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Pre face  

Regression analysis allows one to relate one or more criterion variables 
to one or more predictor variables. The term "to relate" is an empty 
formula that can be filled with an ever increasing number of concepts, 
assumptions, and procedures. Introductory textbooks of statistics for 
the social and behavioral sciences typically include only a description of 
classical simple and multiple regression where parameters are estimated 
using ordinary least-squares (OLS). OLS yields estimates that can have 
very desirable characteristics. Therefore it is deemed useful under many 
circumstances, as attested to by the many applications of this method. 
Indeed, O LS regression is one of the most frequently used methods of 
applied statistics. 

Yet, there are many instances in which standard OLS regression is 
only suboptimal. In these instances, researchers may not wish to give up 
the goals of regressing one set of variables onto another and predicting 
values from the predictors. Instead, researchers may wish to apply more 
appropriate methods of regression, methods that are custom-tailored to 
their hypotheses, data, and assumptions. 

A very large number of special methods for regression analysis are 
available. For instance, researchers can apply regression analysis to model 
dependent data or to depict curvilinear relationships. Researchers can 
apply various criteria when optimizing parameter estimates, or they can 
include categorical and continuous predictors simultaneously in a multiple 
regression equation. Most of these methods are easy to use, and many 
of these methods are already part of general purpose statistical software 
packages. 

This book presents both the classical OLS approach to regression and 

xi 
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modern approaches that increase the range of applications of regression 
considerably. 

After the introduction in chapter one the second chapter explains the 
basics of regression analysis. It begins with a review of linear functions 
and explains parameter estimation and interpretation in some detail. Cri- 
teria for parameter estimation are introduced and the characteristics of 
OLS estimation are explained. 

In the third chapter we extend the approach of simple, one-predictor 
regression to multiple regression. This chapter also presents methods of 
significance testing and a discussion of the multiple R 2, a measure used to 
estimate the portion of criterion variance accounted for by the regression 
model. The fourth chapter deals with simple and multiple regression using 
categorical predictors. 

An important part of each regression analysis is outlier analysis. Out- 
liers are extreme measures that either are far from the mean or exert 
undue influence on the slope of a regression equation. Both types of out- 
liers are threats to the validity of results from regression analysis. Chapter 
5 introduces readers to methods of outlier analysis. In a similar fashion, 
residual analysis is of importance. If residuals display systematic pat- 
terns, there is systematic variance that remains to be explained. Chapter 
6 presents methods for residual analysis. 

One example of systematic variability that standard regression us- 
ing straight regression lines cannot detect is the presence of curvilinear 
relationships between predictors and criteria. Methods of polynomial re- 
gression, presented in Chapter 7, allow researchers to model virtually any 
shape of curve. 

Multicollinearity can be a major problem in virtually any multiple 
regression analysis. The only exception is the use of perfectly orthogonal 
predictor variables. Multicollinearity problems result from dependence 
among predictors and can invalidate estimates of parameters. Chapter 8 
presents methods for diagnosing multicollinearity and remedial measures. 

Chapter 9 extends the curvilinear, polynomial approach to regression 
to multiple curvilinear regression. Another instance of nonlinear relation- 
ships is the presence of interactions between predictors. Multiplicative 
terms, which are routinely used to identify the existence of possible inter- 
actions, pose major problems for parameter interpretation. Specifically, 
multiplicative terms tend to create leverage points and multicollinearity 
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problems and come with very uneven power which varies with the loca- 
tion of the interaction effect. Chapter 10 deals with interaction terms in 
regression. 

When there is no obvious way to solve problems with outliers or the de- 
pendent variable is not normally distributed, methods of robust regression 
present a useful alternative to standard least-squares regression. Chapter 
11 introduces readers to a sample of methods of robust regression. 

Chapter 12 presents methods of symmetrical regression. These meth- 
ods minimize a different goal function in the search for optimal regression 
parameters. Thus, this approach to regression allows researchers to ele- 
gantly deal with measurement error on both the predictor and the crite- 
rion side and with semantic problems inherent in standard, asymmetric 
regression. The chapter also presents a general model for ordinary least 
squares regression which subsumes a large array of symmetric and asym- 
metric approaches to regression and yon Eye and Rovine's approach to 
robust symmetric regression. 

In many instances researchers are interested in identifying an opti- 
mal subset of predictors. Chapter 13 presents and discusses methods for 
variable selection. 

Of utmost importance in longitudinal research is the problem of cor- 
related errors of repeatedly observed data. Chapter 14 introduces readers 
to regression methods for longitudinal data. 

In many instances, the assumption of a monotonic regression line that 
is equally valid across the entire range of admissible or observed scores 
on the predictor cannot be justified. Therefore, researchers may wish to 
fit a regression line that, at some optimally chosen point on X, assumes 
another slope. The method of piecewise regression provides this option. 
It is presented in Chapter 15. The chapter includes methods for linear 
and nonlinear piecewise regression. 

Chapter 16 presents an approach for regression when both the predic- 
tor and the criterion are dichotomous. 

Chapter 17 illustrates application of regression analysis to a sample 
data set. Specifically, the chapter shows readers how to specify command 
files in SYSTAT that allow one to perform the analyses presented in the 
earlier chapters. 

This volume closes with five appendices. The first presents elements 
of matrix algebra. This appendix is useful for the sections where least- 
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squares solutions are derived. The same applies to Appendices B and C, 

which contain basics of differentiation and vector differentiation. Chapters 
7 and 9, on polynomial regression, can be best understood with some 
elementary knowledge about polynomials. Appendix D summarizes this 
knowledge. The last appendix contains the data used in Chapter 14, on 
longitudinal data. 

This book can be used for a course on regression analysis at the ad- 
vanced undergraduate and the beginning graduate level in the social and 
behavioral sciences. As prerequisites, readers need no more than elemen- 

tary statistics and algebra. Most of the techniques are explained step- 
by-step. For some of the mathematical tools, appendices are provided 

and can be consulted when needed. Appendices cover matrix algebra, the 
mechanics of differentiation, the mechanics of vector differentiation, and 
polynomials. Examples use data not only from the social and behavioral 
sciences, but also from biology. Thus, the book can also be of use for 
readers with biological and biometrical backgrounds. 

The structure and amount of materials covered are such that this book 
can be used in a one-semester course. No additional reading is necessary. 
Sample command and result files for SYSTAT are included in the text. 

Many of the result files have been slightly edited by only including in- 
formation of specific importance to the understanding of examples. This 

should help students and researchers analyze their own data. 

We are indebted to a large number of people, machines, and struc- 
tures for help and support during all phases of the production of this 
book. We can list only a few here. The first is the Internet. Most parts 
of this book were written while one of the authors held a position at the 
University of Jena, Germany. Without the Internet, we would still be 
mailing drafts back and forth. We thank the Dean of the Social Science 
College in Jena, Prof. Dr. Rainer K. Silbereisen, and the head of the De- 
partment of Psychology at Michigan State University, Prof. Dr. Gordon 
Wood for their continuing encouragement and support. We are grateful to 
Academic Press, notably Nikki Levy, for interest in this project. We are 
deeply impressed by Cheryl Uppling and her editors at Academic Press. 
We now know the intersection of herculean and sisyphian tasks. 

We are most grateful to the creators of I ~ ~ .  Without them, we 
would have missed the stimulating discussions between the two of us in 
which one of the authors claimed that all this could have been written in 
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WordPerfect in at least as pretty a format as in 1.4TEX. Luckily or not, 

the other author prevailed. 

Most of all, our thanks are owed to Donata, Maxine, Valerie, and Ju- 

lian. We also thank Elke. Without them, not one line of this book would 
have been written, and many other fun things would not happen. Thank 
you, for all you do! 

December 1997' 

Alexander yon Eye 
Christof Schuster 
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Chapter 1 

I N T R O D U C T I O N  

Regression analysis is one of the most widely used statistical techniques. 
Today, regression analysis is applied in the social sciences, medical re- 
search, economics, agriculture, biology, meteorology, and many other ar- 
eas of academic and applied science. Reasons for the outstanding role that 
regression analysis plays include that its concepts are easily understood, 
and it is implemented in virtually every all-purpose statistical comput- 
ing package, and can therefore be readily applied to the data at hand. 
Moreover, regression analysis lies at the heart of a wide range of more 
recently developed statistical techniques such as the class of generalized 
linear models (McCullagh & Nelder, 1989; Dobson, 1990). Hence a sound 
understanding of regression analysis is fundamental to developing one's 
understanding of modern applied statistics. 

Regression analysis is designed for situations where there is one con- 
tinuously varying variable, for example, sales profit, yield in a field ex- 
periment, or IQ. This continuous variable is commonly denoted by Y and 
termed the dependent variable, that is, the variable that we would like 
to explain or predict. For this purpose, we use one or more other vari- 
ables, usually denoted by X1, X2 , . . . ,  the independent variables, that are 
related to the variable of interest. 

To simplify matters, we first consider the situation where we are only 
interested in a single independent variable. To exploit the information 
that the independent variable carries about the dependent variable, we 
try to find a mathematical function that is a good description of the as- 
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Figure 1.1" Scatterplot of aggressive impulses against incidences of phys- 
ical aggression. 

sumed relation. Of course, we do not expect the function to describe the 
dependent variable perfectly, as in statistics we always allow for random- 
ness in the data, that is, some sort of variability, sometimes referred to as 
error, that on the one hand is too large to be neglected but, on the other 
hand, is only a nuisance inherent in the phenomenon under study. 

To exemplify the ideas we present, in Figure 1.1, a scatterplot of data 
that was collected in a study by Finkelstein, von Eye, and Preece (1994). 
One goal of the study was to relate the self-reported number of aggressive 
impulses to the number of self-reported incidences of physical aggression 
in adolescents. The sample included n - 106 respondents, each providing 
the pair of values X, that is, Aggressive Impulses, and Y, that is, open 
Physical Aggression against Peers. In shorthand notation, (Xi, Y/),i - 

1 , . . . ,  1 0 6 .  

