit of the bivariate distribution
of X and Y we examine the two sets of conditional distributions (X given
Y and Y given X). We summarize the dependencies between X and Y
by calculating the conditional means and standard deviations of the two
fitted conditional distributions and comparing them to the corresponding
values for the two observed conditional distributions. Figures 8.3–8.6 plot
these. These four plots show that the two fitted conditional mean functions
from the model accurately track the corresponding conditional averages in
the data. There is poorer tracking of the conditional standard deviations in
Figures 8.5 and 8.6, but this is to be expected and the trends are remarkably
similar.
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TABLE 8.4. Fitted Bivariate Score Frequencies for X (Rows) and Y (Columns) for a Single Sample of Examinees. Example 2, SG
Design.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Total

0 0.2 0.3 0.4 0.4 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.3
1 0.3 0.6 0.8 0.9 0.9 0.6 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1
2 0.4 0.8 1.3 1.7 1.8 1.6 1.2 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.4
3 0.4 0.9 1.7 2.6 3.2 3.3 2.8 1.9 1.1 0.5 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 19.2
4 0.3 0.9 1.9 3.3 4.7 5.6 5.4 4.4 2.9 1.5 0.7 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 32.3
5 0.2 0.7 1.7 3.4 5.7 7.8 8.7 8.1 6.2 3.9 2.0 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 50.0
6 0.1 0.4 1.3 3.0 5.7 9.0 11.7 12.5 11.0 7.9 4.7 2.3 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 71.5
7 0.0 0.2 0.8 2.2 4.8 8.8 13.1 16.1 16.3 13.6 9.4 5.3 2.5 0.9 0.3 0.1 0.0 0.0 0.0 0.0 0.0 95.0
8 0.0 0.1 0.4 1.3 3.4 7.1 12.3 17.4 20.3 19.6 15.5 10.2 5.5 2.4 0.9 0.2 0.0 0.0 0.0 0.0 0.0 117.4
9 0.0 0.0 0.2 0.7 2.0 4.9 9.7 15.8 21.3 23.6 21.6 16.3 10.2 5.2 2.2 0.7 0.2 0.0 0.0 0.0 0.0 135.2
10 0.0 0.0 0.0 0.3 1.0 2.8 6.4 12.1 18.9 24.0 25.3 22.0 15.8 9.4 4.6 1.8 0.6 0.1 0.0 0.0 0.0 145.7
11 0.0 0.0 0.0 0.1 0.4 1.3 3.6 7.8 13.9 20.6 25.0 25.1 20.8 14.2 8.0 3.7 1.4 0.4 0.1 0.0 0.0 147.0
12 0.0 0.0 0.0 0.0 0.1 0.5 1.7 4.2 8.7 14.9 20.9 24.2 23.1 18.2 11.8 6.3 2.8 1.0 0.3 0.0 0.0 139.4
13 0.0 0.0 0.0 0.0 0.0 0.2 0.6 1.9 4.6 9.1 14.8 19.7 21.7 19.7 14.8 9.1 4.7 1.9 0.7 0.2 0.0 124.4
14 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 2.1 4.7 8.9 13.6 17.3 18.1 15.7 11.2 6.6 3.2 1.3 0.4 0.1 104.8
15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 2.1 4.5 8.0 11.8 14.2 14.2 11.6 7.9 4.4 2.0 0.8 0.2 83.4
16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 1.9 4.0 6.8 9.5 10.9 10.3 8.1 5.2 2.8 1.2 0.4 62.9
17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.2 0.7 1.7 3.4 5.4 7.2 7.8 7.1 5.3 3.2 1.6 0.7 44.9
18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.6 1.4 2.6 4.0 5.1 5.3 4.6 3.2 1.9 0.9 30.3

19 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.5 1.1 1.9 2.8 3.4 3.4 2.8 1.9 1.0 19.4
20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.8 1.3 1.9 2.1 2.0 1.6 1.0 11.6

Total 2.2 5.2 10.8 20.3 34.6 54.3 78.5 104.7 129.3 147.9 157.1 155.2 142.7 122.3 97.8 72.9 50.4 32.2 18.8 9.9 4.6 1453
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FIGURE 8.4. E(Y |X) : observed and fitted values. Example 2, SG Design.

In addition to the estimated joint probabilities, p̂jk, the output of a
satisfactory log-linear model program will include the “C-matrices” that
are the essential information needed to compute the standard errors of p̂jk,
and which are used to compute the SEE described in Chapter 5.

In comparison with Example 1 from Chapter 7, in this example, there is
only one C-matrix, CP , because the distribution to be estimated is bivari-
ate and there is only one population, P, from which the sample is drawn.
CP is a very large array (441 × 7), and therefore it will not be reported
here.

Hence, the estimated covariance matrix of v(P̂), Σv(P̂ ), is such that

Σv(P ) = CPCt
P ,

where CP is a JK(=(21)(21)=441) by TP (=7) matrix defined as in Theo-
rem 3.1.

8.2 Estimation of the Score Probabilities

In the SG Design the estimated joint probabilities {p̂jk} are obtained di-
rectly on the target population, T which is P. However, in contrast to the
EG Design, we need to further transform the smoothed {p̂jk} to obtain r̂j
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FIGURE 8.5. SD(X |Y ) : observed and fitted values. Example 2, SG Design.
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FIGURE 8.6. SD(Y |X) : observed and fitted values. Example 2, SG Design.
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TABLE 8.5. Estimated Score Probabilities for X and Y for one Sample of
Examinees. Example 2, SG Design.

Score r̂j ŝk Score r̂j ŝk

0 0.0016 0.0016 11 0.1012 0.1068
1 0.0036 0.0036 12 0.0960 0.0983
2 0.0072 0.0075 13 0.0857 0.0842
3 0.0132 0.0140 14 0.0721 0.0674
4 0.0222 0.0239 15 0.0574 0.0502
5 0.0344 0.0374 16 0.0433 0.0347
6 0.0493 0.0541 17 0.0309 0.0222
7 0.0654 0.0721 18 0.0209 0.0130
8 0.0808 0.0890 19 0.0134 0.0068
9 0.0931 0.1018 20 0.0080 0.0032
10 0.1003 0.1082

and ŝk. This linear transformation is the Design Function, DF, we intro-
duced in Chapter 2.

Let p̂jk be the estimates of {pjk} based on the sample data {njk}. Then
r̂ and ŝ are computed through SG Design Function described by (2.11) and
(2.12), i.e.,

r̂ = M v(P̂) and ŝ = N v(P̂), (8.2)

where M and N are the matrices described in (2.9) and (2.10).
Table 8.5 gives the smoothed values of {r̂j} and {ŝk} to four significant

digits; they are obtained by applying the Design Function, DF, or in other
words, they are the two fitted marginal distributions reported in Table 8.3
or 8.4 divided by the sample size.

8.3 Continuization

The cdf’s associated with the score probabilities defined for the test scores
X and Y in (2.2) are

F (x) = Prob(X ≤ x) =
∑

j, xj≤x

rj ,

and

G(y) = Prob(Y ≤ y) =
∑

k, yk≤y

sk,

where x, y ∈ IR.
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FIGURE 8.7. The continuized distributions, F̂hX and ĜhY . Example 2, SG De-
sign.

F̂hX (x) and ĜhY (y) are the continuous approximations to F̂ (x) and Ĝ(y).
The continuized cdf’s are computed as described in (4.5) and (4.8), respec-
tively.

As described in Section 4.2, hX and hY are chosen to minimize the
criterion given in (4.30), i.e.,

PEN1(hX) + K × PEN2(hX),

with PEN1 and PEN2 defined in (4.27) and (4.29), respectively. The weight
K was 1.

In this example there was no effect of PEN2. The resulting optimal values
of hX and hY for this example were 0.61225 and 0.663940, respectively.
Figure 8.7 shows the cdf’s F̂hX and ĜhY for this example.

8.4 Equating

Once the continuous approximations to F̂ (x) and Ĝ(y) are available, we
compute the equating functions via (4.31) and (4.32), i.e., the equating
functions are

êY (x) = Ĝ−1
hY

(F̂hX (x)),
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FIGURE 8.8. The equating functions, êX(y) and êY (x). Example 2, SG Design.

and

êX(y) = F̂−1
hX

(ĜhY (y)).

As already explained in Chapter 7, we usually need the value of the
equating function only for each raw score of X. Hence, we need to compute

êY (xj) = Ĝ−1
hY

(uXj),

where uXj = F̂hX (xj) and

êX(yk) = F̂−1
hX

(uY k),

where uY k = ĜhY (yk).
The two equating functions computed in this example are plotted in

Figure 8.8. The differences between these two equating functions and their
corresponding linear equating functions, for both X to Y and from Y to
X are plotted in Figure 8.9.

As the graphs reveal, both êY (x) and êX(y), are nearly linear in this
example. The maximum difference between the equating functions obtained
using KE and the linear equating function occurs (see Figure 8.9) at x =
y = 20. This difference is less than a raw score point for either direction of
the equating.
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FIGURE 8.9. The differences between the KE (“Equi”) and linear equating func-
tions from X to Y and from Y to X. Example 2, SG Design.

The equating function, êY (x), is supposed to match the distribution of
êY (X) to that of Y , but as we have indicated this is not completely possible
because the two distributions are discrete. As we discuss in Section 4.2, we
may investigate how well êY (X) approximates the distribution of Y by
comparing the first several moments of êY (X) to the corresponding ones
of Y using r̂ and ŝ to make the moment calculations.

Table 8.6 gives the differences between these moments as percents of
the size of the moment of the score being “equated to” as discussed in
Chapter 4. The moments range from the first to the tenth. Table 8.6 gives
values for the equating in both directions, X to Y and Y to X . As we
can see, the discrepancy between these moments ranges from −0.0 to −1.2
percent for the X to Y equating and from 0.0 to 0.5 percent for the Y
to X equating. These differences are very small and indicate how well KE
achieves the matching of eY (X) to Y , and eX(Y ) to X .

8.5 Standard Error of Equating

In order to compute the SEE of the equating function given above, we will
apply Theorem 5.4 from Chapter 5.
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TABLE 8.6. Difference Between the Moments of the Equated Distribution and
the Target Distribution Expressed as Percent Relative Error, PRE(p). Example 2,
SG Design.

Percent Relative Error
Moments (X to Y ) (Y to X)

1 −0.0031 0.0007
2 −0.0133 0.0059
3 −0.0332 0.0148
4 −0.0701 0.0309
5 −0.1333 0.0590
6 −0.2330 0.1042
7 −0.3793 0.1714
8 −0.5817 0.2654
9 −0.8481 0.3900
10 −1.1851 0.5485

The main result is equation (5.29), which we repeat here,

SEEY (x) =
1
G′

[∥∥∥∥ ∂F

∂r
UR − ∂G

∂s
VR

∥∥∥∥2

+
∥∥∥∥ ∂F

∂r
US − ∂G

∂s
VS

∥∥∥∥2
]1/2

,

where UR, US , VR, and VS are the matrix-entries of JDFC given in Ta-
ble 5.5 and ||v||2 =

∑
i v2

i is the squared Euclidian norm of the vector v.
From Table 5.5 it follows that, for the SG Design, UR = U =

∑
k CPk,

US = 0, VS = 0, and

VR = V =

 1t
JCP1

...
1t

JCPK

 =

 vt
P1
...

vt
PK

 .

The matrices CPk are blocks of the CP matrix. The 441 × 7-matrix, CP ,
defined at the end of Section 8.1, is partitioned into 21 blocks, each of
dimension 21 by 7.

Thus, the formula for the SEE for the SG Design is

SEEY (x) =
1
G′

∥∥∥∥ ∂F

∂r
U − ∂G

∂s
V
∥∥∥∥ . (8.3)

Hence, the SE-vector for SG Design is

1
G′

(
∂F

∂r
U − ∂G

∂s
V
)

. (8.4)

Table 8.7 displays the standard error of equating for the two equating
functions, equating both X to Y and Y to X, evaluated at each score
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TABLE 8.7. Standard Error of Equating for Equating Y to X and for Equating
X to Y . Example 2, SG Design.

Y -Score SEEX(y) X-Score SEEY (x)
0 0.1617 0 0.1579
1 0.2208 1 0.2236
2 0.2208 2 0.2254
3 0.1931 3 0.1970
4 0.1593 4 0.1621
5 0.1284 5 0.1303
6 0.1044 6 0.1059
7 0.0886 7 0.0907
8 0.0805 8 0.0838
9 0.0776 9 0.0820
10 0.0770 10 0.0821
11 0.0768 11 0.0823
12 0.0766 12 0.0831
13 0.0779 13 0.0872
14 0.0831 14 0.0984
15 0.0951 15 0.1188
16 0.1147 16 0.1450
17 0.1404 17 0.1670
18 0.1674 18 0.1675
19 0.1854 19 0.1338
20 0.1581 20 0.0885

value. In this example, the SEE’s range from 0.0766 to 0.2254 raw-score
points.

Figure 8.10 shows the standard error of equating for the equating func-
tion êY (x).

8.6 Deciding Between êY (x) and L̂inY (x)

Combining (4.26) and the Theorem 1.1, when the bandwidths hX and hY

are both large, the KE equating function closely approximates the standard
linear equating function because the shape difference function in Theo-
rem 1.1 is then nearly zero. In this example, L̂inY (x) was computed by
choosing hX = hY = 20.

In Figure 8.11 we plot R(x), the difference

R(x) = eY (x) − LinY (x) (8.5)

and
R(y) = eX(y) − LinX(y). (8.6)
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FIGURE 8.10. Standard error of equating for êY (x). Example 2, SG Design.

This shows how different the KE function is from the linear equating func-
tion.

To assess how this small difference compares to its uncertainty, we plot
it along with ±2SEED(x), the standard error of equating difference defined
in Chapter 5 as

SEED2(x) = Var
(
êY (x) − L̂inY (x)

)
(8.7)

= ||JeY JDFC− JLinY
JDFC ||2, (8.8)

where

JeY JDFC =
1
G′

(
∂F

∂r
U − ∂G

∂s
V
)

.

The formula for JLinY
is the same as for JeY , with the difference that

hX = hY = 20. Formula (8.8) can be simplified in exactly the same way
that we derived (8.3) in order to produce a useful computing formula for
the SEED.

In this example êY (x) and L̂inY (x) are not far apart over the X-raw
score range, 0 to 20. For all but the highest raw-score, the linear equating
function differs from the KE function by less than two standard deviations.
This could be used to justify preferring L̂inY (x) to êY (x) in this example.
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9
The Counterbalanced Design

In the Counterbalanced (CB) Design, two independent, random samples of
examinees from a single population P take both tests, X and Y , in different
orders. The first sample takes test X first (denoted in the following as X1)
and test Y second (denoted Y 2), as in a Single-Group Design. The other
sample takes test Y first (denoted Y 1) and test X second (denoted X2).
Hence, the data consists of two SG Designs for (X1, Y 2) and (X2, Y 1).

This chapter illustrates how to carry out the five steps of the Kernel
Equating (KE) method for the CB Design. As we mentioned in Section 2.3
we regard the “two independent SG approach to the CB Design” as the
most accurate of the four alternatives described there in that it reflects the
details of the sampling more faithfully and uses the data more completely
than the three other approaches. This approach consists of pre-smoothing
by fitting separate log-linear models to the two SG Designs, for (X1, Y 2)
and (X2, Y 1), and then combining them by regarding X as a stochastic
mixture of X1 and X2, and Y as a stochastic mixture of Y 1 and Y 2. The
target population, T, is the common one, P, from which the two samples are
drawn. In Section 2.3 we discussed the assumptions underlying this design
and the population parameters which have to be estimated for computing
the equating function.

We illustrate KE for the CB Design using an example from a small field
study from an international testing program. Using these data, we will go
through the details of the steps described in Chapters 3, 4 and 5 for the
CB Design.

In this example X has 75 items and Y has 76 items. Both are scored by
number-right. The two tables with the raw and fitted frequencies are too
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large to be given here. Instead, in an appendix at the end of this chapter,
we give the observed values, (X1, Y 2), for each examinee from the first
sample and the observed values, (X2, Y 1), for each examinee from the
second sample, in Tables 9.7 and 9.8.

Tables 9.1 and 9.2 give summary statistics of the observed and fitted
marginal frequencies for X1 and Y 2, and X2 and Y 1, respectively.

The two SG Designs within the CB Design result in data for two joint
distributions. We denote the first by P(12) for (X1, Y 2) from the first
sample, and the second by P(21) for (X2, Y 1) from the second sample.
Both P(12) and P(21) are J by K matrices of the joint probabilities for X
and Y (analogous to P in the SG Design).

Because each examinee in each of the two samples has two test scores,
the sample data consists of two bivariate (X, Y )-frequencies, i.e.,

n(12)jk = number of examinees with X1 = xj and Y 2 = yk

and

n(21)jk = number of examinees with X2 = xj and Y 1 = yk.

In this example, the xj and yk values are x1 = 0, x2 = 1, . . . , x76 = 75
and y1 = 0, y2 = 1, . . . , y77 = 76, respectively. The samples sizes are

N(12) =
∑

j

∑
k

n(12)jk = 143

and

N(21) =
∑

j

∑
k

n(21)jk = 140.

From the summary statistics in Tables 9.1 and 9.2 we can see that test
Y1, with a mean of 51.39 (±1.0) is slightly harder than test X1, which has
a mean of 52.54 (±1.0). As for order effects, we see that Y2, has nearly the
same mean, 51.29 (±0.9), as Y1, whereas X2 has a mean of 50.64 (±1.2)
which is nearly two points smaller than X1. Hence, it appears that the
there is a small-order effect for the test X. For this example, the sample
correlation between X1 and Y 2 and between X2 and Y 1 is 0.88.