While it might be reasonable to assume a relation between Aggres- 
sive Impulses and Physical Aggression against Peers, scientific practice 
involves demonstrating this assumed link between the two variables using 
data from experiments or observational studies. Regression analysis is 



one important tool for this task. 

However, regression analysis is not only suited to suggesting decisions 
as to whether or not a relationship between two variables exists. Regres- 
sion analysis goes beyond this decision making and provides a different 
type of precise statement. As we already mentioned above, regression 
analysis specifies a functional form for the relationship between the vari- 
ables under study that allows one to estimate the degree of change in the 
dependent variable that goes hand in hand with changes in the indepen- 
dent variable. At the same time, regression analysis allows one to make 
statements about how certain one can be about the predicted change in 
Y that is associated with the observed change in X. 

To see how the technique works we look at the data presented in the 
scatterplot of Figure 1.1. On purely intuitive grounds, simply by looking 
at the data, we can try to make statements similar to the ones that are 
addressed by regression analysis. 

First of all, we can ask whether there is a relationship at all between 
the number of aggressive impulses and the number of incidences of phys- 
ical aggression against peers. The scatterplot shows a very wide scatter 
of the points in the plot. This could be caused by imprecise measure- 
ment or a naturally high variability of responses concerning aggression. 
Nevertheless, there seems to be a slight trend in the data, confirming the 
obvious hypothesis that more aggressive impulses lead to more physical 
aggression. Since the scatter of the points is so wide, it is quite hard to 
make very elaborate statements about the supposed functional form of 
this relation. The assumption of a linear relation between the variables 
under study, indicated by the straight line, and a positive trend in the 
data seems, for the time being, sufficiently elaborate to characterize the 
characteristics of the data. 

Every linear relationship can be written in the form Y = /3X + a. 
Therefore, specifying this linear relation is equivalent to finding reasonable 
estimates for/3 and a. Every straight line or, equivalently, every linear 
function is determined by two points in a plane through which the line 
passes. Therefore, we expect to obtain estimates of/3 and a if we can only 
find these two points in the plane. This could be done in the following 
way. We select a value on the scale of the independent variable, X, 
Aggressive Impulses in the example, and select all pairs of values that 

have a score on the independent variable that is close to this value. Now, 
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a natural predictor for the value of the dependent variable, Y, Physical 

Aggression against Peers, that  is representative for these observations is 

the mean of the dependent variable of these values. For example, when 

looking up in the scatterplot those points that have a value close to 10 

on the Aggressive Impulse scale, the mean of the associated values on the 

physical aggression scale is near 15. Similarly, if we look at the points 

with a value close to 20 on the Aggressive Impulse scale, we find that  the 

mean of the values of the associated Physical Aggression scale is located 

slightly above 20. So let us take 22 as our guess. 

Now, we are ready to obtain estimates of fl and a. It is a simple 

exercise to transform the coordinates of our hypothetical regression line, 

that  is, (10, 15) and (20, 22), into estimates of/3 and a. One obtains as 
the estimate for/7 a value of 0.7 and as an estimate for a a value of 8. If 

we insert these values into the equation, Y = / 3 X  + a, and set X = 10 

we obtain for Y a value of 15, which is just the corresponding value of Y 

from which we started. This can be done for the second point, (20, 22), 
as well. 

As we have already mentioned, the scatter of the points is very wide 

and if we use our estimates for/3 and a to predict physical aggression for, 

say, a value of 15 or 30 on the Aggressive Impulse scale, we do not expect 

it to be very accurate. It should be noted that this lack of accuracy is not 

caused by our admittedly very imprecise eyeballing method. 

Of course, we do not advocate using this method in general. Perhaps 

the most obvious point that can be criticized about this procedure is that  

if another person is asked to specify a regression line from eyeballing, he 
or she will probably come to a slightly different set of estimates for a and 

/7. Hence, the conclusion drawn from the line would be slightly different 

as well. So it is natural to ask whether there is a generally agreed-upon 

procedure for obtaining the parameters of the regression line, or simply the 

regression parameters. This is the case. We shall see that the regression 

parameters can be estimated optimally by the method of ordinary least 

squares given that  some assumptions are met about the population the 
data were drawn from. This procedure will be formally introduced in 

the next chapters. If this method is applied to the data in Figure 1.1, 

the parameter estimates turn out to be 0.6 for/7 and 11 for a. When 
we compare these estimates to the ones above, we see that our intuitive 

method yields estimates that are not too different from the least squares 



estimates calculated by the computer. 

Regardless of the assumed functional form, obtaining parameter esti- 
mates is one of the important steps in regression analysis. But as esti- 
mates are obtained from data that are to a certain extent random, these 
estimates are random as well. If we imagine a replication of the study, 

we would certainly not expect to obtain exactly the same parameter es- 
timates again. They will differ more or less from the estimates of the 

first study. Therefore, a decision is needed as to whether the results are 
merely due to chance. In other words, we have to deal with the question 
of how likely it would be that we will not get the present positive trend 
in a replication study. It will be seen that the variability of parameter es- 
timates depends not on a single factor, but on several factors. Therefore, 

it is much harder to find an intuitive reasonable guess of this variability 

then a guess of the point estimates for/~ and a. 

With regression analysis we have a sound basis for examining the 
observed data. This topic is known as hypotheses testing for regression 
parameters or, equivalently, calculating confidence intervals for regression 
parameters. This topic will also be discussed in the following chapters. 

Finally, having estimated parameters and tested hypotheses concern- 
ing these parameters, the whole procedure of linear regression rests on 
certain assumptions that have to be fulfilled at least approximately for 
the estimation and testing procedures to yield reliable results. It is there- 
fore crucial that every regression analysis is supplemented by checking 
whether the inherent model assumptions hold. As an outline of these 

would not be reasonable without having formalized the ideas of estima- 
tion and hypothesis testing, we delay this discussion until later in this 
book. But it should be kept in mind that model checking is an essential 
part of every application of regression analysis. 

After having described the main ideas of regression analysis, we would 
like to make one remark on the inconsistent use of the term "regression 
analysis." As can be seen from the example above, we regarded X, the 
independent variable, as a random variable that is simply observed. There 
are other situations where X is not a random variable but is determined 
prior to the study. This is the typical situation when data from a planned 

experiment are analyzed. In these situations the independent variable is 
usually under the experimenter's control and its values can therefore be 
set arbitrarily. Hence, X is fixed and not random. In both situations the 
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analysis is usually referred to as regression analysis. One reason for this 
terminological oddity might be that the statistical analysis, as outlined 
in this book, does not vary with the definition of the randomness of X. 
With X fixed, or at least considered fixed, formulas are typically easier 
to derive because there is no need to consider the joint distribution of all 
the variables involved, only the univariate distribution of the dependent 
variable. Nevertheless it is important to keep these two cases apart as 
not all methods presented in this book can be applied to both situations. 
When X is fixed the model is usually referred to as the linear model 
(see, for instance, Searle, 1971; Graybill, 1976; Hocking, 1996). From this 
perspective, regression analysis and analysis of variance are just special 
cases of this linear model. 



Chapter 2 

S I M P L E  L I N E A R  

R E G R E S S I O N  

Starting from linear functions, Section 2.1 explains simple regression in 
terms of functional relationships between two variables. Section 2.2 deals 

with parameter  estimation and interpretation. 

2.1 Linear Funct ions  and E s t i m a t i o n  

The following illustrations describe a functional relationship between two 

variables. Specifically, we focus on functions of the form 

Y - a + ~ X ,  (2.1) 

where Y is the criterion variable, ~ is some parameter,  X is the predictor 
variable, and a is also some parameter. Parameters,  variables, and their 
relationship can be explained using Figure 2.1. 

The thick line in Figure 2.1 depicts the graph of the function Y = 
a + ~X,  with/3 - 2, a - 1, and X ranging between -1 and +3. Consider 

the following examples" 

�9 f o r X - 2 w e o b t a i n Y - l + 2 , 2 - 5  

�9 f o r X - 3 w e o b t a i n Y - l + 2 , 3 - 7  
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Figure 2.1- Functional linear relationship between variables Y and X. 

�9 f o r X = 0 w e o b t a i n Y = l + 2 . 0 = l  

Using these examples and Figure 2.1 we find that  

1. a is the intercept parameter, that  is, the value assumed by Y when 

x = 0. For the example in the figure and the third numerical ex- 

ample we obtain y = 1 when X = 0, that  is, y = a; the level of the 

intercept is indicated as a horizontal line in Figure 2.1. 

2. /3 is the slope parameter, that  is, the increase in Y that  is caused by 

an increase by one unit in X. For the example in the figure and the 

above numerical examples we find that  when X increases by 1, for 

example, from X = 2 to X = 3, Y increases by 2, that  is,/3 = 2. 

3. Changes in a cause a parallel shift of the graph. Consider the upper 

thin line in Figure 2.1. This line is parallel to the thick line. The 

only difference between these two lines is that  whereas the thinner 

line has an intercept of a = 4, the thicker line has an intercept of 

a = 1, or, the thicker line depicts the function Y = 1 + 2X, and the 

thinner line depicts the function Y = 4 + 2X. Positive changes in 

intercept move a curve upward. Negative changes in intercept move 

a curve downward. 

4. Changes in/3 cause the angle that  the line has with the X-axis to 

change. Consider the steepest line in Figure 2.1. This line has the 
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same intercept as the thick line. However, it differs from it in its 

slope parameter. Whereas the thick line increases by two units in 

Y for each unit increase in X. The thinner line increases by three 

units in Y for each unit in X, the thinner line depicts the function 

Y = 1 + 3X. Positive values of ~ cause the curve to increase as X 

increases. Negative values of ~ cause the curve to decrease as X 

increases. 

Figure 2.1 depicts the relationship between X and Y so that  X is the 

predictor and Y the criterion. 

Consider a researcher that  wishes to predict Cognitive Complexity 

from Reading Time. This researcher collects data in a random sample of 

subjects and then estimates a regression line. However, before estimating 

regression parameters, researchers must make a decision concerning the 

type or shape of regression line. For example a question is whether an 

empirical relationship can be meaningfully depicted using linear functions 

of the type that  yield straight regression lines. 1 In many instances, this 

question is answered affirmatively. 

When estimating regression lines, researchers immediately face the 

problem that,  unlike in linear algebra, there is no one-to-one relationship 

between predictor values and criterion values. In many instances, one 

particular predictor value is responded to with more than one, different 

criterion values. Similarly, different predictor values can be responded to 

with the same criterion value. For instance, regardless of whether one 
drives on a highway in Michigan at 110 miles per hour or 120 miles per 

hour, the penalty is loss of one's driver license. 

As a result of this less than perfect mapping, a straight line will not 
be able to account for all the variance in a data set. There will always 

be variance left unexplained. On the one hand, this may be considered 

a shortcoming of regression analysis. Would it not be nice if we could 

explain 100% of the variance of our criterion variable? On the other hand, 

explaining 100% of the variance is, maybe, not a goal worth pursuing. 
The reason for this is that not only in social sciences, but also in natural 

sciences, measurements are never perfect. Therefore, explaining 100% of 

1The distinction between linear functions and linear regression lines is important. 
Chapters 7 and 9 of this book cover regression lines that are curvilinear. However, 
parameters for these lines are estimated using linear functions. 
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the variance either means that  there is no error variance, which is very 

unlikely to be the case, or that  the explanation confounded error variance 

with true variance. 

While the claim of no error variance is hard to make plausible, the 

latter is hardly defensible. Therefore, we use for regression analysis a 

function that  is still linear but differs from (2.1) in one important  aspect: 

it contains a term for unexplained variance, also termed error or residual 

variance. 

This portion of variance exists for two reasons. The first is tha t  mea- 

sures contain errors. This is almost always the case. The second reason 

is tha t  the linear regression model does not allow one to explain all of 

the explainable variance. This is also almost always the case. However, 

whereas the first reason is a reason one has to live with, if one can, the sec- 

ond is curable, at least in part: one can try alternative regression models. 

But  first we look at the simple linear regression. 

The function one uses for simple linear regression, including the term 

for residual variance, is 

Yi = (~ + ~x i  + ~i, (2.2) 

where 

�9 yi is the value that  person i has on the criterion, Y. 

�9 a is the intercept parameter.  Later, we will show how the intercept 

can be determined so that  it is the arithmetic mean of Y. 

�9 ~ is the slope parameter.  Note tha t  neither a nor/~ have the per- 

son subscript, i. Parameters  are typically estimated for the entire 

sample; only if individuals are grouped can two individuals have 

different parameter  estimates. 

�9 xi is the value that  person i has on the predictor, X.  

* ei is tha t  part  of person i's value yi that  is not accounted for by the 

regression equation; this part  is the residual. It is defined as 

ei = Yi - # i ,  ( 2 . 3 )  
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Figure 2.2: Illustration of residuals. 
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where #i is the value predicted using the regression equation (2.1), 
that is, 

#i = a + ~xi. (2.4) 

Figure 2.2 displays a regression line and a number of data points 
around this line and the residuals. There is only one point that sits 
directly on the regression line. The other six data points vary in their 
distances from the regression line. Residuals are expressed in units of 
Y. Thus, the distance from the regression line, that is, the size of the 
residual, is depicted by the vertical lines. These lines are not the shortest 
connections to the regression lines. The shortest lines would be the lines 
that are orthogonal to the regression line and originate in the data points. 

However, there is an explanation for the solution that expresses resid- 
uals in units of Y, that is, lines parallel to the Y-axis. The explanation is 
that differences between estimated values (regression line) and observed 
values (square data points) are best expressed in units of the criterion, 
Y (see Equation (2.2)). For example, weather forecasts typically include 
temperature forecasts for the coming days. It seems reasonable to express 
both the predicted temperature and the difference between measured and 
predicted temperatures in units of the temperature scale. Therefore, stan- 
dard regression expresses residuals in units of Y. Chapter 12 of this book 
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presents a solution for regression that expresses residuals in units of the 

orthogonal distance between the regression line and the data points. 

Parameters a and/~ are not subscripted by individuals. This suggests 

that  these parameters describe the entire population. 

Basics about matrix algebra are given in Appendix A. This variant 

of algebra allows one to express algebraic expressions, in particular mul- 
tiple equations, in an equivalent yet far more compact form. Readers not 
familiar with matrix algebra will benefit most from Section 2.2 and the 
following chapters if they make themselves familiar with it. Readers al- 
ready familiar with matrix algebra may skip the excursus or use it as a 
refresher. 

2.2 P a r a m e t e r  E s t i m a t i o n  

This section is concerned with estimation and interpretation of parameters 
for regression equations. Using the methods introduced in Appendix B, 
we present a solution for parameter estimation. This solution is known 
as the ordinary least squares solution. Before presenting this solution, 
we discuss the method of least squares within the context of alternative 
criteria for parameter estimation. 

2 . 2 . 1  C r i t e r i a  f o r  Parameter  E s t i m a t i o n  

A large number of criteria can be used to guide optimal parameter esti- 
mation. Many of these criteria seem plausible. The following paragraphs 
discuss five optimization criteria. Each of these criteria focuses on the 
size of the residuals, e/, where i indexes subjects. 

The criteria apply to any form of regression function, that is, to lin- 
ear, quadratic, or any other kinds of regression functions. One of the 
main characteristics of these criteria is that they are not statistical in na- 
ture. When devising statistical tests, one can exploit characteristics of the 
residuals that result from optimization according to one of certain criteria. 
However, the criteria themselves can be discussed in contexts other than 
statistics. For instance, the least squares criterion finds universal use. It 
was invented by Gauss when he solved the problem of constructing a road 

system that had to be optimal for military use. 



2.2. P A R A M E T E R  E S T I M A T I O N  13 

Al l  R e s i d u a l s  ei M u s t  b e  Zero  

More specifically, this criterion requires that  

e i = 0 ,  f o r i = l , . . . , n .  

This first criterion may seem plausible. However, it can be met only 

under rare conditions. It implies that  the relationship between X and 

Y is perfectly linear, and that  the regression line goes exactly through 

each data  point. As was discussed in Section 2.1, this is impractical for 

several reasons. One reason is that  data are measured typically with 

error. Another reason is that ,  as soon as there is more than one case for 

values of X,  researchers that  employ this criterion must assume that  the 

variation of Y values is zero, for each value of X. This assumption most 

probably prevents researchers from ever being able to estimate regression 

parameters  for empirical data  under this criterion. 

M i n i m i z a t i o n  of  t h e  S u m  of  R e s i d u a l s  

Let ~)i be the estimated value for case i and yi the observed value. Then, 

minimization of the sum of residuals can be expressed as follows: 

n 

Q - Z(Y - - 0. (2.5) 
i - - 1  

This criterion seems most reasonable. However, as it is stated, it can 

yield misleading results. One can obtain Q = 0 even if the regression line 

is the worst possible. This can happen when the differences Yi - yi sum 

up to zero if their sums cancel each other out. This is illustrated in Figure 

2.3 

Figure 2.3 displays a string of data points. The first regression line 

suggests that ,  for these data  points, the criterion given in (2.5) can be 

fulfilled. This line goes through each and every data point. As a result, 

we obtain for the sum of residuals Q = 0. 

Unfortunately, the same applies for the second perpendicular line. The 

residuals for this line cancel each other out, because they lie at equal 

distances y -  ~ from this regression line. As a result, the sum of residuals 

is Q - 0  too. 
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Figure 2.3: Two solutions for Q = 0. 

Because of the problems that (1) solutions are not unique and (2) one 
has to devise criteria that allow one to discriminate between these two 
cases, this second criterion remains largely abandoned. The next criterion 
seems more practical. 

M i n i m i z a t i o n  of the  S u m  of the  A b s o l u t e  Res idua l s  

To avoid the problems one can encounter when using (2.5), one can at- 
tempt minimization of the absolute residuals, I lYi - ~)ill, that is, 

n 

Q -  ~ I lyi-  9ill-4 min. (2.6) 
i--1 

To illustrate Criterion (2.6), consider Figure 2.3 again. As a matter of 
course, the first regression line yields Q = 0. However, no other line yields 
this minimal value for Q. A large value for Q results for the perpendicular 
line. 

While solving the biggest problem, that is, the problem of counter- 
intuitive regression slopes, Criterion (2.6) presents another problem. This 
problem concerns the uniqueness of solutions. Sole application of (2.6) 
cannot guarantee that solutions are unique. Solutions that are not unique, 
however, occur only rarely in analysis of empirical data. Therefore, Cri- 
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terion (2.6) is occasionally applied and can be found in some statistical 

software packages (L1 regression in S+; Venables & Ripley, 1994). 

Tshebysheff  Minimizat ion 

Whereas the last three criteria focused on the sum of the residuals, the 

Tshebysheff Criterion focuses on individual residuals, ci. The criterion 

proposes that  

m a x  i1  1i = m i n .  

In words, this criterion yields a curve so that the largest absolute 

residual is as small as possible. This is an intuitively sensible criterion. 