In Tables 9.1 and 9.2 the fitted model is what we call (2, 2, 1) (see below
in Section 9.1).

The raw sample proportions, n(12)jk/N(12) and n(21)jk/N(21), are un-
smoothed estimates of the population score probabilities, p(12)jk and p(21)jk,
from (2.15), of the two joint distributions of X1 and Y 2 and of X2 and Y 1,
respectively. With such small samples and so many score probabilities the
raw sample proportions are very inaccurate estimates of these population
parameters, and pre-smoothing is an essential step.
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TABLE 9.1. Summary Statistics for the Observed and Fitted Distributions of
X1 and Y 2 for One Sample of Examinees. Example 3, CB Design.

X1-Observed X1-Fitted Y 2-Observed Y 2-Fitted
Mean 52.54 52.54 51.29 51.29
SD 12.40 12.40 11.0 11.0

Skewness −0.48 −0.40 −0.34 −0.31
Kurtosis 2.77 2.76 2.32 2.78

TABLE 9.2. Summary Statistics for the Observed and Fitted Distributions of
X2 and Y 1 for One Sample of Examinees. Example 3, CB Design.

X2-Observed X2-Fitted Y 1-Observed Y 1-Fitted
Mean 50.64 50.64 51.39 51.39
SD 13.83 13.83 12.18 12.18

Skewness −0.53 −0.44 −0.57 −0.37
Kurtosis 2.13 2.74 2.43 2.78

9.1 Pre-smoothing

The estimation procedure, using log-linear models, for each of the two bi-
variate distributions is exactly the same as that described in Chapter 8
for the SG Design. In this example the sample sizes are so small that the
pre-smoothing is essential.

Using the “vectorizing notation” for arrays, that we describe carefully in
Chapter 2, Section 2.2, the vectors of the v(P(12)) and v(P(21)) are assumed
to follow log-linear models. The log-linear models for v(P(12)) and v(P(21))
have the form:

log(p(12)jk) = α(12) +
TX1∑
i=1

βX1i(xj)i +
TY2∑
i=1

βY2i(yk)i

+
I(12)∑
i=1

L(12)∑
l=1

β(12)ilx
i
jy

l
k (9.1)

and

log(p(21)jk) = α(21) +
TX2∑
i=1

βX2i(xj)i +
TY1∑
i=1

βY1i(yk)i

+
I(21)∑
i=1

L(21)∑
l=1

β(21)ilx
i
jy

l
k, (9.2)
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where p(12)jk and p(21)jk are the probabilities from (2.15).
The data in this example are very sparse. There are about 140 observa-

tions for both P(12) and P(21) and in both cases they are spread over 76
times 77 = 5852 combinations of XY -scores. Primarily for this reason we
restricted our attention to very simple models for these two data arrays. In
particular, we fit three different models to these data. They are described
as follows.

Model (2, 2, 1). In (9.1), this log-linear model for v(P(12)) is specified by
TX1 = TY2 = 2, and I(12) = L(12) = 1. Model (2, 2, 1) has, as sufficient
statistics, the first two moments of X1 and Y 2, as well as the first cross-
moment of X1 and Y 2. This means that the fitted score probabilities for the
joint distribution of X1 and Y 2 will have the same means, same standard
deviations and same correlation between X1 and Y 2 as observed in the raw
data. Model (2, 2, 1) is also used for v(P(21)), using (9.2) in the obvious
way.

Model (3, 3, 1). In (9.1), this model is specified by TX1 = TY2 = 3, and
I(12) = L(12) = 1. It is similar to model (2, 2, 1), except that, in addition to
the means and standard deviations, the fitted skewness values of X1 and
of Y 2 match those of the raw data as well.

Model (2, 2, 2). In (9.1) this model is specified by TX1 = TY2 = 2, and
I(12) = L(12) = 2. It is also similar to model (2, 2, 1) and in addition
to matching the correlation of X1 and Y 2 to their correlation in the raw
data, three additional fitted cross-moments are also matched to their coun-
terparts in the observed data. These three cross-moments are the ones
between X1 and (Y 2)2, (X1)2 and Y 2, and between (X1)2 and (Y 2)2.

Our interest in models (3, 3, 1) and (2, 2, 2) was to check on the ade-
quacy of the simplest model, (2, 2, 1), to represent the very sparse data in
this example. Tables 9.3 and 9.4 give the likelihood ratio (LR) chi-square
statistics and their nominal degrees of freedom (df) for the three models for
each data array. These statistics do not have chi-square distributions with
these degrees of freedom when the data are this sparse, but their differences
are usually better behaved in this regard. This means that changes in LR,
as we add more parameters to the model, should be on the same order as
the changes in the degrees of freedom, if the additional parameters of the
log-linear model are not significantly different from zero.

For P(12), the reduction in LR, as we increased the complexity of the
model, was 592.53 to 592.09, for skewness (i.e., the model (3, 3, 1)) , and
592.53 to 590.04, for the cross-moments (i.e., model (2, 2, 2)). Both of
these changes are on the order of the size of the corresponding changes in
degrees of freedom (2 for skewness and 3 for the cross-moments). These
results suggest that model (2, 2, 1) is adequate for these data.

The result for adding skewness, model (3, 3, 1), agrees with what we see
in Table 9.1. There the fitted model is (2, 2, 1) and we see that the fitted



9.1 Pre-smoothing 135

0

1

2

3

4

5

6

7

8

9

10

F
re

qu
en

cy

0 6 12 18 24 30 36 42 48 54 60 66 72 78

Score

Fitted

Observed

FIGURE 9.1. The observed and the fitted distributions of X1. Example 3, CB
Design.

skewness values are nearly the same as the observed ones. The same is also
true for the fitted kurtosis values, which are based on the fourth moments.
Both the skewness and the kurtosis values of the data are well described by
model (2, 2, 1). This means that the third and fourth marginal moments
of P(12) are nearly determined by the mean and variance and the form of
log-linear model (2, 2, 1). From these results we decided that model (2, 2,
1) was adequate for the data from P(12).

For P(21), the results for adding skewness are similar to what we have
just discussed for P(12). The reduction in LR is from 647.92 to 646.47, a
small change. This also agrees with what we see in Table 9.2, where the
fitted distribution is model (2, 2, 1). The predicted skewness and kurtosis
values are quite similar to their observed values. However, adding the cross
moments had a larger reduction in LR than we saw for P(12). The reduction
was from 647.92 to 633.14, or a change of 14.78 but a change in df of only
3. This change value exceeds the 1% point on the chi-square distribution
on 3 df so it would be considered statistically significant by many.

However, we decided to stay with model (2, 2, 1) for P(21) even though
model (2, 2, 2) might fit the data somewhat better. Our reason was that the
primary difference between the two models is in the correlation structure of
the bivariate distribution. While this difference might be important in the
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FIGURE 9.2. The observed and the fitted distributions of Y 2. Example 3, CB
Design.

TABLE 9.3. Likelihood Ratio Chi-Square and Degrees of Freedom for Three
Models for v(P(12)). N(12) = 143. Example 3, CB Design.

Model LR df

(2, 2, 1) 592.53 5846
(3, 3, 1) 592.20 5844
(2, 2, 2) 590.04 5843

NEAT Design, where post-stratification methods depend on the conditional
distributions, in the CB Design, as in the SG Design, the equating function
depends on the marginal X- and Y -distributions rather than on the full
joint distribution of X and Y . Model (2, 2, 1) seems to do an adequate job
of fitting the marginal distributions, at least up to the first four moments,
see Table 9.2, of P(21).

The use of model (2, 2, 2) for P(21) might have more of an effect on
the SEE of the CB Design in this example, but we have not studied that
possibility.

The observed and the fitted marginal frequencies of X1 and Y 2 and of
X2 and Y 1 using model (2, 2, 1) for both data sets are plotted in Figure 9.1
to Figure 9.4. These plots show how sparse the data are and how important
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FIGURE 9.3. The observed and the fitted distributions of X2. Example 3, CB
Design.

TABLE 9.4. Likelihood Ratio Chi-Square and Degrees of Freedom for Three
Models for v(P(21)). N(21) = 140. Example 3, CB Design.

Model LR df

(2, 2, 1) 647.92 5846
(3, 3, 1) 646.47 5844
(2, 2, 2) 633.14 5843

pre-smoothing is in this example. We note that the fitted frequencies pass
through the scatter of the raw frequencies in a plausible manner.

In addition to Figures 9.1—9.4, we also include two graphs that give
some information as to the ability of model (2, 2, 1) to describe the con-
ditional distributions of Y 2 given X1 from P(12) and Y 1 given X2 from
P(21). In Figure 9.5 we show the scatter plot of Y 2 versus X1 from P(12).
In addition we plot the fitted conditional expectation, E(Y 2 |X1 = x)
along with the two “2-sigma curves” around it. The upper curve is the
fitted curve E(Y 2 |X1 = x) + 2SD(Y 2 |X1 = x), while the lower one is
E(Y 2 |X1 = x) − 2SD(Y 2 |X1 = x). From standard statistical analyses,
we would expect that about 95% of the data points will lie between the
two 2-sigma curves. Figure 9.6 shows the same plot for P(21). In Figure 9.6
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FIGURE 9.4. The observed and the fitted distributions of Y 1. Example 3, CB
Design.

the scatter is for Y 1 versus X2 from P(21) and the other curves are the
conditional expectation and the two 2-sigma curves.

In fact, very close to 95% of the data lie between the two 2-sigma curves
in both cases. These graphs support the use of model (2, 2, 1) for both
P(12) and P(21).

In addition to the estimated joint probabilities, p̂(12)jk and p̂(21)jk, the
output of a satisfactory log-linear model program will include the “C ma-
trices” that are the essential information needed to compute the standard
errors of p̂(12)jk and p̂(21)jk, and which are used to compute the SEE and
the SEED described in Chapter 5.

In this example, there are two C-matrices, C(12) and C(21), because there
are two bivariate distributions to be estimated although there is only one
population, P, from which the samples are drawn. For model (2, 2, 1), C(12)

and C(21), are both (5852× 5)-arrays, and therefore they are not reported
here.

The estimated covariance of v(P̂(12)), i.e., Σv(P̂(12))
, is such that

Σv(P̂(12))
= C(12)C

t
(12).
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FIGURE 9.5. Scatter plot of Y 1 vs. X2 from P(12) along with the fitted condi-
tional expectation, E(Y 1 |X2 = x), and the two “2-sigma curves.” Example 3,
CB Design.

The estimated covariance of v(P̂(21)), Σv(P̂(21))
, is such that

Σv(P̂(21))
= C(21)C

t
(21).

From Assumption 2.6, the covariance matrix between v(P̂(12)) and v(P̂(21))
is zero. Thus, the joint covariance matrix of v(P̂(12)) and v(P̂(21)) is

Σv(P̂(12)), v(P̂(21))
=
(

C(12)C
t
(12) 0

0 C(21)C
t
(21)

)
= CCt, (9.3)

where

C =
(

C(12) 0
0 C(21)

)
. (9.4)

9.2 Estimation of the Score Probabilities

As in the SG Design, for the CB Design we need to further transform the
smoothed p̂(12)jk and p̂(21)jk, to obtain r̂j and ŝk. In particular, in the
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CB Design.

“two independent SG Designs approach,” we use the synthetic X-score
probabilities, rj , as defined in (2.20), and repeated here

rj = Prob{X = xj |T }
= wXProb{X1 = xj |T } + (1 − wX)Prob{X2 = xj |T },

and the synthetic Y -score probabilities, sk,

sk = Prob{Y = yk |T }
= wY Prob{Y 1 = yk |T } + (1 − wY )Prob{Y 2 = yk |T }.

The weights, wX and wY , both lie in [0, 1], and need to be specified. These
weights indicate the emphasis put on the data that is not subject to order
effects.

We may express rj and sk in vector form as shown in (2.22) and (2.23)
as follows:

r = wXr1 + (1 − wX)r2

s = wY s1 + (1 − wY )s2.
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TABLE 9.5. Summary Statistics for the Fitted Average Score Frequencies That
Correspond to r 1

2
(X) and s 1

2
(Y ). Example 3, CB Design.

X-Fitted Y -Fitted

Mean 51.591 51.340
SD 13.122 11.559

Skewness −0.448 −0.347
Kurtosis 2.846 2.852

Using this linear transformation, the CB Design Function, described by
(2.27), is given by(

r
s

)
= DF

(
P(12), P(21)

)
=

(
wXM (1 − wX)M

(1 − wY )N wY N

)(
v(P(12))
v(P(21))

)
,

where M and N are the “row and column sum” matrices described in (2.9)
and (2.10).

Our approach to the CB Design is to vary the weights, wX and wY , over
a reasonable range to see how sensitive to them are the resulting equating
functions and their SEE’s.

It is natural to regard (wX , wY ) = (1, 1) as the default case because
it is the most conservative use of the data in the CB Design. The case
(wX , wY ) = (1

2 , 1
2 ) is the most generous in the use of the (X2, Y 2)-data

because it weights the two versions of X and Y equally. We can also con-
sider intermediate cases of interest, i.e., (wX , wY ) = (3

4 , 3
4 ), where only

one-fourth of the weight is put on the (X2, Y 2)-data that is possibly sub-
ject to order effects. It is unlikely that we would ever allow wX and wY to
be less than 1

2 .
Table 9.5 gives the first four moments of the fitted average score frequen-

cies, that correspond to r 1
2

= 1
2 (r1 +r2) and s 1

2
= 1

2 (s1 +s2). We see from
Table 9.5 that these moments are similar to the corresponding moments
given in Tables 9.1 and 9.2.

9.3 Continuization

The “stochastic mixtures,” X and Y , replace the actual scores, X1, X2,
Y 1 and Y 2, in our approach to the CB Design. This is simply a device to
give an interpretation to the way we will average the distributions of X1

and X2, and of Y 1 and Y 2. X and Y are simply tools for interpreting
the averages that we propose for the four distributions that arise in the CB
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Design. For example, the cdf of X is given by:

F (x) = wXF1(x) + (1 − wX)F2(x), (9.5)

where F1(x) is the cdf of X1 on P, and F2(x) is the cdf of X2 on P.
Similarly,

G(y) = wY G1(y) + (1 − wY )G2(y). (9.6)

where G1(y) and G2(y) are the corresponding cdf’s of Y 1 and Y 2 on P.
In using KE in the CB Design, we do not advocate continuizing the four

cdf’s, F1(x), F2(x), G1(y), and G2(y) first, and then averaging them as
in (9.5) and in (9.6). Instead, we advocate using wX and wY to average
r1 and r2, and s1 and s2, first and then continuizing the two results. We
denote these results by rwX and swY . (In our example for this chapter, we
computed r 1

2
and s 1

2
where wX and wY both equal one-half.) Once rwX

and swY are in hand, these two sets of score probabilities on the target
population can be continuized to obtain FwX (x; hX), and GwY (y; hY ). We
note that hX can depend on both wX and the method of continuization.
Similarly, hY can depend on both wY and the method of continuization.
In our example, the two continuized cdf’s are denoted F 1

2
and G 1

2
, when

wX = wY = 1
2 , and by F1 and G1 when wX = wY = 1. Note that this

use of F1 and G1 is exactly the same as our usage in (9.5) and (9.6). Both
usages refer to the cdf’s of X1 and Y 1.

Once these continuized cdf’s, FwX and GwY , are in hand, the equating
function, êY, wX , wY (x), is computed by

êY, wX , wY (x) = Ĝ−1
wY

(F̂wX (x; hX); hY ). (9.7)

In our example, we wish to illustrate what happens for different choices
of the weights, wX and wY , and we use the two sets of choices mentioned
above. The case where wX = wY = 1 is the most conservative because
with these weights the data for X2 and Y 2 are ignored. This choice of
weights could be appropriate if there were large order-effects of differing
magnitude between X and Y . The case where wX = wY = 1

2 is the
most liberal because both sets of scores, X1 and Y 1, and X2 and Y 2, are
given equal weight in the estimation of the equating function. This choice
of weights could be appropriate if there were small order-effects or if they
were of similar magnitude between X and Y . In this and in the next section
of this chapter we are concerned simply with estimating the two equating
functions, eY, 1, 1 and eY, 1

2 , 1
2
, which we will also denote more compactly by

eY 1 and eY 1
2
.

Thus, in our example, we use the estimates of r1 and s1 (summarized
in the second column (X1) of Table 9.1 and the fourth column (Y 1)
of Table 9.2. These estimated score probabilities are continuized to ob-
tain F1(x; hX) and G1(y; hY ). Then we use the estimates of r 1

2
and s 1

2

(summarized in Table 9.5) to obtain the continuized cdf’s F 1
2
(x; hX) and
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FIGURE 9.7. The continuized distributions, F̂1hX and Ĝ1hY . Example 3, CB
Design.

G 1
2
(y; hY ). Figures 9.7 and 9.8 show the four continuized cdf’s. There is,

in this example, very little difference between them.
As described in Section 4.2, hX and hY are chosen to minimize the

criterion

PEN1(h)

where PEN1 is defined in (4.27). We did not use PEN2 because the fitted
frequencies were very smooth (see Figures 9.1 to 9.4).

The resulting optimal values of hX for F̂1 and hY for Ĝ1 were 0.5595
and 0.6099, respectively. The resulting optimal values of hX for F̂ 1

2
and hY

for Ĝ 1
2

were 0.5587 and 0.6256, respectively.