Yet, it is problematic for it is deterministic. It assumes that there is no 
error (or only negligible error) around measures. As a result, solutions 

from the Tshebysheff Criterion tend to severely suffer from outliers. One 
extreme value is enough to create bias, that  is, dramatically change the 

slope of the regression line. Therefore, social science researchers rarely use 
this criterion. In contrast, the following criterion is the most frequently 

used. 

Minimizat ion  of the squared Residuals- The Method  of Ordi- 
nary Least Squares (OLS)  

While solutions from Criterion (2.6) may be appropriate in many in- 

stances, lack of uniqueness of solutions minimizes enthusiasm for this 

criterion. Curiously, what was probably the idea that led to the develop- 
ment of OLS estimation 2 was the notion of distance between two points 

in n-space. Note that  this distance is unique and it can also be easily 
calculated. It is well known that in a plane the distance between the 

two points Pl and p2 can be obtained by using the Pythagorean theorem 
through 

2 

dZ(Pi,P2) - -  ( X l l  -- X l 2 )  2 -~- (x21 --  x 2 2 )  2 - -  ~ ( x i i  - -  x i 2 )  2, 

i--1 

2On a historical note, OLS estimation was created by the mathematician Gauss, 
the same person who, among other mathematical achievements, derived the formula 
for the normal distribution. 
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Figure 2.4: Distance between two points. 

where pl and p2 are two points in a plane with coordinates pl --  (x11,  x21)  

and p2 = (x12, x22) and d2(pl,p2) denotes the squared distance between 
the two points. This is illustrated in Figure 2.4. 

Now, suppose we have two points Pl and p2 in n-space, that  is, pl - 
(x11,x21,x31,.. .  ,Xnl) and p2 = (x12,x22,x32,...  ,xn2). The squared 
distance is calculated as before with the sole exception that  index i now 
ranges from 1 to n, that  is, 

n 

d 2 ( p l , P 2 )  - -  E ( X i l  - x i 2 ) 2 .  

i - 1  

The least squares criterion for parameter estimation in regression analysis 
has the following completely analogous form: 

n 

Q _  E ( y  i _ ~i)2 ~ min. (2.7) 
i--1 

In words, Criterion (2.7) states that we select the predicted values ~) such 
that  Q, that  is, the sum of the squared distances between the observations 
and the predictions, becomes a minimum. Of course, we will not select 
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an arbitrary point in n-space for our prediction, because then we could 

chose ~ - y and the distance would always be zero. Only predictions that  
meet the model 

~)i -- bo + blxi (2.8) 

are considered. Once the data are collected, the xi values in (2.8) are 

known. Thus, the squared distance Q depends only on the values of b0 

and bl. For every possible pair of b0 and bl we could calculate Q, and the 

OLS principle states that we should select as reasonable estimates of the 

true but unknown regression coefficients/~0 and ~1 the values of b0 and 

bl for which Q becomes a minimum. 

Thus far we have given some reasons why OLS might be a sensi- 

ble choice for estimating regression coefficients. In fact, when examining 

O LS estimators it turns out that they have a number of very desirable 
characteristics: 

1. Least squares solutions are unique; that is, there is only one mini- 
mum 

2. Least squares solutions are unbiased; that  is, parameters estimated 

using least squares methods do not contain any systematic error 

3. Least squares solutions are consistent; that  is, when the sample size 

increases the solution converges toward the true population values 

4. Least squares solutions are efficient; that  is, their variance is finite 

and there is no solution with smaller variance among all unbiased 
linear estimators 

Moreover, these estimators can be determined using closed forms. As 

a result, it is straightforward to computationally determine this minimum. 

2 . 2 . 2  L e a s t  S q u a r e s  P a r a m e t e r  E s t i m a t o r s  

This chapter presents a solution to the least squares minimization prob- 

lem, that  is, it yields the estimates for regression parameters. 

But before presenting the solution for estimation of regression param- 
eters we take a closer and more formal look at the regression model and 

its characteristics. 
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The Regression Model: Form and Characteristics 

As was stated in Section 2.1, the population model for simple regression 

can be formulated as 

Yi - ~0 +/~lxi  + ~i, (2.9) 

where yi is subject i's value on the observed variable,/~o and fll are the 

intercept and the slope parameters ,  respectively, xi is a known constant,  

and ei is a random residual term. 

This regression model has the following characteristics: 

1. It is simple; tha t  is, it involves only one predictor variable. 

2. It is linear in the parameters; tha t  is, parameters/~0 and ~1 have 

exponents equal to 1, do not appear  as exponents, and are not 

multiplied or divided by any other parameter .  

3. It is linear in the predictor; tha t  is, the predictor also only appears in 

the first power. A model linear in its parameters  and the predictor, 

tha t  is, the independent variable, is also termed a first-order linear 
model. 3 

4. It is assumed tha t  the random residual term, ci, has an expected 

mean of E(~i) -- 0 and variance V(ei) = a 2. In words, the residuals 

are assumed to have a mean of zero and a constant variance. 

5. The residuals for two different observations i and j are assumed to be 

independent.  Therefore, their covariance is zero, tha t  is, C(~i, cj) = 
0. 

6. Variable X is a constant.  4 

7. The regression model contains a systematic component,/~0 + fllXi, 
and a random term, ci. Therefore, the observed yi is a random 

variable. 

3It should be noted that, in curvilinear regression, predictor variables can appear 
in nonlinear form. However, as long as the parameters appear only in the first power, 
the regression model can be termed linear. 

4Remember the distinction between fixed and random predictors in the 
Introduction. 
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8. The observed value, yi, differs from the value expected from the 

regression equation by an amount given by ei. 

9. Because the residual terms, ci, are assumed to have constant vari- 

ance, the observed values, yi, have the same constant variance: 

v(y ) = 

This implies that  the variance of Y does not change with X. 

10. Because the residual covariance C(el,ej) = 0, 

responses are uncorrelated also: 

for i ~ j ,  the 

C(yl, yj) = 0, for i ~ j. 

11. Y must be real-valued. The regression equation given in (2.9) can 
yield estimates that  are positive, negative, or zero. In addition, 
(2.9) can yield predicted values at virtually any level of resolution. 
If the criterion cannot assume these values, the linear regression 
model in tandem with OLS estimators may not be the appropriate 
model. There are no such constraints placed on X. X can be even 

categorical (see Chapter 4 of this volume). 

In order to obtain the estimates of the regression coefficients the easy 
way, we need some calculus that  is not covered in the excursus on matrix 
algebra. The excursus in Appendix B reviews this calculus (for more 
details see, e.g., Klambauer, 1986). Readers well trained in calculus may 
wish to skip the excursus. 

It should be noted that,  for valid estimation of regression parameters, 
neither X nor Y is required to be normally distributed. In contrast, the 
significance tests and the construction of confidence intervals developed 
later require that  Y be normally distributed. 

Estimating Regression Slope and Intercept Parameters 

This section presents the standard OLS solution for the slope and in- 
tercept regression parameters. Recall from the above section that  the 
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function to be minimized is 

n 

Q -  E ( y i -  ~)i) 2 -~ min. 
i - - 1  

(2.10) 

The estimated Y value for case i is 

f/i - bo + bl xi. (2.11) 

Inserting (2.11) into (2.10) yields 

n 

Q(bo, bl) - E ( y i  - bo - blxi)  2. 
i ~ 1  

Note that  we consider Q(b0, bl) as a function of b0 and bl and not as 
a function of Yi and xi. The reason for this is that  once the data  are 
collected they are known to us. What  we are looking for is a good guess 

for bo and bl; therefore, we treat bo and bl as variables. We are now 
taking the two partial derivatives of Q(b0, bl). After this, all that  remains 
to be done is to find that  point (b0, bl) where these partial derivatives 
both become zero. This is accomplished by setting them equal to zero, 
yielding two equations in two unknowns. These equations are then solved 
for bo and bl. The solutions obtained are the OLS estimates of flo and/31. 

First we take the partial derivative of Q(bo, bl) with respect to bo. 
Interchanging summation and differentiation and then applying the chain 
rule, 

n 

Ob---~ Q(b~ = Obo i~l - -  bO - -  b l X i ) 2  

~ 0 )2 
- ~ (yi - b o  - blXi 

i = 1  

n 

= ~ - 2 ( y ~  - bo - blX~) 
i = 1  

n 

-- - - 2 E ( y i - b o  - b l X i ) .  
i - - 1  



2.2.  P A R A M E T E R  E S T I M A T I O N  21 

The last equation is set to zero and can then be further simplified by 

dropping the factor -2 in front of the summation sign and resolving the 
expression enclosed by parentheses, 

n 

- -  E ( y i  - -  Do - blxi) 
i --1 

n n 

: 

i - - 1  i = 1  

= n ~ - n b o - n b 1 2 .  

n Note that in this derivation we have used the fact that ~7~i=1 xi - n2. 

This applies accordingly to the Yi. Finally solving for bo yields 

bo - ~ - b12. (2.12) 

It can be seen that we need bl to obtain the estimate of bo. Now we 
take the partial derivative of Q(bo, bl) with respect to bl, that is, 

n 

Ob---~ Q ( b O ' b l )  -'- Ob--~ E(yi. - bO - b l X i ) 2  

~.--1 

0 
Z ~ ( y ~ -  bo - b~x~) ~ 
i - - 1  

n 

E - 2 x i ( y i  - bo - b l x i )  
i--1 

n 

- 2  E x i ( y i  - bo - b l x i ) .  
i----1 

Again, setting this equation to zero and simplifying, we obtain 

n 

- E x i ( y i - b ~  
i : l  

n n n 

Z E E  = xiYi  -- bo xi  - bl xi  
i - l  i--1 i : l  

= n f / -  nbo - n b l ~ .  
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Substituting the expression for b0 from (2.12) yields 

O 

n n n 

E E E X l Y i  --  ( y  --  bl:~) xi - bl x i 
i--1 i--1 i--1 

n [ ( ~ ) 2  E ]  1 n 2 
E xiyi n x y + b l  _ _ x i - -  x i �9 

i - 1  n i - 1  i--1 

b l  

n - -  

~-~'~i=1 x i Y i  --  n x y  

n 2 1 n 2" 
E l - - 1  Xi  --  n ( E i = l  X i )  

Finally, solving for bl, 

Regression parameters are thus obtained by first calculating bl and 
then using this estimate in the formula for calculating b0. It should be 
noted that from a purely mathematical viewpoint we would have to go a 
step further in proofing that the parameter estimates just obtained indeed 
give the minimum of the function surface Q(b0, bl) in three-dimensional 
space and not a maximum or a saddle-point. But we can assure the reader 
that this solution indeed describes the minimum. With further algebra 
the slope parameter, bl, can be put in the following form: 

b l  = Ei~=l (xi - 2 ) ( y i  - ~) 
- " ( 2 . 1 3 )  

The numerator of (2.13) contains the cross product of the centered 5 
variables X and Y, defined as the inner product of the vectors ( x -  ~) 
and (y - .y), that is, ( x -  ~)' (y - ~) estimation. 

Data Example 

The following numerical example uses data published by Meumann (1912). 
The data describe results from a memory experiment. A class of children 
in elementary school (sample size not reported) learned a sample of 80 
nonsense syllables until each student was able to reproduce 100% of the 

5 C e n t e r i n g  a v a r i a b l e  is def ined  as s u b t r a c t i n g  t h e  v a r i a b l e ' s  a r i t h m e t i c  m e a n  f r o m  
each  score .  
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syllables. Five minutes after everybody had reached this criterion, stu- 

dents were asked to recall the syllables again. This was repeated a total  of 

eight times at varying time intervals. After some appropriate  linearizing 

t ransformat ion trials were equidistant. 

Because the experimenter  determined when to recall syllables, the 

independent  variable is a fixed predictor. At each time the average number 

of recalled syllables was calculated. These are the da ta  tha t  we use for 

illustration. 

We regress the dependent variable Y, number of nonsense syllables 

recalled, onto the independent variable X,  trial without intermit tent  rep- 

etition. 6 Table 2.1 presents the raw data  and the centered variable values. 

Table 2.1 shows the raw da ta  in the left-hand panel. The first column 

contains the Trial numbers,  X.  The second column contains the average 

recall rates, Y. The mean value for the trial number is 2 = 4.5, while the 

mean for the recall rate  is ~ = 52.32. 

The next four columns illustrate the numerical steps one needs to 

perform for calculation of parameter  estimates. The model we investigate 

for the present example can be cast as follows: 

Recall =/~o +/~1 * Trial + e. (2.14) 

The results displayed in the first four columns of the right panel are 

needed for est imating the slope parameter ,  bl, using Equation (2.13). 

We use this formula for the following calculations. The first of these 

columns contains the centered trial variable. We calculate these values by 

subtract ing from each trial number the mean of the trials, tha t  is, Z = 4.5. 

The next column contains the square of the centered trial numbers. We 

need the sum of these values for the denominator  of Formula (2.13). This 

sum appears  at the bot tom of this column. 

The fifth column contains the centered recall rates. The summands  

of the cross product  of the centered predictor, Trials, and the centered 

6Considering the well-known, nonlinear shape of decay, that is, forgetting curves, 
one may wonder whether the distances between recall trials were equal. Without 
having access to the original data, we assume that the time distance between recall 
trials increased systematically with the number of trials. If this assumption is correct, 
one cannot validly regress recall rates onto time, unless one possesses information about 
the time passed between the trials. 
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Table 2.1: Estimation of Slope Parameter for Data from Forgetting Experiment 

Variables 

xi Yi 
1 78.00 
2 70.88 
3 56.56 
4 37.92 
5 54.24 
6 48.72 
7 39.44 
8 32.80 

Calculations Needed for Estimation of bl 

-3 .5  12.25 25.68 659.46 -89.88 
-2 .5  6.25 18.56 344.47 -46.40 
-1 .5  2.25 4.24 17.98 -6 .36 
-0 .5  0.25 -14.40 207.36 7.20 

0.5 0.25 1.92 3.69 0.96 
1.5 2.25 -3 .60 12.96 -5 .40 
2.5 6.25 - 12.88 165.89 -32.20 
3.5 12.25 -19.52 381.03 -68.32 

Sums 42.00 1792.84 -240.40 

aThe variables z~ and z~ denote the centered x and y values, respectively. 
For instance, z~ = (xi - ~). 

criterion, Recall, appear in the last column of Table 2.1. The sum of the 

cross products appears at the bottom of this column. It is needed for the 

numerator of Formula (2.13). 

Using the calculated values from Table 2.1 in Formula (2.13) we obtain 

bl - bl = E ~ : ~  (x~ - ~ ) ( y ~  - ~ )  _- - 2 4 0 . 4  __ - 5 . 7 2 .  
n 

~ = 1  (xi - s:) 2 4 2  

For the intercept parameter we obtain 

b0 = ~ - bl~ = 52.3 - (-5.72) �9 4.5 -- 78.04. 

Figure 2.5 presents the Trial x Recalled Syllables plot. It also contains 

the regression line with the parameters just calculated. 

Figure 2.5 suggests that,  with Trial 4 being the only exception, the 

linear regression line provides a good rendering of the decay of the learned 

material. 

In order to quantify how well a regression line depicts a relationship 

most researchers regress using methods that  include statistical significance 

tests and measures of variance accounted for. The former are presented 

in Section 2.5. One example of the latter is presented in the following 
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Figure 2.5: Scatterplot showing the dependence of the recall performance 
on trial. 

section. 

2 . 2 . 3  T h e  G o o d n e s s  o f  F i t  o f  t h e  R e g r e s s i o n  M o d e l  

One measure of how well a statistical model explains the observed data 

is the coefficient of determination, that is, the square of the Pearson 
correlation coefficient, r, between y and ~. This measure describes the 

percentage of the total variance that  can be explained from the predictor- 

criterion covariance. In its general form, the correlation coefficient is given 
by 

r - -  

E i ( x i  - x)(yi - Y) 

~/E~(~- ~): E~(y~- ~)~ 

If we replace x with ~) in the above formula we obtain the multiple 
correlation R. The reasons for making a distinction between r and R are 
that  

�9 r is a measure of association between two random variables whereas 
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R is a measure between a random variable y and its prediction 

from a regression model. 

�9 r lies in the interval - 1  < r <_ 1 while the multiple correlation R 

cannot be negative; that  is, it lies in the interval 0 < R ~_ 1. 

�9 R is always well defined, regardless of whether the independent vari- 

able is assumed to be random or fixed. In contrast, calculating the 

correlation between a random variable, Y, and a fixed predictor vari- 

able, X,  that  is, a variable that  is not considered random, makes no 

sense. 

The square of the multiple correlation, R 2, is the coefficient of deter- 

mination. If the predictor is a random variable the slope parameter  can 

be expressed as 

2 

E~(Y~ - Y)~ ~--~ r, bl -- ~ i i ( x i  _;~)2 r - -  8 2  

2 and 2 are the variances of the predictor and the criterion, where s x sy 

respectively. If the predictor, X, is a random variable it makes sense to 
calculate the correlation between X and Y. Then, R 2 is identical to r 2 

as 1~ is just a linear transformation of X,  and correlations are invariant 

against linear transformations. 

Alternatively, R 2 can be expressed as the ratio of variance explained 

by regression, SSR,  and the total variance, SSTO, or 

R2 - S S R  S S E  (2.15) 
- S S T O = I  SSTO'  

where S S E  is the variance of the residuals. The right-hand term in (2.15) 

suggests that  R 2 is a measure of proportionate reduction in error. In other 

words, R 2 is a measure of the proportionate reduction in the variability 

of Y that  can be accomplished by using predictor X. 

2.3 Interpreting Regression Parameters 

This section presents aids for interpretation of the regression parameters 

b0 and bl. We begin with b0. 
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2 . 3 . 1  I n t e r p r e t i n g  t h e  I n t e r c e p t  Parameter 

Formula (2.12) suggests that b0 is composed of two summands. The first 
summand is the arithmetic mean of Y, ~. The second is the product of 

the slope parameter, bl, and the arithmetic mean of X, 2. Now suppose 
that  X is centered, that is, the arithmetic mean of X has been subtracted 
from each value xi. Centering transforms the array of x values as follows: 

Xl Xl - - X  
_ 

X2 X2 X 
. ~ 

_ 

X n  X n  - -  X 

Centering constitutes a parallel shift in the data. Parallel shifts are 
linear transformations. Regression slopes are invariant against parallel 
shifts. The effect of centering is that the mean of an array of data is 
shifted to be zero. Centering X has the effect that the second summand in 
(2.12) is zero. Therefore, whenever X is centered, the intercept parameter 
equals the arithmetic mean of Y. When X is not centered, the intercept 
parameter equals the difference between the arithmetic mean of Y and 
the product of the slope parameter and the arithmetic mean of X. 

Consider the example given in Table 2.1. The criterion in this example, 

Recall, had an arithmetic mean of ~ = 418.56/8 = 52.3. The intercept 
parameter was b0 = 78.04. We conclude that X had not been centered 
for this example. The difference between 52.3 and 78.04 must then be 

b12 = - 5 . 7 2 . 4 . 5  - -25.74. Adding this value to 52.3 yields 78.04. 
Readers are invited to recalculate b0 using the centered values for Trial 
in the third column of Table 2.1. 

The interpretation of intercept parameters across samples is possible, 
in particular when X has been centered. It has the same implications as 
mean comparisons across samples. 