9.4 Equating

In the example of this chapter we are considering two different equating
functions that correspond to the choice of weights (wX , wY ) = (1, 1), and
(wX , wY ) = (1

2 , 1
2 ), as discussed in Section 9.3. Equation (9.6) specializes

to

êY 1(x) = êY, 1, 1(x) = Ĝ−1
1 (F̂1(x; hX); hY ) (9.8)
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FIGURE 9.8. The continuized distributions, F̂ 1
2 hX

and Ĝ 1
2 hY

. Example 3, CB

Design.

and

êY 1
2
(x) = êY, 12 , 1

2
(x) = Ĝ−1

1
2

(F̂ 1
2
(x; hX); hY ). (9.9)

Inverting these two relationships, we obtain these two equating functions
that go the other way to link Y to X,

êX1(y) = êX, 1, 1(y) = F̂−1
1 (Ĝ1(y; hY ); hX) (9.10)

and

êX 1
2
(y) = êX, 1

2 , 1
2
(y) = F̂−1

1
2

(Ĝ 1
2
(y; hY ); hX). (9.11)

As explained in both Chapters 7 and 8, we usually need the values of
the equating function that equate X to Y only for each of the raw scores
of X, xj . For example, we need to compute these values for the function
in (9.8):

êY, 1, 1(xj) = Ĝ−1
1 (uXj ; hY ),

where

uXj = F̂1(xj ; hX)
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FIGURE 9.9. The equating functions, êX1 and êY 1. Example 3, CB Design.

Similar considerations hold for the computation of the other equating func-
tions.

Figures 9.9 and 9.10 show ê1 and ê 1
2

going in both directions, i.e. from X

to Y and from Y to X. The equating functions that ignore the (X2, Y 2)-
data, i.e., ê1, are, in this example, more linear in their appearance than
the ones that take the (X2, Y 2)-data into account, i.e., ê 1

2
. In Section 9.5

we will discuss tools that can help us decided which of these two equating
functions is preferable.

9.5 Standard Error of Equating

In this section we address two related problems. The first is one that we
have already considered in Chapters 7 and 8 for the EG and SG designs,
namely, computing the SEE for the equating functions that we estimated
for the example used in this chapter. What is different about the CB case
is that there can be two equating functions, such as ê1 and ê 1

2
, instead of

just one. We first show how to compute the SEE for these two functions
and then compare them.

The second problem that we address in this section is how to choose
between the two equating functions, ê1 and ê 1

2
. This is a new problem

that arises in the CB Design due to the different types of data that can
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FIGURE 9.10. The equating functions, êX 1
2

and êY 1
2
. Example 3, CB Design.

be brought to bear on the estimation of the equating function in the CB
Design.

To compute the SEE of the equating function, êY, wX , wY (x), we apply
Theorem 5.4 from Chapter 5.

The main result is equation (5.29), which we repeat here:

SEEY (x) =
1
G′

[∥∥∥∥ ∂F

∂r
UR − ∂G

∂s
VR

∥∥∥∥2

+
∥∥∥∥ ∂F

∂r
US − ∂G

∂s
VS

∥∥∥∥2
] 1

2

(9.12)

where UR, US , VR, and VS are the matrix-entries given in Table 5.5 and
||v||2 =

∑
i v2

i is the squared Euclidian norm of the vector v. For the CB
Design

UR = wXU(12) and US = (1 − wX)U(21), (9.13)
VS = wY V(21) and VR = (1 − wY )V(12). (9.14)

The four matrices U(12), U(21), V(12), and V(21) are given by

U(12) =
∑

k

C(12)k and U(21) =
∑

k

C(21)k, (9.15)
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and

V(12) =

 1t
JC(12)1

...
1t

JC(12)K

 =

 vt
(12)1

...
vt

(12)K

 , (9.16)

V(21) =

 1t
JC(21)1

...
1t

JC(21)K

 =

 vt
(21)1

...
vt

(21)K

 . (9.17)

C(12)k, and C(21)k are the matrix-blocks in the partition of the matrices
C(12) and C(21). Thus, the (76)(77) × 5-matrices, C(12) and C(21), are
partitioned into 77-matrix blocks, C(12)k and C(21)k, each of dimension 76
by 5. They are too large to be included in this chapter.

The general formula (9.12) specializes to

SEEY (x) =
1
G′

[∥∥∥∥wX
∂F

∂r
U(12) − (1 − wY )

∂G

∂s
V(12)

∥∥∥∥2

+

+
∥∥∥∥ (1 − wX)

∂F

∂r
U(21) − wY

∂G

∂s
V(12)

∥∥∥∥2
] 1

2

. (9.18)

In (9.18) we can see the dependence of the SEE on wX and wY . For exam-
ple, in the case where we “revert” to the EG part of the design, i.e., where
we let wX = wY = 1, (9.18) becomes:

SEEY (x) =
1
G′

[∥∥∥∥ ∂F

∂r
U(12)

∥∥∥∥2

+
∥∥∥∥ ∂G

∂s
V(12)

∥∥∥∥2
] 1

2

. (9.19)

The expression in (9.19) is similar to (7.5), where we give the SEE for the
EG design. The difference between (9.19) and (7.5) is the replacement of
Cr and Cs by U(12) and V(21), respectively. This replacement reflects the
fact that in the CB design we do two bivariate pre-smoothings, whereas in
the EG design we do two univariate pre-smoothings. Examining (9.18) we
see that letting wX and wY differ from 1, e.g., when they both equal 1

2 ,
allows the subtraction to take place within the two components of the SEE
formula. It is this subtraction that causes the reduction in the SEE due to
the correlations within each of the two samples.

Figure 9.11 gives the SEE for e1 and e 1
2
, respectively. In Figure 9.11 we

see that the SEE for the case of wX = wY = 1 is much larger than it is for
wX = wY = 1

2 . This shows the advantage of using all of the data in the CB
Design when this is appropriate. The next question is how to decide when
it is appropriate to use all of the data in the CB Design.
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Design.

9.6 Deciding Between êY 1(x) and êY 1
2
(x)

We address the problem of deciding between êY 1(x) and êY 1
2
(x) in the

following way. The equating function êY 1(x) is always a possible choice
since it is based on the simple EG design. However, as we see in Figure 9.11,
it is based on less data and is, therefore, less accurate as an estimate of the
population equating function. On the other hand, êY 1

2
(x) is based on data,

some of which, X2 and Y 2, is subject to possible order effects, that could
cause a bias in estimating the desired population equating function. We
form the difference, êY 1(x)− êY 1

2
(x), and compare it to its standard error,

which we call the SEED, the standard error of the equating difference. If
êY 1(x) and êY 1

2
(x) differ by more than twice the SEED over important

ranges of the raw scores of X, then we regard this as evidence that the
bias introduced by the use of the X2 and Y 2 data is large enough to cause
concern, and we would choose êY 1(x). If, on the other hand, êY 1(x) and
êY 1

2
(x) do not differ by more than twice their SEED we regard this as

evidence that the bias introduced by order effects is small enough to be
ignored and we would choose êY 1

2
(x).

Of course, other considerations may enter into the choice between êY 1(x)
and êY 1

2
(x), but our use of the SEED can help clarify some of the issues

that need to be addressed when making this choice. Another possibility is
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that we might not want to give equal weight to the two sets of data. This
would be reflected by using wX = wY = 3

4 or some other value less than 1.
We do not examine this issue in more detail in this book but it is an area
worthy of further investigation that may be addressed using the ideas we
present in this chapter.

To continue the example of this chapter, we compute the SEED using
the results of Chapter 5. From Theorem 5.3 and (5.36) the SEED is given
by

SEED2
Y (x) = Var

(
êY 1(x) − êY 1

2
(x)

)
= ||JeY 1JDF1C − Je

Y 1
2
JDF 1

2
C ||2, (9.20)

where, setting w = wX = wY , the SE-vector is

JeY wJDFw
C =

1
G′

w

(
∂Fw

∂r
wU(12) − ∂Gw

∂s
(1 − w)V(12) ,

∂Fw

∂r
(1 − w)U(21) − ∂Gw

∂s
wV(21)

)
. (9.21)

In Chapter 5 we discuss the Jacobian, JeY , for the Kernel Equating func-
tion (see in (5.19)). The expressions JeY 1 and Je

Y 1
2

are the corresponding

Jacobians for the two equating function, êY, 1, 1(x) = Ĝ−1
1 (F̂1(x; hX); hY ),

and êY, 12 , 1
2
(x) = Ĝ−1

1
2

(F̂ 1
2
(x; hX); hY ) from (9.8) and (9.9). Thus, there is

nothing new about evaluating Je1Y and Je
Y 1

2
. The matrix-entries of JDFwC

are UR, US , VR, and VS , and are described above in more detail.
Formula (9.20) can be simplified in exactly the same way as we did for

the SEE in (9.18).
Figure 9.12 shows both the difference between êY 1(x) and êY 1

2
(x), and

the curves for plus and minus two times the SEED. It is very clear from Fig-
ure 9.12 that the difference between êY 1(x) and êY 1

2
(x) is small compared

to the SEED and so we would decide to use êY 1
2
(x) in this example.

9.7 Diagnosis of the Equating Process

As we have done in the previous sections of Part II of this book, we now
examine how well the equating functions do their job of matching the dis-
tribution of the transformed X to that of Y . In this case, since we have
examined two different equating functions, ê1 and ê 1

2
, we will examine how

well they each match the first ten moments of the distribution of Y . These
are slightly different calculations because the distribution of both X and
Y are different in the two cases.

For ê1 we compare the moments of êY 1(X1) with those of Y 1. For ê 1
2

we
compare the moments of êY 1

2
(X 1

2
) to those of Y 1

2
, where the distribution
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FIGURE 9.12. The difference between the êY 1 and êY 1
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equating functions from

X to Y , and ±2SEED. Example 3, CB Design.

of X 1
2

is given by r 1
2
, and that of Y 1

2
is given by s 1

2
. Table 9.6 gives these

results. In this table we give the comparison of moments in terms of the
Percent Relative Error, discussed in Chapter 4. The table shows that there
is very little difference between the fit of these distributions in terms of
their moments and that both distributions fit their targets very well. This
is not surprising when we look at the graph of these equating functions.
They are very similar, as supported by Figures 9.12.

9.8 Deciding Between êY 1
2
(x) and L̂inY 1

2
(x)

When the bandwidths, hX and hY , are both large, the KE equating func-
tion closely approximates the standard linear equating function because the
shape difference function in Theorem 1.1 is then nearly zero. In this exam-
ple, L̂inY 1

2
(x) is computed by choosing hX = hY = 120 and wX = wY = 1

2 .
In Figure 9.13 we plot the difference

êY 1
2
(x) − L̂inY 1

2
(x). (9.22)

This plot shows how the KE estimated equating function, êY 1
2
(x), differs

from the KE linear equating function, L̂inY 1
2
(x).
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TABLE 9.6. Difference Between the Moments of the Equated Distribution and
the Target Distribution Expressed as Percent Relative Error, PRE(p). Example 3,
CB Design.

Moments Percent Relative Error
wX = wY = 1 wX = wY = 1

2
(X to Y ) (Y to X) (X to Y ) (Y to X)

1 −0.0012 0.0004 −0.0024 0.0008
2 −0.0040 0.0015 −0.0064 0.0030
3 −0.0086 0.0032 −0.0142 0.0063
4 −0.0156 0.0057 −0.0253 0.0109
5 −0.0255 0.0093 −0.0412 0.0170
6 −0.0391 0.0142 −0.0631 0.0249
7 −0.0572 0.0205 −0.0922 0.0348
8 −0.0803 0.0287 −0.1295 0.0471
9 −0.1092 0.0387 −0.1763 0.0619
10 −1.1445 0.0510 −0.2334 0.0796
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functions (both with wX = wY = 1
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) from X to Y , and ±2SEED. Example 3,
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To assess how this small difference compares to its uncertainty, we plot
it along with ±2SEED(x), the standard error of equating difference defined
in Chapter 5 as

SEED2(x) = Var
(
êY 1

2
(x) − L̂inY 1

2
(x)

)
(9.23)

= ||Je
Y 1

2
JDF 1

2
C− JLin

Y 1
2
JDF 1

2
C ||2. (9.24)

The SE-vector for eY 1
2
(x) is Je

Y 1
2
JDF 1

2
C and for LinY 1

2
(x) the SE-vector

is JLin
Y 1

2
JDF 1

2
C.

The product, JDF 1
2
C, has appeared earlier in this chapter as the matrix

with matrix components given by (9.13) and (9.14) with wX = wY = 1
2 .

Je
Y 1

2
and JLin

Y 1
2

are both derived from the results from Chapter 5 in (5.19)
with hX and hY chosen by the use of a penalty function in the former and
hX = hY = 120 in the later. In both cases wX = wY = 1

2 .
Figure 9.13 summarizes the results. It shows that in this example êY 1

2
(x)

and L̂inY 1
2
(x) differ by less than one point over most of the score range.

However, for a few X-values at the upper end of the raw-score range they
differ by as many as 4 raw-score points.

Our conclusion for this example is that the KE function,êY 1
2
(x) is prefer-

able to the linear equating function because of the difference between them
at the upper end of the score scale. In cases where this range is not impor-
tant, as would occur in a test used to screen out low scoring examinees, the
linear equating function would probably be satisfactory.

9.9 Appendix: The Data Used in This Chapter

The observed values of (X1, Y 2) for each examinee from the first sample
and the observed values of (X2, Y 1) for each examinee from the second
sample are given in Tables 9.7 and 9.8, respectively.
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TABLE 9.7: (X1, Y 2)-Observed Values. Example 3, EG Design.

Examinee X1 Y 2 Examinee X1 Y 2 Examinee X1 Y 2

1 55 53 50 62 64 99 56 50

2 48 58 51 59 54 100 46 42
3 56 55 52 40 34 101 52 47
4 67 60 53 72 65 102 68 66
5 42 52 54 51 61 103 19 27
6 53 51 55 61 48 104 32 30
7 48 45 56 59 59 105 60 60
8 43 51 57 63 55 106 62 54
9 63 66 58 59 58 107 50 50
10 45 45 59 65 61 108 57 59
11 47 39 60 53 61 109 67 62
12 46 49 61 67 57 110 55 56
13 71 65 62 56 53 111 41 30
14 63 60 63 51 49 112 68 66
15 47 48 64 39 43 113 58 55
16 21 28 65 60 56 114 60 59
17 49 41 66 46 50 115 41 44
18 50 52 67 56 51 116 63 62
19 71 67 68 40 46 117 53 55
20 69 67 69 31 34 118 70 59
21 53 46 70 41 38 119 71 71
22 50 48 71 16 29 120 57 66
23 34 39 72 51 52 121 60 58
24 33 32 73 49 44 122 47 47
25 69 55 74 50 47 123 50 57
26 54 52 75 64 58 124 36 36
27 55 45 76 49 36 125 62 47
28 43 54 77 43 56 126 58 59
29 69 66 78 61 64 127 41 44
30 61 53 79 57 55 128 45 47
31 52 57 80 39 46 129 55 50
32 61 66 81 42 46 130 68 66
33 48 44 82 42 37 131 65 65
34 70 71 83 70 60 132 71 71
35 46 48 84 69 61 133 49 43
36 55 42 85 69 68 134 68 65
37 49 30 86 50 50 135 31 34
38 35 41 87 54 54 136 37 34
39 66 66 88 47 58 137 58 56
40 52 54 89 46 44 138 64 57
41 29 36 90 60 64 139 55 51
42 74 67 91 29 27 140 67 70
43 62 58 92 42 36 141 47 46
44 66 56 93 34 37 142 35 32
45 49 51 94 31 40 143 60 60
46 47 47 95 40 37

47 66 60 96 61 57
48 25 29 97 40 40
49 62 64 98 69 59
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TABLE 9.8: (X2, Y 1)-Observed Values. Example 3, EG Design.

Examinee X2 Y 1 Examinee X2 Y 1 Examinee X2 Y 1

1 54 46 50 40 50 99 52 55

2 68 51 51 68 65 100 54 62
3 60 54 52 61 58 101 67 69
4 66 65 53 56 50 102 62 56
5 19 27 54 53 51 103 48 49
6 33 36 55 66 63 104 65 64
7 37 33 56 43 47 105 58 53
8 55 60 57 60 58 106 53 54
9 62 59 58 51 57 107 65 65
10 63 68 59 61 58 108 61 57
11 57 57 60 48 51 109 48 43
12 70 68 61 33 36 110 67 71
13 57 61 62 54 65 111 63 63
14 67 68 63 47 42 112 42 53
15 52 56 64 36 43 113 49 48
16 54 54 65 29 29 114 62 62
17 47 57 66 24 32 115 58 38
18 34 36 67 39 35 116 21 27
19 44 43 68 68 69 117 63 60
20 67 64 69 55 43 118 58 59
21 32 37 70 59 55 119 56 46
22 22 29 71 22 37 120 54 50
23 43 37 72 60 55 121 53 57
24 66 66 73 59 66 122 36 50
25 65 67 74 59 49 123 60 59
26 59 59 75 60 58 124 53 65
27 35 43 76 43 48 125 29 27
28 45 50 77 47 56 126 52 55
29 37 52 78 60 60 127 72 65
30 37 56 79 29 39 128 37 43
31 28 30 80 36 41 129 67 64
32 67 67 81 63 48 130 56 58
33 31 40 82 34 33 131 66 61
34 50 61 83 64 62 132 38 36
35 55 47 84 46 48 133 27 39
36 54 57 85 28 32 134 52 51
37 27 18 86 44 55 135 54 50
38 57 59 87 33 42 136 39 50
39 60 46 88 65 66 137 68 62
40 56 49 89 34 29 138 63 61
41 62 59 90 48 53 139 67 69
42 71 71 91 49 54 140 54 46
43 56 57 92 22 30
44 29 31 93 38 46
45 70 68 94 54 59
46 31 30 95 68 60

47 65 62 96 69 64
48 25 28 97 28 24
49 59 60 98 48 53



10
The NEAT Design: Chain Equating

This chapter and the next deal with exactly the same data set and equat-
ing design. The difference between them is in the equating methods used.
In this chapter we consider Chain Equating (CE) for the Non-Equivalent
groups with Anchor Test (NEAT) Design. In the next chapter we consider
its competitor for the NEAT Design, the method of Post-Stratification
Equating (PSE).