2 . 3 . 2  I n t e r p r e t i n g  the Slope P a r a m e t e r  

Slope parameters indicate how steep the increase or decrease of the re- 
gression line is. However, there is a simpler interpretation. The slope 

parameter in simple regression indicates the number of steps one moves 
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on Y when taking one step on X. 

Consider again the example in Table 2.1. For this example we calcu- 

lated the following regression equation: 

Recall = 78.04 - 5.72 �9 Trial + Residual. 

Inserting a value from the interval between Trial = 1 and Trial = 8 

yields estimates of Recall that  are located on the regression line in Figure 

2.5. For example, for Trial = 3 we calculate an average estimated Recall = 

60.91. Taking one step on X, from Trial - 3 to Trial = 4, yields the 

estimate for Recall of 55.18. The difference between these two estimates, 

6 0 . 9 1 -  55.18 = -5.72,  is exactly the estimated regression slope. 

2.4 Interpolation and Extrapolation 

Interpolation is defined as estimating Y values for X values that  are within 

the interval between the maximum and the minimum X values used for 

estimating regression parameters. Specifically, interpolation refers to X 

values not realized when estimating regression parameters.  In many in- 

stances, interpolation is a most useful and meaningful enterprise. Assum- 

ing linear relationships, one can use interpolation to estimate the effects 

of some intermediate amount of a drug or some intermediate amount of 
a fertilizer. 

In these examples, the predictor is defined at the ratio scale level, and 

assuming fractions of predictor values is reasonable. The same applies to 

predictors defined at the interval level. In other instances, however, when 

predictors are defined at the ordinal or nominal scale levels, interpolation 

does not make much sense. 

Consider the example in Table 2.1 as illustrated in Figure 2.5. This 

example involves a predictor at the ratio scale level. For instance, Trial 

3.3 indicates that  a third of the time between the 3rd and the 4th trial 

has passed. Therefore, interpolation using the trial scale is meaningful. 

Thus, if the trial variable is closely related to some underlying variable 

such as time, interpolation can make sense. 

Extrapolation is defined as the estimation of Y values for X values 

beyond the range of X values used when estimating regression param- 

eters. As far as scale levels are concerned, the same caveats apply to 



2.5. TESTING REGRESSION HYPOTHESES 29 

extrapolation as to interpolation. However, there is one more caveat. 

Extrapolation, when not sensibly performed, can yield results that 

are implausible, or worse. Predictor values that are conceivable can yield 
criterion values that simply cannot exist. The predicted values may be 
physically impossible or conceptually meaningless. Consider the regres- 
sion equation given in (2.16). Inserting predictor values using the natural 

numbers between 1 and 8 yields reasonable estimates for Recall. Inserting 
natural numbers beyond these boundaries can yield implausible results. 

For example, consider a hypothetical Trial 10. From our regression 

equation we predict a recall rate of 20.84. This is conceptually meaningful 
and possible. Consider, however, hypothetical Trial 15. Inserting into our 
regression equation results in an estimated recall rate of-7.78. This value 

is conceptually meaningless. One cannot forget more than what one had 
in memory. 

Thus, while extrapolating may use conceptually meaningful predictor 
values, the resulting estimates must be inspected and evaluated as to their 
meaningfulness. The same applies to predictor values. In the present 
example, there can be no trial number-5. We can insert this number into 
the equation and calculate the meaningless estimated recall rate of 106.70 
out of 80 items on the list. However, regardless of how conceptually 
meaningful the estimate will be, when predictor values are impossible, 
results cannot be interpreted. 

2.5 Testing Regression Hypotheses 

The two most important methods for evaluating how well a regression line 
describes the predictive relationship between predictor X and criterion Y 
focus on the proportion of variance accounted for, R 2, and on statistical 
significance. R 2 was explained in Section 2.2.3. Recall that R 2 describes 
how valuable the regression model is for predicting Y from knowledge of 
X. If R 2 is near 1, the observations in the X Y  scatterplot lie very close 
to the regression line. If R 2 is near 0, the scatter around the regression 
line is very wide. 

The present section introduces readers to statistical significance test- 

ing. Three types of hypotheses are covered. The first concerns a single 
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regression slope coefficient, 7 bl. The hypothesis to be tested is whether 
~1 is different than either zero (Section 2.5.1) or equal to some constant 
(Section 2.5.3). The second hypothesis concerns the comparison of two 
slope regression coefficients from independent samples (Section 2.5.4). 
The third hypothesis asks whether the intercept coefficient is different 
than a constant (Section 2.5.6). Finally, the construction of confidence 
intervals for regression coefficients is covered in Section 2.5.7. Chapter 3, 
concerned with multiple regression, covers additional tests. 

However, before presenting hypotheses and significance tests in detail, 
we list conditions that must be fulfilled for significance tests to be valid 
and meaningful. These conditions include: 

1. The residuals must be normally distributed. 

2. The criterion variable must be measured at the interval level or at 
the ratio scale level. 

3. Researchers must have specified a population. 

4. The sample must be representative of this population. 

5. Members of the sample must be independent of each other. 

6. The sample must be big enough to give the alternative hypothesis 
a chance to prevail (for power analyses, see Cohen, 1988). 

7. The sample must be small enough to give the null hypothesis a 
chance to prevail. 

8. The matrix X is assumed to be of full column rank; that is, the 
columns of the matrix X must be linearly independent of each other. 
This is typically the case if the columns of matrix X represent nu- 
merical variables. For categorical variables full column rank can 
always be achieved by suitable reparameterization. Therefore, X 
can typically be assumed to be of full column rank. 

7The term regression coefficient is used as shorthand for estimated regression 
parameter. 



2.5. TESTING REGRESSION HYPOTHESES 31 

2 . 5 . 1  N u l l  H y p o t h e s i s :  S l o p e  P a r a m e t e r  E q u a l s  Z e r o  

The most frequently asked question concerning statistical significance of 
the regression slope coefficient is whether the regression coefficient is sig- 
nificant. In more technical terms, this question concerns the hypothesis 
that the slope coefficient describes a sample from a population with a slope 
parameter different from zero. In null hypothesis form one formulates 

Ho :/~i =0 .  

There are three possible alternative hypotheses to this null hypothesis. 
First there is the two-sided alternative hypothesis 

H I : ~ I  ~ 0. 

Using this hypothesis researchers do not specify whether they expect a 
regression slope to go upward (positive parameter) or downward (negative 
parameter). The null hypothesis can be rejected in either case, if the 
coefficient is big enough. In contrast, when researchers expect a slope 
parameter to be positive, they test the following, one-sided alternative 
hypothesis 

H1 : ~1 > 0. 

Alternatively, researchers specify the following one-sided alternative 
hypothesis when they expect the regression slope to be negative: 

H1 :~1 < 0. 

In the memory experiment analyzed in Section 2.2.2, the obvious hy- 
pothesis to be tested is H1 : ~1 < 0, because we expect recall rates to 
decrease over time. 

Statistical tests of the two-sided alternative hypothesis are sensitive 
to large slope coefficients, regardless of sign. In contrast, tests of the one- 
sided alternative hypotheses are sensitive only to slope coefficients with 
the right sign. Whenever the null hypothesis can be rejected, researchers 
conclude that the sample was drawn from a population with slope param- 
eter/3x > 0, /3x < 0, or/31 ~ 0, depending on what null hypothesis was 
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tested. This conclusion is based on a probability statement. 

This statement involves two components, the significance level, a,  and 

the population. The significance level is typically set to a = 0.05 or 

= 0.01. If the null hypothesis can be rejected, the probability is less 
than a that  the sample was drawn from a population with parameter  

~1 = 0. Obviously, this statement makes sense only if the population 
was well defined and the sample is representative of this population (see 
Condition 3, above). The null hypothesis prevails only if there is no 
(statistically significant) way to predict the criterion from the predictor. 

In the following we present an F test that  allows one to test the above 

hypotheses. In Chapter 3, when we cover multiple regression, we present 
a more general version of this test. The F test for simple regression can 
be given as follows: 

r 2 ( n -  2) 
F =  1 - r  2 , for r 2 < 1 .  (2.17) 

The F test given in (2.17) relates two fractions to each other. The frac- 
tion in the numerator involves the portion of variance that  is accounted 
for by the linear regression of Y on X, r 2. This portion, given by the 

coefficient of determination, is weighted by the numerator 's  degrees of 
freedom, dr1 - 2 -  1 -- 1, that  is, the number of predictors (including 
the constant) minus one. The fraction in the denominator involves the 
portion of variance that  remains unaccounted for by the linear regression 
of Y on X,  1 - r 2. This portion is weighted by the denominator 's de- 

grees of freedom, dr2 = n - 2, that  is, the sample size minus the number 
of predictors (including the constant). In brief, this F ratio relates the 
weighted variance accounted for to the weighted unexplained variance. 

Formula (2.17) also contains a constraint that  is important  when em- 
ploying tests of statistical significance. This constraint requires that  less 
than 100% of the variance be accounted for. If 100% of the variance is 
accounted for, and the authors of this book have yet to see a case where 
empirical data  can be explained to 100%, there is no need for statistical 
testing. If the residual variance is zero, there is nothing to test against. 
In this case, one may consider the relationship between the predictor and 
the criterion deterministic and may skip the significance test. 

When deciding whether or not to reject the null hypothesis, one pro- 
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ceeds as follows: If F >_ F o ~ , d f l , d f 2  then reject H0. This F test is two-sided. 

Many statistical software packages, for example, SYSTAT and SAS, 

use a t test instead of this F test. These two tests are equivalent with no 

differences in power. The t test for the hypothesis that  / ~ 1  ~ 0 has the 

form: 

bl 
~-- 8(bl)  ' (2.18) 

where s(bl) denotes the estimated standard deviation of bl. The estimated 

variance of bl is 

1 n 2 
M S E  _ n-2 ~-~i=1 ei (2.19) 

82 (51) -- zin__l(Xi - -  ~)2 -- ~ in=l (X i _ ~ ) 2 '  

where the mean squared error, MSE, is the sum of the squared residuals 

divided by its degrees of freedom, n - 2. The degrees of freedom of this t 

test appear in the denominator of the MSE. 