The first step in the equating process, pre-smoothing (see Section 3.1) is
exactly the same for the KE approach to both CE and PSE. Hence, we will
give the details of the pre-smoothing step for our example data set in this
chapter and will omit it in Chapter 11, where we discuss PSE. To avoid
another repetition, we will postpone our comparison of the results of CE
and PSE for this example until Chapter 11.

The NEAT Design involves two populations, P and Q, of test-takers and
makes use of an anchor test A. A test X is administered to a sample of
examinees from the population P, a test Y is administered to a sample of
examinees from the population Q, and another set of items, A, is admin-
istered to both samples (see Assumption 2.7 and Table 2.4). The samples
from the two populations are assumed to be independent (Assumption 2.8).

This chapter illustrates how to carry out the five steps of Kernel Equating
(KE) for the Chain Equating approach to the NEAT Design. As mentioned
in Section 2.4, the NEAT Designs are of two kinds, depending whether the
set of common items is external or internal to the two tests, X and Y .
Our example for this and the next chapter has an external anchor. As
we mentioned in Section 2.4.3, the NEAT Design with an internal anchor
test introduces no new issues for Kernel Equating other than modeling the
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FIGURE 10.1. The observed and the fitted distributions of X on P. Example 4,
the NEAT Design.

structural zeros that arise in that case during the pre-smoothing step. In
every other respect, KE with an internal anchor test is exactly the same as
KE with an external anchor test.

The example for this and the next chapter involves data from two na-
tional administrations of a high-volume testing program. The two testing
administrations were in the Fall of 2001 (P ) and in the Winter of 2000 (Q).
We will go through the details of the steps described in Chapters 3, 4 and
5. In this example, samples of examinees are drawn from P and Q. Tests
X and Y both have 78 items, and the anchor test, A, has 35 items.

Each examinee in each of the two samples has two test scores. Thus the
sample data consists of two bivariate frequency tables. The entries in these
tables are

njl = number of examinees with X = xj and A = al, in P,

and

mkl = number of examinees with Y = yk and A = al, in Q,

with j = 1, . . . , 79, k = 1, . . . , 79, and l = 1, . . . , 36.
In this example the xj , yk and al values are x1 = 0, . . . , x79 = 78,

y1 = 0, . . . , y79 = 78, and a1 = 0, . . . , a36 = 35, respectively. The raw
scores are all “rounded formula scores” in which the usual “right minus a
quarter wrong” formula scores are rounded to integers. In addition, we also
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FIGURE 10.2. The observed and the fitted distributions of A on P. Example 4,
the NEAT Design.

recoded all negative rounded formula scores to 0.0. We did this recoding for
a practical reason. When we allowed all possible negative formula scores to
be included in the values, xj , yk and al, we found that some of the log-linear
models that we wanted to fit had singular B-matrices due to the sparseness
of the data for these very low scores. Recoding the negative rounded formula
score as 0.0 removed this problem, but it gave each distribution a “lump”
at 0 which we addressed in the log-linear models we selected.

The samples sizes are

NP =
∑

j

∑
l

njl = 10, 634

and
NQ =

∑
k

∑
l

mkl = 11, 321.

The tables with the frequencies, {njl} and {mkl}, are too large to be
given here, i.e., 79 by 36. Instead we give Tables 10.1 and 10.2 to describe
the summary statistics of these two bivariate frequency tables.

From Tables 10.1 and 10.2 we see that the mean of the anchor test, A,
is 17.05 (±0.08) in population P, and 14.39 (±0.08) in Q. Thus, Q is a
less proficient population than P, as measured by A. In terms of effect
sizes, the difference between these two means is approximately 32% of the



158 10. The NEAT Design: Chain Equating

TABLE 10.1. Summary Statistics for the Observed Frequencies of X and A for
a Sample of Examinees from Population P. Example 4, NEAT Design.

X-Observed A-Observed
Mean 39.25 17.05
SD 17.23 8.33

Skewness −0.11 −0.01
Kurtosis 2.23 2.15

Min 0 0
Max 78 35

TABLE 10.2. Summary Statistics for the Observed Frequencies of Y and A for
a Sample of Examinees from Population Q. Example 4, NEAT Design.

Y -Observed A-Observed
Mean 32.69 14.39
SD 16.73 8.21

Skewness 0.24 0.26
Kurtosis 2.31 2.25

Min 0 0
Max 77 35

average standard deviation of 8.27. For this particular testing program, a
mean difference of this magnitude on the anchor test indicates a fairly large
difference between the two test administrations.

For this example, the sample correlation between X and A in P is 0.88,
and the sample correlation between Y and A in Q is 0.87.

In Section 2.4 we discussed the target population, T, for the NEAT De-
sign. T is a mixture of both P and Q where, in this example, the two
populations refer to the populations of examinees from the two adminis-
trations. T is defined in (2.32) and is repeated here,

T = wP + (1 − w)Q,

where 0 ≤ w ≤ 1 is the weight given to P. When w = 1 then T = P and
when w = 0 then T = Q. As we showed in Chapter 2, the specific choice
of w is irrelevant for CE, but it can matter for PSE (see Chapter 11).

In Chapter 2 we pointed out that the NEAT Design also contains two in-
dependent SG Designs. Chain Equating exploits the two SG Designs within
a NEAT Design and produces the equating function directly without first
estimating {rj} and {sk}. However, the cdf’s of X and Y on the target
population T, FT and GT , are implicitly defined through the assumptions
that justify CE as an observed score equating method. We showed this in
Section 2.4.1.
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FIGURE 10.3. The observed and the fitted distributions of Y on Q. Example 4,
the NEAT Design.

The two SG Designs within the NEAT Design result in data for two
joint distributions. The first is denoted by P = (pjl), and the second by
Q = (qkl). The probabilities of these bivariate distributions are defined by
(2.30) and (2.31) and are repeated here

pjl = Prob{X = xj , A = al |P},
qkl = Prob{Y = yk, A = al |Q}.

The raw sample proportions, njl/NP and mkl/NQ are unsmoothed esti-
mates of the population parameters, pjl and qkl. We now turn to the prob-
lem of pre-smoothing the data to obtain better estimates of {pjl} and {qkl}
than the raw sample proportions provide.

10.1 Pre-smoothing

In one sense, the estimation procedure, using log-linear models for the two
bivariate distributions that arise in the NEAT Design, is the same as that
used for the CB Design. However, in the CB Design there are often small
samples that can only support simple log-linear models, whereas the NEAT
Design data sets we examine here have samples nearly a hundred times
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FIGURE 10.4. The observed and the fitted distributions of A on Q. Example 4,
the NEAT Design.

larger than those of Chapter 9 and can support much more complicated
models. Indeed, we chose this example because it illustrates some of the
interesting complexities that can arise in real data when the samples are
large. In particular, the models we selected for pre-smoothing {njl} and
{mkl} can exhibit these features.

1. “Teeth” or “gaps” in the frequencies that can occur at regular inter-
vals when formula scores are rounded to integer values.

2. A “lump” at 0 in each of the marginal distributions. This is due to
our recoding of negative rounded formula scores to 0.

3. A general unimodal but non-Normal shape both to: (a) the overall
set of marginal frequencies for X, Y , and A in P and Q, and (b)
to the frequencies of the regularly spaced “gaps” for each of these
marginal distributions as well.

These phenomena are clearly visible in the observed frequencies displayed
in Figures 10.1–10.4, and most easily seen in Figures 10.2 and 10.4.

Under the random sampling assumption, Assumption 2.8, the sample
frequencies, {njl}, and {mkl}, have independent, approximate multinomial
distributions with population cell probabilities, {pjl} and {qkl}, respec-
tively. The log-linear models for {pjl} and {qkl}, that we use in this chapter,
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are more complicated than we have used elsewhere in this book because
the data have the interesting features just enumerated. We will describe
each log-linear model in terms of seven components that we will discuss
separately.

The two models have the following general form:

log(pjl) = αP + LP (xj) + XP (xj) + AP (al)
+XAP (xj , al) + GXP (xj) + GAP (al), (10.1)

log(qkl) = αQ + LQ(yk) + YQ(yk) + AQ(al)
+Y AQ(yk, al) + GYQ(yk) + GAQ(al). (10.2)

We will describe each component of the model for {pjl} in detail. The
corresponding components for {qkl} are defined analogously.

First of all, αP is just a normalizing constant to insure that the estimates
of {pjl} sum to 1.0.

Next, the term LP (xj) is designed to accommodate the “lump of proba-
bility” at x1 = 0, caused by the recoding of negative values to 0, mentioned
earlier. LP (xj) has the form

LP (xj) = βP0I0(xj), (10.3)

where I0(xj) is the (0/1)-indicator variable defined

I0(xj) =
{

1 if xj = 0,
0 if otherwise, (10.4)

and βP0 is the model parameter associated with this function of xj .
Next, the term XP (xj) is, like equation (7.1), designed to fit the first few

power moments of the distribution of X in P. It has the form

XP (xj) =
TXP∑
i=1

βXPi(xj)i. (10.5)

In XP (xj), TXP is the number of power moments fit to the marginal dis-
tribution of X in P, and βXPi is the parameter associated with the ith
power moment of X.

The term, AP (al), serves the same purpose for A in P as XP (xj) does
for X in P. It has the form

AP (al) =
TAP∑
i=1

βAPi(al)i. (10.6)

The term XAP (xj , al) is the interaction term designed to fit the correlation
and other cross moments of X and A in P. It has the form

XAP (xj , al) =
IXP∑
i=1

IAP∑
i′=1

βXAPii′ (xj)i(al)i′ . (10.7)
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FIGURE 10.5. E(X |A) : observed and fitted values. Example 4, the NEAT
Design.

In XAP (xj , al), IXP and IAP define the number and type of cross moments
fit to the joint distribution of X and A in P. When IXP = IAP = 1, the
model will fit only the correlation between X and A in P. When IXP =
IAP = 2, the model will, in addition, fit these cross moments of X and A :
E(X2A), E(XA2), and E(X2A2). The parameter βXAPii′ is associated
with the (Xi, Ai′) cross-moment of X and A.

The last two terms of the log-linear model for {pjl}, GXP (xj) and
GAP (al) are designed to fit the “gaps” in the score frequencies that we
see in Figures 10.1 (for X) and 10.2 (for A). GXP (xj) has the form

GXP (xj) =
GXP∑
i=0

βGXPi(xj)iISX (xj). (10.8)

In GXP (xj), ISX (xj) is the (0/1)-indicator variable defined by

ISX (xj) =
{

1 if xj in SX ,
0 if otherwise, (10.9)

where SX is the set of X scores that exhibit a “gap” in their frequencies,
i.e., are lower than expected based on the frequencies of neighboring scores.
Rounding the formula scores to integers causes the gaps in this example and
they are fairly easy to see. For example, from Figure 10.1, starting with xj =
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FIGURE 10.6. SD(X |A) : observed and fitted values. Example 4, the NEAT
Design.
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Design.
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75, every fifth score frequency is lower than expected from its neighboring
values. These are the “gaps” in the score frequencies. In this example, SX

is the set of scores {75, 70, 65, 60, . . .}. The value of GXP is the number
of moments of these gap-frequencies that the model will fit. If GXP = 0,
only the total sum of the gap-frequencies is preserved by the model. The
parameter βGXPi is the parameter associated with (xj)iISX (xj). GAP (al)
is defined analogously and has the form

GAP (al) =
GAP∑
i=0

βGAPi(al)iISA(al). (10.10)

We can describe the class of models used in this example by the values
of TXP, TAP , IXP , IAP , GXP , and GAP . For the example data set in this
chapter we settled on the following log-linear model for both {njl} and
{mkl} :

(TXP , TAP , IXP , IAP , GXP , GAP ) = (4, 4, 2, 2, 3, 3). (10.11)

Recall that there are two additional parameters, one for X and one for
A, for modelling the “lump” at 0. Also note that in (10.8) and (10.10)
the summation starts at i = 0 and therefore, although GXP = 3 there are
actually four parameters in GXP (xj). Similarly, for GAP (al).

Following the notation of Chapter 5 for this model for P, the number of
parameters fit is

TP = 2 + TXP + TAP + IXP + IAP + GXP + 1 + GAP + 1 = 22.

The result is a 22-parameter model that describes the 79 by 36 matrix
of bivariate score frequencies. Of these 22 parameters, 9 each are used to
fit the two marginal distributions, and 4 more are used to account for the
correlations and other cross-moments of the joint distribution.

The same type of model with the same number of parameters as indicated
in (10.11) was fit to the (Y , A) frequencies, mkl.

Assessing the fit of the models. As an overall assessment of the fit for the
(4, 4, 2, 2, 3, 3) models, the likelihood ratio chi-square statistic are 1966.9
for the {njl} and 1896.0 for the {mkl}. These chi-square statistics have
nominal degrees of freedom of 2821 each. It is unlikely that the chi-square
distribution with these degrees of freedom is directly applicable to these
two statistics due to the large number of relatively small frequencies that
arise in the 79 by 36 matrices of score frequencies. As a check on the need
for the higher cross moments we included in the model, we also fit models
of the form (4, 4, 1, 1, 3, 3) that only include the correlation term. The
change in likelihood ratio chi-square between these two models is 600 for
{njl}, and 297.3 for {mkl}. These likelihood ratio differences have 3 degrees
of freedom each and give strong evidence for the need to improve the fit by
adding the extra cross moments that we included.
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FIGURE 10.8. E(Y |A) : observed and fitted values. Example 4, the NEAT
Design.
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FIGURE 10.9. SD(Y |A) : observed and fitted values. Example 4, the NEAT
Design.
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FIGURE 10.10. Skew(Y |A) : observed and fitted values. Example 4, the NEAT
Design.

The Freeman-Tukey (FT) deviates for investigating the fit in the marginal
distributions of X and A in P has only one large, significant value of −3.24
at X = 78.

Similarly, the FT deviates for investigating the fit in the marginal dis-
tributions of Y and V has also only one large, significant value of −3.19,
also at Y = 78.

The observed and the fitted marginal distributions of X and A and of
Y and A are plotted in Figure 10.1—Figure 10.4. They show a remarkable
degree of agreement between the observed and fitted frequencies.

For a more detailed examination of the fit of the bivariate distribution
of X and A and of Y and A we examine the two sets of conditional dis-
tributions (X given A, and Y given A). We summarize the dependencies
between X and A by calculating the conditional means, standard devia-
tions, and measures of skewness of the fitted conditional distributions and
comparing them to the corresponding values for the two observed con-
ditional distributions. Similarly for the dependencies between Y and A.
Figures 10.5—10.10 plot these results.

The conditional means are nearly linear and very well reproduced by the
fitted models. While there are more discrepancies between the observed and
fitted conditional standard deviations and skewness measures, the models
we selected reproduce the trends in these conditional moments to a remark-
able degree.
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In summary, we interpret this evidence as indicating a very close fit
between the raw data and the fitted models used to pre-smooth them.

In addition to the estimated joint probabilities, p̂jl and q̂kl, the output of
a satisfactory log-linear model program will include the “C-matrices” that
are the essential information needed to compute the standard errors of p̂jl

and q̂kl, and which are used to compute the SEE and the SEED described
in Chapter 5.

In this example, there are two C-matrices, CP and CQ, because there
are two bivariate distributions to be estimated. CP and CQ, are very large
arrays (each is 2844 × 22), and therefore they will not be reported here.

The estimated covariance of v(P̂), Σv(P̂ ), is such that

Σv(P̂ ) = CPCt
P ,

and the estimated covariance of v(Q̂), Σv(Q̂), is such that

Σv(Q̂) = CQCt
Q.

Following Assumption 2.8, the covariance matrix between v(P̂) and v(Q̂)
is zero. Thus the joint covariance matrix of v(P̂) and v(Q̂) is

Σv(P̂ ), v(Q̂) =
(

CPCt
P 0

0 CQCt
Q

)
=

(
CP 0
0 CQ

)(
CP 0
0 CQ

)t

= CCt, (10.12)

where

C =
(

CP 0
0 CQ

)
(10.13)

is a 5688 × 44 matrix.

10.2 Estimation of the Score Probabilities

Chain Equating (CE) uses a two-stage transformation of X scores into Y
scores. First, it links X to A on P and then links A to Y on Q. We use
“links” rather than “equates” because the test(s) and the anchor are not
equally reliable, and, therefore, they violate requirement 2 mentioned in
Chapter 1. These two linking functions are then functionally composed to
equate X to Y using CE.

Chain equating does not involve any new ideas beyond those used in
the Single-Group (SG) Design. It simply functionally composes or “chains
together” the results from the two SG Designs.
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The cdf’s that are used in (2.43) to compute the Chain Equating func-
tion, i.e., FP , HP , GQ, and HQ, require estimates of four vectors of score
probabilities: rP = (rPj), tP = (tPl), tQ = (tQl), and sQ = (sQk), for
j = 1, . . . , J, k = 1, . . . , K, and l = 1, . . . , L. These marginal probabil-
ities for X and A in P, and Y and A in Q are given by (2.44) and are
repeated here:

rPj = Prob{X = xj |P} =
∑

l

pjl, (10.14)

tPl = Prob{A = al |P} =
∑

j

pjl, (10.15)

tQl = Prob{A = al |Q} =
∑

k

qkl, (10.16)

sQk = Prob{Y = yk |Q} =
∑

l

qkl. (10.17)

10.3 Continuization

In Chain Equating we need to continuize not only the cdf’s of X and Y ,
FP and GQ, but also HP and HQ, the cdf’s of the anchor test A in the
two populations.

In the example of this chapter, the methods used to continuize the four
cdf’s are the same, so we will discuss only one of them in detail, i.e.,
F̂PhXP (x), for X on P. Following the discussion in Section 4.1, we start
with the vector of estimated score probabilities, r̂P , and continuize it via
formula,

F̂PhXP (x) =
∑

j

r̂jΦ
(
R̂jXP (x)

)
, (10.18)

where

R̂jXP (x) =
x − âXP xj − (1 − âXP )µ̂XP

âXP hXP
(10.19)

and

â2
XP =

σ̂2
XP

σ̂2
XP + h2

XP

. (10.20)

In this example we selected hXP to minimize the criterion given in (4.30),
i.e.,

PEN1(hXP ) + K × PEN2(hXP ),

with PEN1 and PEN2 defined in (4.27) and (4.29), respectively. The weight
K was set to 1.0 for all of the continuizations used in this chapter.

Figure 10.11 shows both the fitted score probabilities {r̂Pj} and the
density function of the continuized cdf, F̂PhXP . Had we used PEN1 alone to
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FIGURE 10.11. Fitted probabilities and the approximating density. Example 4,
X on P, the NEAT Design.

determine hXP , the approximating density function would have tracked the
gaps and have exhibited rapid changes in its first derivative, as illustrated
in Figure 4.2. Figure 10.11 illustrates what we mean by “grinding down
the teeth” or “filling in the gaps” in the continuization phase of KE. The
resulting density function passes between the two sets of smoothed score
probabilities. The value of hXP that minimizes the penalty function is
hXP = 2.014. Note that the density is not zero at x = 0 or x = 78 in
Figure 10.11. This indicates that it places some probability outside the
range of the raw scores of X. The lump of probability at x1 = 0 causes
the density to be higher at x = 0 than it is at x = 78. Spreading the
continuous distribution of probability beyond the range of the raw scores
is an inevitable property of the use of the Gaussian kernel to continuize a
discrete distribution. PEN2 has smoothed the gaps away in the rPj . The
same phenomenon occurs for tPl, tQl, and sQk, and we do not report them
here.

We continuized HP , HQ, and GQ in the same manner. The resulting
h-values are: hAP = 2.040, hAQ = 1.405, and hY Q = 2.131.
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and the Chain Equating process. Example 4, CE for the NEAT Design. h-values
found using criterion (4.30) with K = 1.

10.4 Equating

The Chain Equating function, eY (CE), defined in (2.43) has the following
form when we apply the four continuized cdf’s to it:

êY (CE)(x) = Ĝ−1
QhY Q

(
ĤQhAQ

(
Ĥ−1

PhAP

(
F̂PhXP (x)

)))
. (10.21)

The equation for êY (CE)(x) can be expressed as the functional compo-
sition of the KE link from X to A on P, denoted by êA(x), and the KE
link from A to Y on Q, denoted by êY (a). In terms of the four continuized
cdf’s, êA(x) and êY (a) are given by

êA(x) = Ĥ−1
PhAP

(
F̂PhXP (x)

)
(10.22)

and
êY (a) = Ĝ−1

QhY Q

(
ĤQhAQ(a)

)
. (10.23)

Then we have
êY (CE)(x) = êY (êA(x)) . (10.24)
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Design.

Figure 10.12 gives a geometric view of how CE works. Starting at a
particular X-score, go vertically up to the curve of FP (x), then move hor-
izontally over to the curve of HP (a), from there go vertically to the curve
HQ(a), then move horizontally over to the curve of GQ(y) and drop from
there down to the horizontal axis to find the Y -score that the original
X-score is equated to via CE.

For our example, êA(x) is plotted in Figure 10.13. The second linking
function, êY (a), is plotted in Figure 10.14. Finally, the CE equating func-
tion, êY (CE)(x), is plotted in Figure 10.15.

Figures 10.13–10.15 show that each link in the chain and their final com-
position is very linear in this example. We will investigate this in more
detail using the SEED in Section 10.6.

To evaluate how well êY (CE)(x) transforms the discrete distribution of
X on the target population T into the discrete distribution of Y on T,
we would need estimates of {r̂j} and {ŝk}. We were able to do this in the
other chapters because in those cases r and s are explicitly estimated, but
in CE they are not. This means that we cannot use the Percent Relative
Error measure used in the other chapters to investigate how well CE trans-
forms the discrete distribution of X into that of Y on a common target
population, T. A useful area for future research is the development of such
diagnostic tools for CE.
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TABLE 10.3. Difference Between the Moments of the Linked Distribution and
the Target Distribution Expressed as Percent Relative Error, PRE(p). Example 4,
CE for the NEAT Design.

Percent Relative Error
Moments (X to A) (A to Y )

1 0.007 0.001
2 −0.009 −0.012
3 −0.037 0.020
4 0.074 0.014
5 0.357 −0.050
6 0.826 −0.182
7 1.482 −0.387
8 2.325 −0.666
9 3.354 −1.019
10 4.567 −1.447
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FIGURE 10.16. Standard Error of Equating, SEEY (CE)(x), for Equating X to
Y . Example 4, CE for the NEAT Design.

What we can do is to examine how well each link in the chain performs
its transformation. Each of these links is a SG design so that we can apply
the methods used in Chapter 8 to evaluate these linkings. Table 10.3 gives
the results for linking X to A and for linking A to Y.
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As we can see, the discrepancy between these moments ranges from
−0.037% to +4.567% for the X to A linking on P and from −1.447%
to +0.02% for the A to Y linking on Q. The values in Table 10.3 are some-
what larger than the corresponding value given in Chapters 7, 8, and 9.
This is possibly due to the fact that A is less than half the length of X or
Y.

10.5 Standard Error of Equating

In order to compute the SEE for Chain Equating we need to use the SEE’s
for the two SG Designs that are within the NEAT Design, and then combine
them correctly to reflect the fact that the final equating function is a func-
tional composition of the two links, X to A and A to Y. This is discussed
more fully in Chapter 5. Here we simply summarize the computations.

Denote the SEE for the X-to-A link by SEEA(x) and for the A-to-Y link
by SEEY (a), continuing the notation developed in Section 10.4, where we
denote the link from X to A by eA(x) and that from A to Y by eY (a).
SEEA(x) and SEEY (a) may both be computed using appropriate trans-
lations of formula (8.3) for the SG Design. In addition, we also need the
derivative of eY (a) with respect to a, from the results of Section 5.3.4. We
denote this derivative by e′Y (a). It is the slope of the linking function of A
to Y at the value A = a. In the example of this chapter, from Figure 10.14
we see that this slope is nearly constant over the entire range of A values
and is approximately 2.1 in value over this range.

The four components of the SEE for CE are SEEA(x), SEEY (a), e′Y (a),
and eA(x). They are combined as follows to give the SEE for CE, which
we will denote by SEEY (CE)(x),

[SEEY (CE)(x)]2 = [SEEY (eA(x))]2 + [e′Y (eA(x))SEEA(x)]2. (10.25)

Figure 10.16 graphs the SEEY (CE)(x) over the range of X raw-score
values. It has some similarity to the trend in the SEE for the SG Design
given in Table 8.7. The SEE in both cases is smaller in the middle of the
score range, but at the either end of the range the SEE rises and then falls
again near the extreme score values. This “dog-bone” shape is typical of
the SEE for KE (although, it may take on some variations, such as we see
in Figure 9.11 for the CB Design.) In Figure 10.16 it is clearly evident. In
the middle of the score range, the SEEY (CE)(x) for the example is about
0.2, near each end of the range it raises to a little over 0.3 and then starts
to return to smaller values at the extreme ends of the raw-score range.
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FIGURE 10.17. The difference between the equipercentile CE function,
eY (CE)(x), and linear equating function, L̂inY (x) for equating X to Y . Exam-
ple 4, CE for the NEAT Design.

10.6 Deciding Between êY (CE)(x) and L̂inY (x)

We use the Standard Error of Equating Difference (SEED) to assist in mak-
ing the decision between using a linear or nonlinear KE equating function
in the Chain Equating case, as we do in the other chapters of Part II of this
book. The CE case is somewhat different from the other cases because we
do not directly estimate r and s for X and Y on the target population, T.
Because the CE equating function, eY (CE)(x), is a functional composition
of two other linking functions, linearity of the final equating function can
arise in two different ways. In the first case it is possible for each link to
be nonlinear, but when they are functionally composed this nonlinearity
cancels out and the final equating function is linear, or nearly so. In our
example however, Figures 10.13–10.15 show that all three functions are
nearly linear. This is the more usual case that leads to a final linear or near
linear CE function.

In the CE case of KE, there are four bandwidth values that need to be
specified. Up to now in this chapter, we have selected the bandwidths to
minimize a penalty function (see Section 10.3). In order to obtain a KE
function in the CE case that is guaranteed to be linear, we need to select
all four bandwidths to be large. In this case we used h = 10σ for all four
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eY (CE)(x), and linear equating function, L̂inY (x) for equating X to Y , together
with ±2SEED. Example 4, CE for the NEAT Design.

cases (see Tables 10.1 and 10.2 for the values of the standard deviations of
the four distributions).

In Figure 10.17 we plot the difference

êY (CE)(x) − L̂inY (x). (10.26)

This shows that eY (CE)(x) differs for the linear equating function by less
than a raw score point over most of the score range, but that at the extreme
ends of the score scale this difference exceeds two points at the upper end
of the raw-score scale and exceeds one point at the lower end of the scale.

To assess how this difference compares to its uncertainty, we plot it
along with ±2SEED(x), the standard error of equating difference defined
in Chapter 5, i.e.,

SEED2(x) = Var
(
êY (CE)(x) − L̂inY (x)

)
. (10.27)

Figure 10.18 graphs both the difference shown in Figure 10.17 along with
±2 times the SEED. Figure 10.18 shows that the difference between the
equipercentile CE function, obtained using bandwidths chosen to fit the
data well, and the linear CE function, obtained using bandwidths chosen
to be large, is very large compared to the uncertainty in this difference that
is due to the estimation of the score probabilities. The SEED is a measure
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of this uncertainty, and if the difference between the two CE functions was
no larger than the noise level in the data it would have been smaller that
twice the SEED in either direction. From Figure 10.18 we clearly see that
this difference is only that small for a few of the possible X values. Hence,
while the difference between the linear and equipercentile CE functions
is relatively small except at the extremes, it is statistically significantly
different from 0 for almost all of the X values. In addition, for the testing
program from which these data come, such a difference would be considered
large enough to have practical consequences for examinees scoring at the
upper end of the scale. This combination of factors indicates that using the
equipercentile CE function would be the better choice in practice. We do
not mean to imply that the decision to choose between a linear or nonlinear
equating function should be based on these criteria alone, but only that
they are important considerations in making such decisions. More details
are given in Section 5.4 of Chapter 5 regarding the calculation of the SEE
and the SEED for CE.
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11
The NEAT Design: Post-Stratification
Equating

This chapter illustrates how to carry out the five steps of Kernel Equating
(KE) for Post-Stratification Equating (PSE) in the NEAT Design. As men-
tioned in Chapter 2, PSE and Chain Equating (CE) share the same design
and make the same basic assumptions about the design (Assumptions 2.7
and 2.8). Also the first step in Kernel Equating, pre-smoothing, is identical
for PSE and CE.

To illustrate PSE we use the same data as in Chapter 10 for Chain
Equating. This decision is motivated not only by the applicability of both
PSE and CE to the same data but also by our intention to use the SEED
from Chapter 5 to investigate the differences between the two resulting
equating functions on the same data.

Hence, we refer the reader to Chapter 10, Section 10.1, for a description
of the data and our use of special log-linear models to pre-smooth it in
accordance with Step 1 from Section 3.1. We will use the same notation
as we did in Chapter 10 to refer to the basic elements of the data and the
equating design.

To summarize the NEAT Design and our notation for it, in this design
there are two tests to be equated, X and Y, and an anchor test, A as well.
There are two (non-equivalent) populations P and Q from which we have
samples of examinees. X and A are both taken by the sample from P, while
Y and A are both taken by a sample from Q. In our example for this and
the last chapter, A is an external anchor test, as described in Chapter 2.
In the NEAT Design there are two bivariate frequency distributions for the
two samples. These are denoted by
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njl = number of examinees with X = xj and A = al,

and

mkl = number of examinees with Y = yk and A = al.

The bivariate score probabilities, pjl and qkl, are defined as

pjl = Prob{X = xj , A = al |P} and qkl = Prob{Y = yk, A = al |Q}.

The J by L matrix of bivariate score probabilities for P is denoted by P,
and the corresponding K by L matrix for Q is denoted by Q. We will also
use the vectorizing notation, v(P) and v(Q, ) to denote the column vectors
formed by stacking the columns of P and of Q (see Chapter 2).

There are two (potentially different) marginal distributions of A, one
from P and one from Q. We denote the corresponding score probabilities
by

tPl = Prob{A = al |P} and tQl = Prob{A = al |Q},

and the vectors of these score probabilities by tP and tQ. The target pop-
ulation is the mixture, T = wP + (1−w)Q, described in Chapter 2, and r
and s are the vectors of score probabilities whose entries are defined by

rj = Prob{X = xj |T } and sk = Prob{Y = yk |T }.

By definition of T, rj and sk are defined as

rj = wProb{X = xj |P} + (1 − w)Prob{X = xj |Q}, (11.1)

sk = wProb{Y = yk |P} + (1 − w)Prob{Y = yk |Q}, (11.2)

and assumptions, PSE1 and PSE2, discussed in Chapter 2, are needed to
allow Prob{X = xj |Q} and Prob{Y = yk |P} (and therefore r and s) to
be estimated from the data at hand.

In the next section we describe the estimation of the score probabil-
ities exploiting the special PSE assumptions, (PSE1) and (PSE2), from
Section 2.4.2. In Section 11.2 we describe continuization for PSE, and in
Section 11.3 we show how to compute the equating function. Section 11.4
focuses on the SEE for PSE and Sections 11.5—11.7 describe how to apply
the SEED to make decisions about the equating function. First, we will use
the SEED to investigate the sensitivity of the PSE functions to the choice
of w in T = wP +(1−w)Q. Second, we will compare the KE equipercentile
function obtained through PSE to the KE linear function obtained through
PSE. Third, we will compare the KE function obtained through PSE to the
KE function obtained through CE that was derived in Chapter 10.
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FIGURE 11.1. r1/2. Example 4, PSE in the NEAT Design.

11.1 Estimation of the Score Probabilities

In Post-Stratification Equating (PSE), after pre-smoothing, we estimate
the marginal distributions, r and s, of X and Y on the target population
T, which is a specific mixture of P and Q in the form

T = wP + (1 − w)Q,

where 0 ≤ w ≤ 1 is the weight that defines T, see (2.32). Unlike Chain
Equating, in PSE the choice of w, i.e., T, can affect the resulting equating
function.

Under the assumptions, (PSE1) and (PSE2), given in Section 2.4.2, for-
mulas (11.1) and (11.2) do define legitimate estimators of rj and sk over
the target population, T. These are given by the Design Function for PSE
that is specified by (2.60) and in (2.61), and are

r = r (v(P), v(Q), w) =
∑

l

[
w +

(1 − w)tQl

tPl

]
pl (11.3)

and

s = s (v(P), v(Q), w) =
∑

l

[
(1 − w) +

wtPl

tQl

]
ql. (11.4)
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FIGURE 11.2. s1/2. Example 4, PSE in the NEAT Design.

In (11.3) and (11.4), the vectors, pl and ql, are the lth-columns of P and
Q, respectively, i.e.,

pl =

 p1l

...
pJl

 and ql =

 q1l

...
qKl

 , (11.5)

for l = 1, . . . , L.
After obtaining v(P̂) and v(Q̂), r̂ and ŝ are computed from (11.3) and

(11.4), respectively. The weight, w, that defines T, can play an essential
role in PSE, in general. The choice of w is of a different nature than the
choice of wX and wY in the CB Design. In the NEAT Design, w reflects
how much each population, P or Q, is relevant to the equating process.

In our example, we examined three choices of w (w = 0, w = 1
2 , and

w = 1). This comparison can show how different these choices are in their
effect on the equating function. However, in the example we chose for this
chapter we will see that the effect of w is quite small.

The vectors, r and s, each have 79 components so we will not table
their values as we have done in the smaller examples of Chapters 7 and 8.
However, we graph r 1

2
and s 1

2
(for w = 1

2 ) in Figures 11.1 and 11.2. They
show the pattern we see in Figures 10.1—10.4.
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FIGURE 11.3. The cdf’s of X for three values of w, w = 0, w = 1/2, and w = 1.
Example 4, PSE in the NEAT Design.

11.2 Continuization

The cdf associated to the score probabilities defined for the test scores X
and Y are

F̂w(x) = Prob{X ≤ xj} =
∑
xj≤x

r̂wj (11.6)

and

Ĝw(Y ) = Prob{Y ≤ yk} =
∑
yk≤y

ŝwk, (11.7)

with r̂wj and ŝwk from (11.3) and (11.4) with w = 0, 1
2 , 1.