2 . 5 . 2  D a t a  E x a m p l e  

The following numerical example uses data  from the Vienna Longitudinal 

Study on cognitive and academic development of children (Spiel, 1998). 

The example uses the variables Performance in Mathematics in Fourth 

Grade,/1//4 and Fluid Intelligence, FI. Using data  from a sample of n = 93 

children, representative of elementary school children in Vienna, Austria, 

we regress M4 on FI. Figure 2.6 displays the raw data and the linear 

regression line. 

The regression function for these data  is 

M4 - 2.815 + 0.110 �9 FI + Residual. 

The correlation between M4 and FI is r = 0.568, and r 2 - 0.323. We 

now ask whether the regression of 2144 on FI  has a slope parameter  that  is 

statistically significantly different than zero. We calculate F by inserting 

into (2.17), 

0.323 �9 91 
F = = 43.417. 

1 - 0.323 
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Figure 2.6: Scatterplot showing the dependence of the performance in 
Mathemat ics  on Intelligence. 

The critical test statistic for a two-sided test is F 0 . 0 5 , 1 , 9 1  - -  3.94. The 

empirical F - 43.417 is greater than this value. We therefore conclude 

tha t  the null hypothesis of a zero slope parameter  can be rejected, and 

favor the alternative hypothesis that  the slope parameter  is different than  

zero. 

The t value for the same hypothesis is t - 6.589. Squaring yields t 2 - 

43.417, tha t  is, the same value as was calculated for F.  This illustrates 

the equivalence of t and F.  

2 . 5 . 3  N u l l  H y p o t h e s i s :  S l o p e  P a r a m e t e r  C o n s t a n t  

This section presents a t test for the null hypothesis tha t  an empirical 

slope coefficient is equal to some a priori determined value, k. The t 

statistic is of the same form as that  of the statistic for the hypothesis 

that/~1 - 0 and can be described as 

bl - k 
t : ( 2 . 2 0 )  ' 
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Figure 2.7: Comparing two samples in the forgetting experiment. 
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where s(bl) is defined as in Equation (2.19). 

The following data example compares results from the Meumann (1912) 
forgetting experiment (Section 2.2.2) with a hypothetical sample from 
1995. Participants in the replication experiment learned the same sylla- 
bles until they were able to recall 100%. Forgetting was tested using the 
same number of trials in the same time intervals. 

Figure 2.7 displays the original data together with the data from the 
replication experiment. The data for the new sample appear also in Table 
2.2. The data for the original sample appear in Table 2.1. 

The figure is arranged so that forgetting is regressed onto trials as 
in Figure 2.7. The figure suggests that forgetting is less brisk in the 
replication sample than in the original sample. 

We test the hypothesis that the slope parameter for the regression of 
Recall on Trial in the 1995 sample is 131 - -10. Inserting the values from 
the table into (2.20) yields 

-6.543 + 10 
t-- V/~ - 1.21. 

The tail probability for this value is, for df = 6,p = 0.2718 (two-sided 
test). This value is greater than a = 0.05. Thus, we cannot reject the 
null hypothesis that the slope coefficient in the population is equal to 
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Table 2.2: Estimation of Slope Parameter for Data from Replication of Forget- 
ting Experiment: Comparison of Two Samples 

Variables 

xi yi 
1 97.8 
2 90.0 
3 67.0 
4 65.0 
5 63.0 
6 59.0 
7 55.0 
8 48.0 

Calculations Needed for Estimation of bl 
- - - - ~ 

-3 .5  12.25 29.7 882.09 - 103.95 
-2 .5  6.25 21.9 479.61 -54.75 
-1 .5  2.25 -1.1  1.21 1.65 
-0 .5  0.25 -3.1  9.61 1.55 

0.5 0.25 -5.1 26.01 -2.55 
1.5 2.25 -9.1  82.81 -13.65 
2.5 6.25 -13.1 171.61 -32.75 
3.5 12.25 -20.1 404.01 -70.35 

Sums 42.00 2056.96 - 274.80 

aThe variables z~ and z y denote the centered x and y values, respectively. 
For instance, z.~ -- (xi - 2). 

31  - - 1 0 .  

2 . 5 . 4  N u l l  H y p o t h e s i s  2: T w o  S l o p e  P a r a m e t e r s  a r e  

E q u a l  

Many researchers consider it desirable to replicate studies using indepen- 

dent samples. Results are deemed more trustworthy when replication 

studies exist that  confirm results of earlier studies. Comparing regression 

coefficients can be an important part of comparing studies. 

Nobody expects that two estimated regression coefficients, bl and b2, 

from independent samples are numerically exactly the same. Rather, one 

has two expectations: 

1. The significance status (significant versus insignificant) of the two 

coefficients, bl and b2, is the same. 

2. The numerical difference between the two estimates is "small"; that  
is, the two coefficients are not significantly different from each other. 

Whereas the first expectation can be tested using individual tests of 

bl and b2, the second involves a comparison of slope coefficients. This 
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comparison can be performed using the following t test. Let bl be the slope 
coefficient estimated for the first sample, and b2 the slope coefficient for 
the second, independent sample. Then, the t test for the null hypothesis 

that/~1 =/32, or equivalently, that 2~1 --/~2 - - 0 ,  has the form 

bl - 52 
t - s(bl - b2)' (2.21) 

where s(bl - b2) is the standard deviation of the difference between the 
two slope coefficients. This test has n l + n2 - 4 degrees of freedom. The 
variance, s2(bl - b2), of the difference between two slope coefficients is 

82(bl  - 52) -- EinJ~l (y l i -  ~1)2 + Ein2=l(y2i- ~2)2 
nl + n 2 - 4  

( 1 1 ) 
$ nl )2 -~- n2 )2 " Ei--1 (Xli -- Xl Ei--1 (X2i -- X2 

(2.22) 

When deciding whether or not to reject the null hypothesis that the 
difference between two regression slopes is zero, one proceeds as follows: 

1. Two-sided alternative hypotheses: If t > t~,df then reject H0. 

2. One-sided alternative hypotheses: If t > ta/2,d$ and bl - b2 has the 
right sign, then reject H0. 

For a data example we use the data in Figure 2.7 again. The thinner 
regression line for the new sample has a less steep slope than the thicker 
regression line for the original sample. In the following we answer the 
question of whether this difference is statistically significant. 

The null hypothesis for the statistical test of this question is/~1 -/~2. If 
this hypothesis prevails, we can conclude that the two samples stem from 
one population with one regression slope parameter. If the alternative 
hypothesis prevails, we conclude that the samples stem from different 
populations with different slope parameters. Table 2.2 contains the data 
and calculations needed for the comparison of the two samples. (Data 
and calculations for the original sample are in Table 2.1.) Using these 
data we calculate the following regression equation for the 1995 sample: 

Recall2 = 97 .543-  6.543, Trial + Residual. 
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We now ask whether the bl = -7 .16 for the original sample is signifi- 
cantly different than the b2 = -6.543 for the present sample. We perform 
a two-sided test because there is no a priori knowledge that  guides more 
specific expectations. 

To calculate the variance of the difference between bl and b2 we insert 
the values from Tables 2.1 and 2.2 into Formula (2.22) and obtain 

S 2 (bl - b2) - 
1 7 9 2 . 8 4 + 2 0 5 6 . 9 6 ( 1  1) 

8 + 8 - 4  + ~  - 1 5 . 2 7 .  

Inserting into (2.21) yields the t statistic 

-7 .16 + 6.54 
t - = -0.158. 

x/15:27 

This test statistic has 8 + 8 - 4 - 12 degrees of freedom. The two- 
sided tail probability for this t value is p - 0.877. This value is greater 

than a - 0.05. Thus, we are in no position to reject the null hypothesis. 

2 . 5 . 5  M o r e  H y p o t h e s e s  f o r  S l o p e  C o e f f i c i e n t s  

Sections 2.5.1, 2.5.3, and 2.5.4 presented a selection of tests for the most 
frequently asked questions concerning slope coefficients in simple regres- 
sion. As one can imagine, there are many more questions one can ask. 
We list three sample questions. For details concerning test procedures 
please consult the cited sources. 

First, one can ask whether slope coefficients are constant in the same 
sample. Consider a repeated measures design where predictors and cri- 
teria are repeatedly observed. This design allows researchers to estimate 
regression parameters separately for each observation point. These esti- 
mates can be tested using hierarchical linear models (Bryk & Raudenbush, 
1992). 

Second, one can ask whether one regression line is consistently located 
above another, within a given interval of predictor values. There is a t test 
by Tsutakawa and Hewett (1978) that  allows one to answer this question. 

Third, one can ask whether the decision to fit a linear regression line is 
supported by the data. Analysis of variance methods allow one to analyze 

this question (Neter, Kutner,  Nachtsheim, & Wasserman, 1996). 
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2 . 5 . 6  H y p o t h e s e s  C o n c e r n i n g  I n t e r c e p t  C o e f f i c i e n t s  

The preceding sections introduced readers to methods for testing hypothe- 

ses concerning the slope coefficient, /31. The following three hypotheses 

were covered in detail: (1) H0 : /31 = 0, (2) Ho : /~1 = k, and (3) 

Ho :/~1 - /~2. Hypothesis (1) can be shown to be a special case of Hy- 

pothesis (2) when we set k = 0. 

This section presents a t test for testing the hypothesis Ho :/30 = k. 

As before, we first present a general form for the t test for this hypothesis. 