Using the estimated values of r and s in the formulas from (4.5) and (4.8),
the distribution functions from (11.6) and (11.7) will be approximated by
the continuous F̂whX (x) and ĜwhY (y), with w = 0, 1

2 , 1.
As in the previous chapters, hX and hY are chosen to minimize the

criterion given in (4.30), with PEN1 and PEN2 defined in (4.27) and (4.29),
respectively. The weight K was 1. The values of hX and hY for each w are
given in Table 11.1.

The resulting six cdf’s, F0, F 1
2
, F1, and G0, G 1

2
, G1, are displayed in

Figures 11.3 and 11.4. We point out that because population Q has lower
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FIGURE 11.4. The cdf’s of Y for three values of w, w = 0, w = 1/2, and w = 1.
Example 4, PSE in the NEAT Design.

TABLE 11.1. The Values of hX and hY for Each w. Example 4, NEAT Design.

h-Values w = 0 w = 1/2 w = 1
hX(w) 1.9527 1.9243 2.0137
hY (w) 2.1312 2.0056 2.2417

average scores than has population P, the cdf’s move from left to right as
w increases from 0 to 1 in these two figures. This is an indication that as w
increases the cdf’s are “stochastically ordered” from less proficient to more
proficient, with respect to both X and Y .

11.3 Equating

Once continuous approximations to F̂ (x) and Ĝ(y) are available, we com-
pute the equating functions via (4.31) and (4.32), i.e., the equating func-
tions are

êwY (x) = Ĝ−1
whY

(F̂whX (x))
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FIGURE 11.5. The equating function from X to Y for w = 1/2. Example 4,
PSE in the NEAT Design.

and

êwX(y) = F̂−1
whX

(ĜwhY (y)),

for each w = 0, 1
2 , 1.

As already explained in the previous chapters, we usually need the value
of the equating function only for each raw score of X. Hence, we need to
compute

êwY (xj) = Ĝ−1
whY

(uXj),

where uXj = F̂whX (xj) and

êwX(yk) = F̂−1
whX

(uY k),

where uY k = ĜwhY (yk).
As we alluded to earlier, in this example, the three equating functions

are nearly identical. The biggest differences are less than 0.20 of a raw
score point and these occur at the upper end of the raw score scale (see
Section 11.5). For this reason, we will concentrate our attention on the case
of w = 1

2 . (We examine the difference between w = 0 and w = 1 in terms
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TABLE 11.2. Difference Between the Moments of the Equated Distribution and
the Target Distribution Expressed as Percent Relative Error, PRE(p). Example 4,
PSE with w = 1

2
for NEAT Design.

Percent Relative Error
Moments (X to Y ) (Y to X)

1 0.006 −0.004
2 0.005 −0.004
3 −0.020 0.017
4 −0.058 0.052
5 −0.104 0.095
6 −0.156 0.144
7 −0.212 0.200
8 −0.273 0.261
9 −0.337 0.327
10 −0.407 0.400

of the SEED in Section 11.5.) The equating function for w = 1
2 is plotted

in Figure 11.5. It is strongly linear, but has a slight bend.
Table 11.2 gives the percent relative error (PRE(p)) in the first 10 mo-

ments for the equating of X to Y and Y to X using PSE. The formula
used for PRE(p) is given in (4.34) and (4.35). In this table, the PRE(p)’s
are for w = 1

2 and use the optimal h-values for that choice of w to compute
the KE function. We see from Table 11.2 that the PRE(p) ranges from
−0.407 percent to 0.400 percent over the two directions of the equatings.
These are remarkably small values of PRE(p) if we compare them to the
result of Chapters 7 and 8. We did somewhat better using KE for the CB
Design (see Table 9.6), than we see in Table 11.2, but both examples give
remarkably accurate results in terms of matching the estimated moments
of the transformed distribution and its target.

If we compare the results of Table 11.2 to the results we obtained for
CE in Table 10.3, we see that the PRE(p) values for CE are larger, overall,
than those for PSE, indicating worse matching of the moments of the dis-
tributions. However, these values are not as comparable as we would like
due to the fact that in CE we do not directly estimate values for r or s
for the target population, as we do for PSE. Hence, all that is suggested
by these results is that CE does somewhat worse in matching the moments
relevant to it than PSE does for the moments relevant to it.

In order to give some comparison to Table 11.2 for CE, we offer Ta-
ble 11.3. This gives the PRE(p)’s for CE where we use the CE function to
compute the equated values and use r 1

2
and s 1

2
to compute the moments

of the discrete distributions of eY (X) and Y on T = 1
2P + 1

2Q. This is not
an entirely fair calculation for CE because PSE is designed to match these
moments very well. However, it is an interesting comparison to make and
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TABLE 11.3. Difference Between the Moments of the Equated Distribution (com-
puted via CE using the estimated score probabilities appropriate for PSE with
w = 1

2
) and the Target Distribution Expressed as Percent Relative Error, PRE(p).

Example 4, NEAT Design.

Percent Relative Error
Moments (X to Y )

1 1.904
2 2.997
3 3.706
4 4.296
5 4.882
6 5.518
7 6.232
8 7.037
9 7.939
10 8.939

for completeness we include these PRE(p) values for the X to Y transfor-
mation, only. In Table 11.3 we see that the PRE(p) values are larger than
those of any that we have encountered in this book. Even the mean is not
matched as well as it typically is. In Table 11.2 the mean is in error by
almost 2%, whereas it is usually matched nearly perfectly. The higher mo-
ments are off by even more. The appropriate comparison that could favor
CE is not entirely clear to us, and is a topic worth studying.

11.4 Standard Error of Equating

In order to compute the SEE of the equating function, e 1
2 Y (x), we will

apply Theorem 5.4 from Chapter 5.
The main result is equation (5.29), which we repeat here,

SEEY (x) =
1
G′

[∥∥∥∥ ∂F

∂r
UR − ∂G

∂s
VR

∥∥∥∥2

+
∥∥∥∥ ∂F

∂r
US − ∂G

∂s
VS

∥∥∥∥2
]1/2

,

where UR, US , VR, and VS are the matrix entries of JDFC given in
Table 5.6 and ||v||2 =

∑
i v2

i is the squared Euclidian norm of the vector v.
From Table 5.6 it follows that, for PSE in the NEAT Design, the U’s and
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the V’s are given by

UR = wUP + (1 − w)U∗
P − (1 − w)

∑
l

(tQl/tPl)t−1
Pl plv

t
P l, (11.8)

VR = w
∑

l

t−1
Ql qlv

t
P l, (11.9)

US = (1 − w)
∑

l

t−1
Pl plv

t
Ql, (11.10)

VS = (1 − w)UQ + wU∗
Q − w

∑
l

(tPl/tQl)t−1
Ql qlv

t
Ql, (11.11)

where

UP =
∑

l

CPl;

U∗
P =

∑
l

(tQl/tPl)CPl;

UQ =
∑

l

CQl;

U∗
Q =

∑
l

(tPl/tQl)CQl;

vt
P l = 1t

JCPl and vt
Ql = 1t

KCQl.

P = (p1, . . . , pL) and Q = (q1, . . . , qL) are the matrices of the joint
probabilities, pjl and qkl, defined in (2.30) and (2.31); CPl and CQl are the
matrix blocks in the C-matrices, CP and CQ.

The formulas for the vectors of the derivatives, ∂F
∂r and ∂G

∂s , from (5.29)
are given in Lemma 5.1 and Lemma 5.2.

Figure 11.6 displays the SEE, equating X to Y . Figure 11.6 also includes
the SEE for CE, copied from Figure 10.16. We see two obvious things from
this comparison. First of all, the SEE’s for PSE and CE are very similar
over the entire score range and they both have the familiar KE “dog bone”
shape. Second, PSE has a slight advantage over CE, but it is negligible over
most of the score range.

11.5 The Choice of the Target Population

In the NEAT Design the target population is a weighted mixture of the two
underlying populations, T = wP + (1 − w)Q. The weight, w, determines
how P and Q combine to determine T. In this chapter we used three values
of w : w = 0 ( T = Q), w = 1

2 (P and Q weighted equally) and w = 1
(T = P ). As we indicated in Section 11.3, while w does influence the
three continuized pairs of cdf’s in this example, it has very little effect on
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FIGURE 11.6. The SEE for PSE and CE in the NEAT Design. Example 4, PSE
in the NEAT Design.

the resulting equating functions. To quantify this, in this section we will
compare the difference between e1Y (x) and e0Y (x), defined in Section 11.3.
These two equating functions correspond to w = 1 and 0, respectively, so
they reflect the choices of T = P versus T = Q.

We will use a version of the SEED to compare the difference between
the two equating functions to the uncertainty in them due to statistical
variation. The version of the SEED that we will use assumes that the
equating functions being compared vary in the values of w and therefore in
the values of hX(w) and hY (w) as well. The different values of w affect the
Jacobian matrix of the design function, JDFw

(see Table 5.4). The different
values of hX(w) and hY (w) affect the equating function, ewY , and therefore
affect its Jacobian, JewY . The C-matrices, from the pre-smoothing, are not
affected by w or the h’s. Hence, the SEED for comparing w = 1 to w = 0
in the NEAT Design has the form:

SEED2
Y (x) = Var (ê1Y (x) − ê0Y (x)) (11.12)

= ||Je1Y JDF1C − Je0Y JDF0C ||2, (11.13)

where JDFw
, the Jacobian of the Design Function, and C are described in

Theorem 5.1 of Chapter 5. JewY was described in Chapter 5, in (5.19).
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FIGURE 11.7. The difference between e1Y (x) and e0Y (x) as well as ±2SEED(x).
Example 4, PSE in the NEAT Design.

In Figure 11.7 we plot the difference between e1Y (x) and e0Y (x) as well
as ±2SEED(x) from (11.13). From this plot we see that the difference
between the two equating functions is very small (as we mentioned earlier)
and very close to the noise level in the data (as measured by the SEED).
The difference between e1Y (x) and e0Y (x) is less than a tenth of a raw
score point over most of the score range and well within the ±2SEED band
given in Figure 11.7. The one exception is the very highest raw score value
where the difference is closes to two-tenths of a raw score point and exceeds
the 2SEED band. Figure 11.7 gives clear quantitative support to our claim
that, in this example, the effect of the choice of T is negligible.

11.6 Deciding Between ê1
2Y (x) and L̂in 1

2Y (x)

Because of the small differences in the equating functions for the choices
of w that we examined, we decided to concentrate on the case of w = 1

2
for the rest of this chapter. In this section we examine how close the KE
function displayed in Figure 11.5 is to the linear equating function using a
version of the SEED, as we have in the other chapters of this part of the
book.
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2 Y (x) and Lin 1
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Example 4, PSE in the NEAT Design.

Following the analysis we have used in previous chapters, we exploit the
result that if the bandwidths are large enough, then the KE function will
be linear. Hence, in this use of the SEED, w = 1

2 but the two pairs of h
values will be hX = 1.9243, and hY = 2.0056 (see Table 11.1) versus hX =
170, and hY = 170. These two pairs of bandwidths correspond to e 1

2 Y (x)
and Lin 1

2 Y (x), respectively. Thus, from the results of subsection 5.3.3 of
Chapter 5, the SEED corresponding to the difference, e 1

2 Y (x) − Lin 1
2 Y (x),

is given by

SEED2(x) = Var
(
ê 1

2 Y (x) − L̂in 1
2 Y (x)

)
(11.14)

= ||Je 1
2 Y

JDF 1
2
C− JLin 1

2 Y
JDF 1

2
C ||2. (11.15)

Again, the SEED is the length of the difference between the two SE-vectors.
The Jacobian matrix of the Design function, JDF 1

2
, is similar to the

Jacobians mentioned in the previous section, except with w = 1
2 . The

Jacobians of the two equating functions, e 1
2 Y (x) and Lin 1

2 Y (x), are the
same except for the choices of the bandwidths, and their elements are given
by (5.19) in Chapter 5. Thus, the SEED for this section is quite similar to
the SEED for the last section, but the choices of w’s and h’s are different.
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In Figure 11.8, we plot the difference e 1
2 Y (x)−Lin 1

2 Y (x) and the band of
±2SEEDY (x), in order to compare the difference between the two equat-
ing functions to the uncertainty in their difference due to sampling. We
see that the linear version of KE differs significantly from the KE function
determined from the bandwidths selected to minimize the penalty function
discussed in Section 11.2. The graph of the difference between the linear
and curvilinear KE functions shown in Figure 11.8 is similar to the cor-
responding graph for CE (Figure 10.17). Both curves are quite linear but
with a noticeable bend at about X = 40. We turn to a direct comparison
between CE and PSE in the next section.

11.7 Comparing the KE Functions for PSE and CE

While the assumptions of Chain Equating (CE) and Post-Stratification
Equating (PSE) are different (see Section 2.4), it is possible for the results
to be identical or very similar. In this section, we give another application of
the SEED to compare the results of these two different methods of equating
in the NEAT Design. In Chapter 10 we applied CE to the NEAT Design
data that we also used in this chapter, where we used the PSE approach.
Thus, Figures 10.15 and 11.5 are directly comparable and provide us with
a choice between two equating functions that are the results of the different
assumptions made in CE versus PSE.

For notation, we let eY (CE)(x) and eY (PSE)(x) denote the CE and PSE
equating functions, respectively. In addition, because of the small effect of
w on the results in this example, we use w = 1

2 as we did in the previous
section.

From the results of Chapter 5, the SEED corresponding to the difference,
eY (CE)(x) − eY (PSE)(x), is given by

SEED2
Y (x) = Var

(
eY (CE)(x) − eY (PSE)(x)

)
(11.16)

= ||JeY (CE)D − Je 1
2 Y

JDF 1
2
C ||2. (11.17)

In (11.17), JeY (CE) is given by (5.42), D is the matrix defined in (5.49),
and the SE-vector, JeY (CE)D, is evaluated in (5.51). In addition, the com-
ponents in the SE-vector, Je 1

2 Y
JDF 1

2
C, are exactly the same as those in

the previous section.
In Figure 11.9 we plot the difference eY (CE)(x)− eY (PSE)(x). From Fig-

ure 11.9 it is evident that there is a consistent difference between CE and
PSE for this example. Over most of the raw-score range of X, CE produces
higher equated values than PSE does. For most of the range this difference
is less than a Y -raw-score point, but it exceeds half a Y -point over a large
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FIGURE 11.9. The difference between eY (CE)(x) and eY (PSE)(x). Example 4,
PSE in the NEAT Design.

portion of the X-score range. For the four highest X values, the difference
exceeds one Y -point. Such differences would be considered large enough to
make a difference in the reported scores for this example and, from this
point of view the differences, though small, are not negligible.

Another interpretation of the nearly consistent differences displayed in
Figure 11.9 is that CE measures X as a “harder” test than PSE does. For
all but the very lowest X-values, CE equates the scores of X to higher
Y -scores than does PSE.

It is now of some interest to assess whether the apparent differences
between CE and PSE are more than what we would expect from sampling
variability. In Figure 11.10 we have overlaid Figure 11.9 with the band
for ±2SEED, where here the SEED is the standard error of the difference
between CE and PSE, computed using (11.17). This comparison shows that
sampling variability alone can not explain the differences between these two
ways of computing equating functions for the NEAT Design. The difference
curve lies outside the ±2SEED band for most X-values. Hence, we would
conclude that the differences that we see between CE and PSE, in this
example, are reliably different from zero. In the next subsection, we will
discuss the comparison between CE and PSE that this example illustrates.
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Example 4, PSE in the NEAT Design.

11.8 CE versus PSE: Which One to Choose?

Statisticians and psychometricians with test equating responsibilities for
testing programs must choose a final equating function that will affect the
scores of potentially thousands of test takers. This is often a very signifi-
cant responsibility. These choices may involve decisions between linear or
curvilinear functions and in the case of the NEAT Design between equating
functions derived from the assumptions of both PSE and CE. As the exam-
ple of this and the last chapter shows, choosing between PSE and CE can
involve real differences that are not negligible relative to the final scores
that will be reported. What can we expect such decisions to involve?

First of all, while the assumptions of CE and PSE (i.e., CE1 and CE2 and
PSE1 and PSE2 from Section 2.4 of Chapter 2) are different, both sets of
assumptions are not directly testable. Hence, we can not resolve the choice
between CE and PSE by directly checking their assumptions against the
data. Choosing between PSE and CE involves more than checking model
fit.

Secondly, while the two sets of assumptions are different, there are cir-
cumstances where they can lead to exactly the same equating function. In
von Davier et al. (2003) we show that when P and Q do not differ in terms
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of their distributions of the anchor test, A, then CE and PSE give the same
results regardless of how “good” the anchor test is (i.e., its correlation with
X and Y ). Furthermore, we also give a case where the two tests to be
equated, X and Y , are perfectly correlated with A and, in that case, no
matter how different P and Q are in terms of their distributions of A, CE
and PSE give identical results. From these two theoretical observations, we
expect that the differences between CE and PSE will tend to be negligible
when either (i) P and Q have very similar distributions of the anchor test,
or (ii) when the anchor test correlates highly with both X and Y .

However, in the example of this chapter and Chapter 10, the correlation
between X and A is 0.88 and between Y and A it is 0.87. These are typical
of “high” correlations between tests and anchor tests and they are certainly
not “perfect.” Furthermore, in this example, the difference between P and
Q on A was about 32% of a standard deviation, which is quite large for
this testing program. Thus, this real data example is not covered by the
two theoretical cases just mentioned, and, in fact, in it we find a reliable
difference between CE and PSE. The difference is small, but large enough
to change the scores reported to examinees.

From Figure 11.6 we see that, in this example, PSE has a slight edge
over CE in terms of its accuracy as measured by the SEE. However, the
most striking thing about Figure 11.6 is how small these differences are.
CE and PSE have very similar, small standard errors, so it not useful to
choose between them based on their relative accuracy of estimation.

We are left with one idea for rationally choosing between CE and PSE in
the NEAT design. However, because it is a relatively untried idea we will
only briefly outline it here. We return to the five “requirements” of test
equating mentioned in Section 1.1. The Population Invariance Requirement
says that equating functions should not depend on the population on which
they are computed. In fact, they always do depend on the population to
some degree, (Dorans and Holland, 2000). However, if CE and PSE vary in
their sensitivity to the choice of the target population, then we propose that
choosing the equating method that is the less sensitive to T is a rational
basis for choosing between CE and PSE in the NEAT Design. However, we
can’t use T = wP + (1 − w)Q to measure this sensitivity because (a) CE
gives the same result for any such T, and (b) as we saw in Section 11.5,
w makes very little difference for PSE in this example. However, we can
find corresponding subpopulations of both P and Q (e.g., males versus
females, etc.) and use them. Thus, we may be able to partition P and
Q into mutually exclusive and exhaustive subpopulation, {Pk} and {Qk},
and define Tk = wPk + (1 − w)Qk. In this notation, we mean to imply
that Pk and Qk are the same kind of examinees in P and Q (e.g., the
males in P and the males in Q). We may then study the sensitivity of CE
and PSE to the choice of Tk. This sensitivity could vary from example to
example due to factors such as, (a) the correlation between the tests and
A, or, (b) the difference between P and Q in terms of the distributions
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of A. We might have one example where CE is less sensitive and another
where PSE is. In von Davier et al. (2003) we have begun to explore this
idea using the measure of population sensitivity of observed score equating
functions proposed in Dorans and Holland (2000). While we regard this
work as promising, it is still very much an open research topic and an area
ripe for additional research.

If it turns out that CE and PSE are not easily distinguished by their
sensitivity to the choice of Tk, then we do not see an easy way to choose
between CE and PSE in any example where they give reliably different
results. One’s belief in the plausibility of CE1 and CE2 versus PSE1 and
PSE2 appears to be the sole basis left for making this important judge-
ment. Improving on this “intuitive” approach is a topic well worth further
research.



Appendix A
The δ-Method

The δ-method for computing large-sample approximations to the variance
of statistics is based on the following theorem that we state without proof—
see Rao (1973), Bishop et al. (1975), Lehmann (1999), or von Davier (2001),
for more details.

Theorem A.1. Suppose that there is given a sequence of statistical models
indexed by n ∈ IN (usually the sample size) with the same parameter space
Θ which is a nonempty open subset of IRm . Let θ̂n be a sequence of vector
statistics, such that θ̂n is an asymptotically Normal estimator for θ, i.e.,

√
n
(
θ̂n − θ

) D−→ N
(
0,Σ(θ)

) ∀θ ∈ Θ ,

where N
(
0,Σ(θ)

)
denotes the multivariate Normal distribution with expec-

tation zero and covariance matrix Σ(θ) . Consider a function R of θ

R : Θ −→ IRp,

with p ≤ m and assume that R is continuously differentiable on Θ . By
JR(θ) we denote the Jacobian matrix of R at θ, which is a p by m matrix,
i.e.,

JR(θ) =
(

∂Ri

∂θj

)
, (A.1)

where i = 1, . . . , p and j = 1, . . . , m . Then the distribution of
√

n(R(θ̂n)−
R(θ)) converges to the N (0, (JR(θ)Σ(θ)JR(θ)t) law, where JR(θ) is the
Jacobian matrix in (A.1).
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This result is often described by saying that if θ̂n has an approximate
N (0, Σ(θ)) distribution when Σ(θ) is small then R(θ̂n) has an approxi-
mate N

(
0, ∂R/∂θΣ(θ)∂R/∂θt

)
distribution.



Appendix B
Bivariate Smoothing

As we did for univariate smoothing, we will first describe the assumptions
about the data and the model. We assume that the data were gather from
a Single-Group Design to illustrate bivariate smoothing.

Sample level. The sample data consists of (X, Y )-frequencies,

(njk) = number of examinees with X = xj and Y = yk,

with j = 1, . . . , J and k = 1, . . . , K . n = (n11, . . . , nJK)t is the JK-
column vector of the bivariate frequencies. The sample size is N =

∑
j njk .

The raw sample frequencies could be used to estimate the bivariate prob-
abilities, pjk = Prob(X = xj , Y = yk |T ), in order to compute r̂j and
ŝk . However, rarely will these raw sample frequencies yield satisfactory
estimates of all the probabilities involved except when N is very large.

Assumption B.1. It is assumed that the vector n = (n11, . . . , nJK)t, has
a multinomial distribution, i.e.,

Prob(n) =
N !

n11! . . . nJK !

∏
p

nij

ij . (B.1)

The various (power) moments of this bivariate distribution can be ex-
pressed as linear combinations of the frequencies, e.g.,

∑
j,k

xa
j yb

k(njk/N). (B.2)
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When b = 0, then this is the ath moment of the distribution of the row
scores, and if a = 0, this is the bth moment of the distribution of the column
scores. When a and b are both positive, these are the cross moments of the
joint distribution of the row and column scores, e.g., if a = b = 1 then this
is the cross moment related to the covariance and correlation between the
two scores.

We recommend pre-smoothing the bivariate frequencies by fitting log-
linear models in a way that is similar to Section 3.1. To put the bivariate
case into the univariate framework, let

P = (p1, p2, . . . , pK) (B.3)

where pk denotes the kth column of P. Then define the JK-dimensional
vectorized version of P by

v(P) =

 p1
...

pK

 , (B.4)

where v(P) is composed by stacking the columns of P one on the top of
the other.

Model level. In order to estimate the bivariate population parameters,
P = (pjk), we first find satisfactory models for the two univariate marginal
distributions of the bivariate distribution using the tools described for the
univariate case (see Section 3.1). Once this is done, we fit a model to the
bivariate distribution that has the sufficient statistics indicated by the two
models for the marginal distributions, and then add parameters to these
models that involve terms that contain both xj and yk—for example, such
as the last term in the model specified by (B.6) below.

Assumption B.2. The vectors r , s and v(P) satisfy log-linear models.

The log-linear model for r and s will be of the form given in (3.4) or
(3.5). The model for v(P) is:

log(v(P)) = α + u + Btβ. (B.5)

If we fit the first two moments for the two (univariate) marginal distribu-
tions and one moment for the interaction, then the log-linear model for
v(P) may be, for example, of the form

log(pjk) = α+ujk+xjβx1+(xj)2βx2+ykβy1+(yk)2βy2+xjykβxy11 , (B.6)

where pjk are the probabilities from (2.5) associated with njk. If the sub-
script “jk” denotes the njk component of n, then let bjk denote the row
of the matrix B corresponding to the jk. In the example of (B.6),

bjk = (xj , x2
j , yk, y2

k, xjyk) . (B.7)
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If TP denotes the column dimension of B, then

TP ≤ JK − 1,

i.e., that the number of the parameter is less than the number of possible
scores combinations for X and Y . In the example in(B.6), TP = 5.

The model from (B.6) is an analog of the bivariate normal distribution
and it has the same sufficient statistics —the sample means, variances and
covariance. Each choice of “null distribution” u in (B.6) results in a different
model with these sufficient statistics.

Estimation level. These models are estimated by the maximum likelihood
method using standard iterative techniques.

From Assumption 2 follows that the log-likelihood function is

L =
∑
jk

njklog(pjk) . (B.8)

The “moment matching” property of log-linear models also holds.

B.1 Assessing the Fit of the Log-Linear Models

For the bivariate case, Holland and Thayer (1987, 2000) recommend work-
ing from the “outside” (i.e., the two univariate margins) “in” to the full
bivariate distribution. This means that we first find satisfactory models
for the two univariate marginal distributions of the bivariate distribution
using the tools described for the univariate case (see Holland & Thayer,
2000, p. 31). Once this is done, we fit a model to the bivariate distribu-
tion that has the sufficient statistics indicated by the two models for the
marginal distributions, and then add parameters to these models that in-
volve terms that contain both xj and yk. We recommend examining the two
sets of conditional distributions (row given column and column given row)
when diagnosing the fit of a bivariate distribution. Then we recommend in-
vestigating the dependencies between the two variables by calculating the
conditional means, standard deviations and skewness measures of the two
fitted conditional distributions and comparing them to the corresponding
values for the two observed conditional distributions. More details are given
in Holland and Thayer (1998, p. 34) and Chapter 10.

B.1.1 Covariance Matrix of the Parameters

In Section 5.2 it was shown how to derive computational formulas for the
(asymptotic) covariance matrices Σ̂r and Σ̂s if the distributions of r and s
are estimated separately (univariate estimation), without parameters shar-
ing, from two independent random samples.
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In the case of the bivariate estimation, let p̂jk be the estimates of {pjk}
based on the sample data {njk} . v(P̂) is the vector of p̂jk, which follows
a log-linear model. From Chapter 2, we know that r̂ and ŝ are functions
of p̂jk and that these functions depend on each specific design through the
Design Function (DF).

Hence, in order to obtain Σ̂r and Σ̂s we need the covariance matrix of
v(P̂), i.e., Σ̂v(P ). The estimated covariance matrix of v(P̂) is the analog of
Σ̂r. From (5.8) there is a matrix C such that

Σ̂v(P ) = CCt , (B.9)

where C is a JK by TP matrix defined in Table 5.2.
In order to compute the covariance matrix of the parameters for each

design that requires a bivariate estimation, we will make use of (B.9) and
of the DF ’s given in Chapter 2, which link r̂ and ŝ to v(P̂) .



Appendix C
Other Univariate Moments

As mentioned in Section 3.2.1, the power moments are not the only ones
that have utility in fitting univariate distributions. A very useful class of
alternative moments are the “subset moments” defined as follows. A subset,
S, of scores is identified, and the indicator function for S, IS(xj), is used
to define the “subset moment for S,”∑

xj∈S

rj =
∑

j

IS(xj)rj , (C.1)

where IS(xj) = 1 if xj ∈ S, and IS(xj) = 0, otherwise. Subset moments
have several uses. For example, if the frequency for one score value of a
histogram does not seem to follow the pattern of those for the other scores,
then it is often useful to isolate that score so that it does not distort the
fit for the remaining ones. Thus, if the score xj = 0 is the problematic one,
then S = {0}, and I{S}(xj) = 0 for all xj except xj = 0. In (3.4) this could
be accomplished by using the model

log rj = α + uj + xjβ1 + x2
jβ2 + I{0}(xj)β3 . (C.2)

In this case, bj = (xj , x2
j , I{0}(xj)), βt = (β1, β2, β3) and uj could be any

one of several choices.
Another use for subset moments is to fit one set of power moments to

one part of the data and another set of power moments to another part of
the data. An example of such a model is one of the form

log(rj) = α + uj + xjβ1 + x2
jβ2 + IS(xj)β3 + xjIS(xj)β4. (C.3)
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In this case, bj = (xj , x2
j , IS(xj), xjIS(xj)), βt = (β1, β2, β3, β4) and uj

could be one of several choices. This model will match the first two moments
of the cell values for the entire distribution, the total frequency in the cells
denoted by S, and the mean of the cell values for the cells in S . This is very
useful when the cells indexed by S are different in systematic ways from the
others. This can happen when the frequencies exhibit nonrandom features
like “teeth” or gaps spaced at regular intervals along the score scale (see
Chapter 10).



Appendix D
Review of the Use of Matrices in This
Book

Matrices. A matrix is a rectangular array of numbers indexed by its rows
and columns. If J is the number of rows and K the number of columns, then
the matrix is said to be a “J by K matrix,” and its shape is “J by K.” One
of the many types of matrices that arises in this book is a bivariate score
probability matrix, P. The number at the intersection of row j and column
k of P is the probability, pjk. The entry, pjk, is also called an element of, or
a coordinate of, P; in particular, it is the (j, k)-element of P. An example
of a 3 by 4 matrix, P, is

P =

 .20 .10 .05 .00
.10 .15 .05 .05
.00 .03 .12 .15

 .

In this example, the sum of all the entries is 1.00 because it is a bivariate
probability distribution. The (2, 3)-element of P in this example is the
number .05, whereas, the (3, 2)-element of P is .03.

Matrix Operations. We use matrix notation so that in algebraic expres-
sions we can refer to the whole array, P, without specifying the individual
coordinates by using subscripts, i.e., pij . For example, if A and B are two
J by K matrices, so that A and B have the same number of rows and the
same number of columns, then their sum, A + B, is well defined and has
as its (j, k)-element, the value ajk + bjk. Similarly, if c is a number (scalar)
and A is a matrix, then the product cA is well defined, and has as its
(j, k)-element the value, cajk. For example, 2A is a matrix whose entries
are two times the corresponding entries of A.
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The conventions for multiplying matrices introduce new complexities,
but they provide convenient ways to describe important calculations in a
compact way. At first, one might think that the product of A and B should
be the coordinate-wise product, ajkbjk, in analogy with the matrix sum,
ajk +bjk. However, while the coordinate-wise product does have some uses,
we don’t need it in this book. The matrix product of two matrices, AB, is
defined in a special way that has its roots in the interpretation of a matrix
as a linear operator on a vector space (however, linear operators play no
direct role in this book). If C = AB, then the (j, k)-element of C is defined
as

cjk =
L∑

l=1

ajlblk. (D.1)

In order for (D.1) to make sense, A has to be a J by L matrix and B
must be an L by K matrix. Thus, the number of columns of A must equal
the number of rows of B. When this happens, A and B are said to be
conformable, and their matrix product is well defined. Note that the result
of a matrix product is a matrix whose shape may be different from the
shape of either A or B.

While the definition in (D.1) may be surprising at first, the “sum of
products” rule describes many different calculations in mathematics and
statistics.

An important property of this definition of matrix product, is that it
does not have to be commutative, i.e., AB = BA. Ordinary numerical
multiplication of numbers is commutative, but matrix multiplication need
not be. It is even possible for AB to be defined, but BA not to be. For
example, if A is 4 by 2 and B is 3 by 4, AB is not well defined as a product
according to (D.1), while the product BA does make sense. Checking for
the conformability of matrices in a complex product is a good way to see
if the matrix algebra is correct.

Vectors. A vector is a matrix with either one row or one column. Thus,
a row vector is a 1 by K matrix, and a column vector, is a J by 1 matrix.
The length of a vector is the number of elements it has. A number or scalar
is a 1 by 1 matrix, but in matrix multiplication we always treat a 1 by 1
matrix as a scalar rather than a matrix so that a scalar times a matrix is
always a “conformable” product, i.e., c(aij) = (caij), as indicated above.

We adopt the common convention that unless otherwise specified, a vec-
tor means a column vector. This means that whenever a vector is multiplied
by a matrix, the vector, v, appears to the right of the matrix, A, i.e., Av.
If a vector multiplies a matrix on the left, i.e., wA, then w has to be a row
vector, or if w is a column vector, then A must be a row vector in order
for wA to be conformable. A J-vector refers to a row or column vector of
length J.
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Matrix Transpose. An important operation on a matrix is transposition.
The transpose of A, denoted by At, has the same entries as A has except
that the rows and columns are interchanged. The (j, k) entry of At is akj .
Hence, if A is J by K, then At is K by J. Taking the transpose of a
transpose leads us back to the same matrix, (At)t = A.

The other operations on matrices work in the following way with matrix
transposition.

(cA)t = cAt; (A + B)t = (At + Bt); and (AB)t = BtAt. (D.2)

Note that the last part of (D.2) insures that the product on the right-hand
side of the equation is conformable if the one on the left-hand side is.

The transpose of a column vector is a row vector, and conversely. If v is
J by 1 then vt is 1 by J. The transpose of a scalar is itself.

The inner product of two vectors of the same length, v and w, is the
scalar, vtw = wtv. The inner product of a vector with itself, vtv, is the
sum of squares of its elements, or its squared Euclidean length, also denoted
in this book by ||v||2. Along these lines, it is sometimes convenient to denote
the sum of the elements of a vector by 1tv, where 1 denotes a vector of all
1’s. We use this trick in this book to denote the column sums of bivariate
score probabilities, i.e., 1tpk, where pk denotes the kth column of P. The
outer product, vwt, of a J-vector v and a K vector w, is a J by K matrix,
whose entries have the form vjwk. More generally, an outer product is the
matrix product of column vector times a row vector, in that order.

Square Matrices. A square matrix is one that is J by J, with the same
number of rows as columns. Examples of square matrices that arise in
this book are the covariance matrices of vectors of score probabilities. If
r is an estimated J-vector of score probabilities (and therefore a random
vector with a distribution determined by the variability of sampling), its
covariance matrix, Σrr, is a J by J matrix of the covariances of the entries
of r. If r and s are two estimated score probability vectors, then their
covariance matrix, Σrs, need not be square, unless r and s are of the same
length. Another important square matrix is the K by K identity matrix,
IK , whose (j, k)-element is 0 unless j = k, when it is 1.

An important property of the identity matrix is that when it multiplies
another conformable vector or matrix it does not change it, so that IKv =
v, and AIK = IJA = A, for any K-vector v, or J by K matrix, A.

Partitioned Matrices. When a given matrix can be viewed as having
elements that are themselves matrices it is called a partitioned matrix. The
component matrices are called the matrix blocks of the partitioned matrix.
Partitioned matrices arise in several ways in this book. For example, any
matrix may be viewed as partitioned by its column vectors. A bivariate J
by K score probability matrix, P, can be viewed as the partitioned matrix,

P = (p1, p2, . . . , pK) , (D.3)
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where, pk is the kth column of P. pk is a J-vector, and P has K of them.
We can combine two estimated score probability vectors, r and s, into a

single column vector, in the following way, as v = (rt, st)t. In this repre-
sentation, r and s are the matrix blocks of v. It is a good exercise to check
that v is a column vector, with r stacked over s.

The joint covariance matrix of v = (rt, st)t inherits a partitioned form
from the blocks that make up v. It is

Σv =
(

Σrr Σrs

Σsr Σss

)
=
(

J by J, J by K
K by J, K by K

)
. (D.4)

The two matrices M and N, used for SG and CB Designs, are also examples
of partitioned matrices (see (2.9) and (2.10). Another, reoccurring example
of matrix partitioning in this book is the partitioning of the C-matrix from
a bivariate log-linear model used in pre-smoothing. The C-matrix from such
a pre-smoothing in the case of the NEAT Design, is a JL by TP matrix,
CP , where the bivariate smoothing is for a J by L matrix of bivariate score
probabilities, P, and TP is the number of parameters fit in the log-linear
model. In this case, CP can be partitioned into a series of J by TP matrix
blocks, {CPl}, in the form

CP =

 CP1

...
CPL

 . (D.5)

Partitioned matrices that are blockwise conformable may be multiplied to-
gether treating the blocks as matrix entries, as for example,

(
A11 A12 A13

A21 A22 A23

) B11

B21

B31


=
(

A11B11 + A12B21 + A13B31

A21B11 + A22B21 + A23B31

)
. (D.6)

Blockwise conformable means that Ajl and Blk must be conformable for
each j and k. This sort of notation can simplify formulas with several
subscripts.

Vectorizing a Matrix. Vectorizing a matrix repositions its elements by
stacking the columns of the matrix on top of each other to form a long
column vector. In this book we denote vectorizing P by v(P), another
notation for this, used elsewhere, is vec(P) (see Searle, 1982, for example):

v(P) =

 p1
...

pK

 , (D.7)
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where pk denotes the kth column of P.
When we vectorize a matrix of bivariate score probabilities in this book,

we do so in order to have the same matrix notation work for both univariate
and bivariate log-linear models. A consequence of these vectorizings is that
the C-matrices may then be partitioned in the same way as indicated in
(D.5).

Some Examples of Matrix Calculations. Interesting examples of ma-
trix calculations arose in our development of the software needed to calcu-
late the SEE’s and SEED’s for the various equating designs and equating
methods described in this book. In developing software, it is very useful
to have intermediate checks on the values of the quantities that are being
computed, and in many circumstances there is no way to directly check
calculations other than to show that they satisfied certain properties that
can be derived for them. To illustrate what we mean, consider this exam-
ple. The covariance matrix of an estimated probability vector, say, r, must
satisfy an interesting property that is easy to explain. The sum of the el-
ements of r must be 1, because it is a probability vector. We can denote
this as

1tr = 1, (D.8)

where 1t denotes a row vector of all 1’s of the appropriate length. Thus,
the variance of the sum of the elements of r must be zero because 1tr is
always the same value, 1. If the covariance matrix of r is Σrr, then from
(D.8) we can establish the following series of equations using what we have
reviewed in the earlier sections of this appendix.

0 = Var(1tr) = 1tΣrr1
= 1tCr(Cr)t1 = 1tCr(1tCr)t = ||1tCr ||2. (D.9)

In (D.9), we have used the basic rule for calculating the variance of a lin-
ear combination of random variables (i.e., 1tr) from the joint covariance
matrix (i.e., Σrr). We also use the “C-matrix” factorization of the asymp-
totic covariance matrix of an estimated probability vector from a log-linear
model, as discussed in Chapter 3. We conclude from (D.9) that the length
of the vector, 1tCr is 0, and hence that 1tCr is the zero vector, i.e.,

1tCr = 0. (D.10)

Equation (D.10) provides a very nice check on the results of programs that
are designed to compute C-matrices. It says that C-matrices must have
entries that sum to 0 down each of their columns.

Once we have the result in (D.10), we can apply it to a variety of other
matrices that arise in the calculations of SEE’s and SEED’s. For example,
all of the “U and V” matrices that are given in Tables 5.5 and 5.6 in
Chapter 5 also have the property that their column sums are always zero.



210 Appendix D. Review of the Use of Matrices in This Book

For example, from Table 5.5, consider the matrix

U =
∑

k

CPk. (D.11)

U arises in the analysis of the SG Design. It is a sum of the matrix blocks,
CPk, that come from the C-matrix, CP , that is associated with the bivari-
ate score probability matrix, P (see Section 2.2). Because CP is a C-matrix,
its column sums are all 0 so that

1tU = 1t
∑

k

CPk =
∑

k

1tCPk = 0. (D.12)

Similar equations hold for the other U and V matrices in Table 5.5, and we
urge readers to check this by mimicking the calculations we did for (D.9)
and (D.12).

As a final example of these types of matrix calculations, consider the
matrix UR defined in Table 5.6, for the NEAT Design. We will show that
1tUR = 0, too. To do this, we write UR as

UR =
∑

l

(w+(1−w)(tQl/tPl))CPl−(1−w)
∑

l

(tQl/tPl)t−1
Pl plv

t
P l, (D.13)

where vt
P l = 1tCPl from the definitions of the entries in Table 5.6.

When we form 1tUR using(D.13) we get

1tUR =
∑

l

(w + (1 − w)(tQl/tPl))1tCPl

−(1 − w)
∑

l

(tQl/tPl)t−1
Pl 1

tplv
t
P l. (D.14)

However, 1tpl = tPl so that (D.14) becomes

1tUR =
∑

l

(w+(1−w)(tQl/tPl))1tCPl−(1−w)
∑

l

(tQl/tPl)vt
P l. (D.15)

Finally, we use the fact that 1tCPl = vt
P l using the definitions of the entries

in Table 5.6. This is all we need, because (D.15) now becomes

1tUR = w
∑

l

1tCPl, (D.16)

which we have already shown to be 0 in (D.12).

Vector-Functions. Vector-valued functions of vectors, and operations on
them, are tools that we have found very useful in deriving the theory
in Chapters 3, 4 and 5. Vector-valued functions of vectors (or, vector-
functions, for short) are transformations that map vectors into other vec-
tors. Design Functions (DF’s, see Chapter 2) are vector-functions. The
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Design Function for Post-Stratification Equating in the NEAT Design is
the most complicated DF that appears in this book. It is discussed in The-
orem 2.1 of Chapter 2, and has these two components:

r = r (P, Q, w) =
∑

l

[
w +

(1 − w)(tQl)
tPl

]
pl, (D.17)

and

s = s (P, Q, w) =
∑

l

[
(1 − w) +

w(tPl)
tQl

]
ql, (D.18)

where tPl = 1tpl is the sum of the elements in column l of P, and tQl = 1tql

is the sum of the elements in column l of Q.
In (D.17), w + [(1 − w)tQl/tPl] is a scalar, while pl is a vector, so that

their product is a vector that is the same shape as pl. Thus, r in (D.17)
is a sum of L vectors of length J, so that the result is also a vector of
length J. In (D.17) and (D.18) we regard w as fixed so that the functions,
r (P, Q, w) and s (P, Q, w) , are nonlinear functions of v(P) and v(Q).
The quantities, r (P, Q, w) and s (P, Q, w) , are both vector-functions,
whose arguments are the vectors, v(P) and v(Q). Below, we use (D.17) in
an extended example.

Matrix Differentiation. The most complicated thing we do with ma-
trices in this book is to differentiate vector-functions by their vector ar-
guments. This is required when finding the Jacobian matrices of these
transformations, and we make consistent use of Jacobian matrices in our
development. To introduce the notion of matrix differentiation we first dis-
cuss differentiating a scalar-valued function of a vector, and then generalize
to the case of vector-functions. We assume the reader is familiar with the
elements of differentiating a function of several variables, i.e., partial dif-
ferentiation (see, e.g., Apostol, 1957).

Scalar-Functions:. If f(x) = f(x1, x2, . . . , xK) is a real-valued function
of the K-vector, x, then we let ∂f

∂x denote the 1 by K row vector whose
kth element is ∂f

∂xk
, the partial derivative of f with respect to xk. Thus,

∂f
∂x always denotes a row vector, even though x may be a row or column
vector.

An example of the derivative of a real-valued function of a vector that
occurs in this book is the derivative of the continuized cdf, F (x; r) with
respect to the elements of the score probability vector, r (see Chapter 5,
Lemma 5.2). While the derivative of F (x; r) with respect to x, ∂F

∂x , is just
the familiar density function of the cdf, ∂F

∂r is a row vector whose elements
are given by Lemma 5.2.

Vector-Functions:. Generalizing, if f (x) = f(x1, x2, . . . , xK) denotes a J-
vector-valued function of the K-vector, x, then f transforms the K-vector,
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x, into a J-vector, f (x). We regard f(x) as a column vector with real-
valued coordinates, fj(x). Thus, to differentiate f(x) with respect to x,
we first differentiate each coordinate, fj(x) with respect to x and then
place these row vectors on top of each other to obtain the J by K matrix
∂f
∂x . The (j, k)-element of ∂f

∂x is ∂fj

∂xk
.

In order to get some experience with derivatives of vector-functions, we
suggest readers familiarize themselves with the details of the following im-
portant results. It is best to start from the definitions we have given above
and do the coordinates one at a time.

1. If f (x) = Ax, a linear function, then ∂f
∂x = A.

2. If f (x) = x, the identity function, then

∂f

∂x
= IK , (D.19)

the K by K identity matrix.

3. If f(x) = a, a constant J-vector, then ∂f
∂x = 0J×K , the J by K

matrix of 0’s.

4. If c is a scalar constant, then ∂cf
∂x = c

∂f
∂x .

5. If f and g have the same shape, then ∂(f+g)
∂x = ∂f

∂x + ∂g
∂x .

6. If f(x) is a scalar-valued function of the vector x, and g(x) is a
vector-function of x, then

∂(fg)
∂x

= f
∂g

∂x
+ g

∂f

∂x
. (D.20)

(Note that the second term is an outer product so that it is a matrix
of the same shape as ∂g

∂x .) The formula in (D.20) is a generalization
of the usual “derivative of a product” rule from ordinary calculus.

An Application of Matrix Differentiation. As we have indicated ear-
lier, Design Functions (DF’s) are examples of vector-functions that occur
throughout our theoretical analysis of KE. The Jacobian matrices of DF’s
lead us naturally to the derivatives of such functions. To end this appendix,
we will show how the differentiation of the DF for PSE in the NEAT Design
can be done using the tools developed in this appendix. This is mostly an
exercise in keeping the ideas and notation clearly in mind, but the thought
of doing this analysis using the subscripted elements of the various vectors
and matrices instead of using matrix notation is far more daunting. We
will use the notation of Chapters 5, 10 and 11 in this derivation.

The DF specified by the vector-functions given in (D.17) and (D.18) maps
the (JL + KL)-vector, (v(P)t, v(Q)t)t, into the (J + K)-vector, (rt, st)t,
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where we use the “transpose-transpose” notation used earlier—the reader
should check that both (v(P)t, v(Q)t)t and (rt, st)t are appropriate col-
umn vectors. Using the notation of partitioned matrices, the derivative
matrix of the vector-function from (v(P)t, v(Q)t)t to (rt, st)t implied by
any DF can be expressed as

∂r
∂v(P)

∂r
∂v(Q)

∂s
∂v(P)

∂s
∂v(Q)

 . (D.21)

Hence, we need to compute the four matrix blocks in (D.21). We will do
∂r

∂v(P)
and ∂r

∂v(Q)
in detail because the other two are similar. By definition,

∂r
∂v(P)

is a J by JL matrix which has the form

(
∂r

∂p1

. . .
∂r

∂pL

)
, where P = (p1, . . . , pL), (D.22)

and ∂r
∂v(Q)

is a J by KL matrix which has the form

(
∂r

∂q1

. . .
∂r

∂qL

)
, where Q = (p1, . . . , pL). (D.23)

Thus, we need to calculate ∂r
∂p

l
and ∂r

∂q
l
, which are J by J and J by K,

respectively. Referring to (D.17)), we let

wPl = w + (1 − w)(tQl/tPl).

Note that wPl is a scalar-valued function of the lth columns of P and Q
because it depends on the column sums, tPl and tQl, i.e., tPl = 1tpl, and
tQl = 1tql. Next, we simplify (D.17) and express r as

r =
∑

l

wPlpl,

and remember that when we differentiate r with respect to the elements of
pl the result for each term of the sum is 0 except for the lth term. Thus,
we need to find

∂r

∂pl

=
∂(wPlpl)

∂pl

= wPl
∂pl

∂pl

+ pl

∂wPl

∂pl

(D.24)

from the rule in (D.20). But, from (D.19) above,

∂pl

∂pl

= IJ , (D.25)
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and,

∂wPl

∂pl

=
∂

∂pl

(
w + (1 − w)

tQl

tPl

)
= (1 − w)tQl

∂

∂pl

(
1

tPl

)
. (D.26)

Hence, we need to find, ∂
∂pl

(
1

tP l

)
. But, using the usual rules for differenti-

ation,

∂

∂pl

(
1

tPl

)
= −

(
1

tPl

)2
∂tPl

∂pl

. (D.27)

It is easy to see that for any j = 1, . . . , J,

∂tPl

∂pjl
= 1. (D.28)

From (D.28) it follows that

∂tPl

∂pl

= (1J )t. (D.29)

If we put the above results together we find that

∂r

∂pl

= wPlIJ − (1 − w)(tQl/tPl)(tPl)−1pl(1J )t. (D.30)

The right-hand-side of (D.30) is the difference between two J by J matrices,
a useful check that we have kept track of the matrix dimensions correctly.

Next we turn to
∂r

∂ql

=
∂(wPlpl)

∂ql

= pl

∂wPl

∂ql

. (D.31)

But
∂wPl

∂ql

= (1 − w)
(

1
tPl

)
∂tQl

∂ql

. (D.32)

And, ∂tQl

∂q
l

= (1K)t, as in (D.29), so that

pl

∂wPl

∂ql

= pl(1 − w)
(

1
tPl

)
(1K)t = (1 − w)

(
1

tPl

)
pl(1K)t, (D.33)

which is a J by K matrix.
Hence, we may indicate the entries in the top “row” of (D.21) by(
. . . , wPlIJ − (1 − w)

tQl

tPl

1
tPl

pl(1J )t, . . . ; . . . , (1 − w)
1

tPl
pl(1K)t, . . .

)
.

Similar calculations (that the reader should supply) show that the “bot-
tom” row of (D.21) is(

. . . , w
1

tQl
ql(1J)t, . . . , ; . . . , wQlIK − w

(
tPl

tQl

)
1

tQl
ql(1K)t, . . .

)
.
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Putting these two pieces together finishes the job.
The matrix in (D.21) can be quite large. In the example of Chapters 10

and 11, it is a 158 by 5688 matrix. It is difficult to keep track of all these
matrix entries without using the matrix notation illustrated here to simplify
the bookkeeping. Computing all of the entries in (D.21), one coordinate at
a time, is an exercise we gladly leave to others.
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random sampling, 21, 43, 50
random variable

continuous, 57
discrete, 57

raw scores, 3, 9, 10, 23, 35, 90, 93,
144, 148, 156, 169, 185

reliability, 33, 35
requirements for equating

Equal Construct, 3, 4
Equal Reliability, 4
Equity, 4
Population Invariance, 4, 6,

8, 37, 195

Symmetry, 4, 5, 9, 11
rounded formula scores, 156, 157,

160, 162

sample proportions, 100, 132
score probabilities, 6–8, 19, 20, 22,

38, 40, 46, 47, 49, 52, 61,
65, 68, 69, 79, 81, 82, 99,
101, 103, 104, 123, 134,
140, 142, 168, 176, 180,
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SEE, see Standard Error of Equat-
ing

SEED, see Standard Error of Equat-
ing Difference

SG, see Single-Group Design
shape difference function, 12, 110,

128
Single-Group Design, 13, 20, 22,

33, 37, 88, 113, 159
continuization, 123
Design Function, 53, 123
Standard Error of Equating,

77, 126
Standard Error of Equating

Difference, 129
target population, 121

skewness, 48, 60, 102, 119, 135
spiraling sampling, 21, 43, 50, 99
standard deviation, 7, 32
Standard Error of Equating, 14,

15, 20, 23, 31, 43, 46, 51,
68, 78, 89, 174

Standard Error of Equating Dif-
ference, 13, 15, 30, 47,
65, 78, 80, 89, 95, 175,
190, 192

stochastic mixture, 29
structural zeros, 156
synthetic population, 35
synthetic score probabilities, 30,

140

target population, 6, 8, 19, 37, 158



Subject Index 229

Counterbalanced Design, 27,
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Equivalent-Groups Design, 21,
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Non-Equivalent-Groups with
Anchor Test Design, 34,
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Non-Equivalent-Groups with
Anchor Test Design: Chain
Equating, 36, 37

Non-Equivalent-Groups with
Anchor Test Design: Post-
Stratification Equating,
180

Single-Group Design, 23
Taylor expansion, 15, 60
teeth in the frequencies, see gaps

in the frequencies
test equating, 1, 3, 15, 167
test linking, 3, 36, 37, 81, 167
test security issues, 14, 21, 32
testing program, 1
time, 14
Tucker Method, 34, 88

unrounded formula scores, 7

vector-valued functions, 210
vectorized version of a matrix, 24,

133, 200, 208

weights
Counterbalanced Design, 30,

31
Non-Equivalent-Groups with

Anchor Test Design, 158
Non-Equivalent-Groups with

Anchor Test Design: Post-
Stratification Equating,
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