This form can be given as 

t - bo - /30 (2.23) 
s ( b o )  ' 

where, as before, bo is the est imate of the population parameter, /30,  and 

k =/30. Degrees of freedom are df = n -  2. The variance, s2(bo), is given 

by 

s2(bo) MSE ( 1 ~2 ) - - + n (2.24) 
/t ~ i = 1  ( X i  - -  ;~)2 ' 

where MSE is the sum of the residuals, divided by n - 2, tha t  is, its 

degrees of freedom. The s tandard deviation in the denominator  of (2.23) 
is the square root of (2.24). 

For a numerical il lustration consider again the da ta  in Table 2.2. We 

test  the hypothesis tha t  the estimate,  b0 = 97.543, describes a sample 

tha t  stems from a population with/30 = 0. Inserting into (2.24) yields 

the variance 

1 (~)2) 
s2(bo) - 43.164 ~ + 42 

Inserting into (2.23) yields the t value 

- 43.164 �9 0.607 - 26.207. 

The critical two-sided t value for a - 0.05 and df - 6 is t - 2.447. 
The calculated t is greater than the critical. Thus, we can reject the null 

hypothesis that /~o - 0. 

97.543 - 0 97.543 
t -  = = 19.054. 

X/26.207 5.119 
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After this example, a word of caution seems in order. The test of 

whether/~0 = 0 does not always provide interpretable information. The 
reason for this caution is that  in many data sets researchers do simply not 
assume that  the intercept is zero. As was indicated before, the intercept 
is equal to the mean of Y only when X was centered before analysis. If 

this is the case, the above test is equivalent to the t test H0 : # = 0. 
Again, this test is meaningful only if the observed variable Y can 

reasonably assumed to have a mean of zero. This applies accordingly 

when the predictor variable, X, was not centered. 
Easier to interpret and often more meaningful is the comparison of 

the calculated b0 with some population parameter,  ~0. This comparison 
presupposes that  the regression model used to determine both values is 
the same. For instance, both must be calculated using either centered or 
noncentered X values. Otherwise, the values are not directly comparable. 

2 . 5 . 7  C o n f i d e n c e  I n t e r v a l s  

The t distribution can be used for both significance testing and estimating 
confidence intervals. The form of the interval is always 

lower limit _< fly < upper limit, 

where/~j is the parameter under study. The lower limit of the confidence 
interval is 

bj - s(bj) t~/2,~-2, 

where ta/2,n_ 2 is the usual significance threshold. Accordingly, the upper 
limit is 

bi + s(bi)t~/2,n-2. 

For a numerical example consider the slope parameter  estimate bl - 
-6.543. The 95% confidence interval for this estimate is 

-6 .543 - 1 .014,2.447 <_ ~1 _~ -6.543 + 1 .014,2.447 

-9 .024 _< ~1 ~ -4.062. 

This confidence interval includes only negative parameter estimates. 
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This is an illustration of the general rule that  if both limits of a confidence 

interval have the same sign, the parameter is statistically significant. 
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Chapter 3 

M U L T I P L E  L I N E A R  

R E G R E S S I O N  

Most typically and frequently, researchers predict outcome variables from 
more than one predictor variable. For example, researchers may wish 
to predict performance in school, P, from such variables as intelligence, 
/, socioeconomic status, SES, gender, G, motivation, M, work habits, W, 
number of siblings, NS, sibling constellation, SC, pubertal status, PS, and 
number of hours spent watching TV cartoons, C. Using all these variables 
simultaneously, one arrives at the following multiple regression equation: 

/ 5  _ b0 + blI + b2SES + b3G + b4M + b5W + b6NS 

+ bTSC + bsPS + b9C. (3.1) 

This chapter introduces readers to concepts and techniques for mul- 
tiple regression analysis. Specifically, the following topics are covered: 
ordinary least squares estimating and testing parameters for multiple re- 
gression (Section 3.1) and multiple correlation and determination (Section 
3.3). 

43 
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3 .1  

CHAPTER 3. MULTIPLE LINEAR REGRESSION 

O r d i n a r y  L e a s t  S q u a r e s  E s t i m a t i o n  

The model given in (3.1) is of the form 

P 

y~- Z0 + Z Z~x~j + ~, (3.2) 
j--1 

where j indexes parameters, p + 1 is the number of parameters to be esti- 

mated, p is the number of predictors in the equation, and i indexes cases. 
The multiple regression model has the same characteristics as the simple 

regression model. However, the number of predictors in the equation is 
increased from one to $. Accordingly, the deterministic part  of the model 
must be extended to 

P 

Z0 + E Z~x~j- 
j = l  

To derive a general O LS solution that  allows one to simultaneously 
estimate all p + 1 parameters we use the tools of matrix algebra. In 
principle the derivation could be achieved without matrix algebra, as was 
outlined in Section 2.1. We insert the equation for the prediction, 

P 

~)j - bo § ~ bjxi j  + e~i, 
j=l  

into Function (2.7), that  is, 

n p 

Q - ~~(yi  -[b0 + ~ bjxiy + ci]) 2. (3.3) 
i---1 j - - 1  

This is now a function of the p+  1 b-coefficients. We calculate all partial 

derivatives of Q with respect to each b-coefficient and set them equal to 
zero. This results in a system of p+  1 equations that  can be uniquely solved 
for the p + 1 unknown b-coefficients. With three or more b-coefficients, 
formulas become quickly inconvenient. However, the general strategy 
remains the same, just the notation is changing. Matrix algebra allows 
a very compact notation. Therefore, we use matrix notation. For the 
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following derivations we need results of vector differentiation. Appendix 

C reviews these results. 

Before we can apply the rules of vector differentiation we first have to 

recast Equation (3.3) using matrix algebra. The model given in (3.2) can 
be written in matrix notation as 

y = X ~ + e ,  

where y is the vector of observed values, X is the design matrix, and 

e is the residual vector. The design matrix contains the vectors of all 

predictors in the model. In matrix notation, the OLS criterion to be 
minimized, Q, is expressed as 

Q - ( y -  Xb) '  ( y -  Xb).  (3.4) 

The expressions in the parentheses describe vectors. Transposing a 
vector and then multiplying it with another v e c t o r -  in this case with 

i t s e l f -  yields the inner vector product. The result of an inner vector 

product is a scalar, that  is, a single number. What  we need to find is the 

vector b for which this number is the smallest possible. 

We now show in detail how one arrives at the well-known least squares 

solution. The minimization of the sum of squared residuals proceeds in 

two steps. 

1. We determine the first vectorial derivative with respect to b, or, 

equivalently, we calculate all partial derivatives of Q with respect 
to the p + 1 elements in b. 

2. The necessary condition for a minimum of Q at point b is that the 

vectorial derivative, that  is, all partial derivatives, be zero at that  

point. The vector b at which this condition is met can be found by 

setting this vectorial derivative equal to zero and then solving for 
b. 

We begin with (3.4). Multiplying out yields 

Q = y ' y  - b ' X ' y  - y ' X ' b  + b ' X ' X b .  (3.5) 

To complete the first step of the minimization process we determine 
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the first vectorial derivative of (3.5) using the rules of appendix C. Before 
we do this, we inspect (3.5). In this expression vector y and matrix X are 
known. Only the parameter vector, b, is unknown. Therefore, we need 
to determine the derivative in regard to b. 

Because the vectorial derivative of a sum is equal to the sum of the 
vectorial derivatives, we apply the rules from the Appendix separately to 
the four terms of (3.5), that is, 

0 0 0 
O---~ Q - ~ - ~ y ' y -  

0 'X' 0 'X' b ' X ' y -  ~-~y b + ~--~b Xb. (3.6) 

For the first term in (3.6) we apply Rule 3, (Appendix C) for the 
second and third terms we apply Rule 2 and Rule 1, respectively, and for 
the fourth term we use Rule 5. We obtain 

0 
O--~Q -= 0 - X 'y  - X 'y  + [X'X + (X'X)']b. (3.7) 

Because (X'X)'  = X 'X we can simplify (3.7) and obtain 

0 
~-~Q - - 2 X ' y  + 2X'Xb. (3.8) 

However, (3.8) does not provide us yet with the estimate for the pa- 
rameter vector b that yields the smallest possible sum of the squared 
residuals. To obtain this vector, we need to perform the second step of 
the minimization process. This step involves setting (3.8) equal to zero 
and transforming the result so that b appears on one side of the equation 
and all the other terms on the other side. Setting (3.8) equal to zero 
yields 

- 2 X l y  + 2XlXb = 0. (3.9) 

Dividing all terms of (3.9) by 2 and moving the first term to the right- 
hand side of the equation yields what is known as the normal equations 

X ' X b -  X'y.  (3.10) 

To move the term X 'X to the right-hand side of the equation, we 
premultiply both sides of the equation with (X'X) -1, that is, with the 
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inverse of X~X. This yields 

47 

( X ' X ) - I ( x ' X ) b -  ( X ' X ) - ~ X ' y ,  

and because ( X ' X ) - I ( X ' X )  - I, we obtain 

b -  ( X ' X ) - I X ' y .  (3.11) 

Equation (3.11) is the ordinary least squares solution for parameter vector 
b. Recall from Appendix A on matrix algebra that not all matrices have 
an inverse. That  the inverse of X ' X  exists follows from the assumption 

that  X is of full column rank made in Section 2.5. Vector b contains all 
p +  1 parameter estimates for the multiple regression problem, that is, the 
intercept and the coefficients for the variables. 

To illustrate the meaning of the coefficients in multiple regression, 
consider the case where p + 1 independent variables, Xi, along with their 
coefficients are used to explain the criterion, Y. The first of these coef- 

ficients, that  is, b0, is, as in simple regression, the intercept. This is the 
value that  Y assumes when all independent variables are zero. As was 
explained in the chapter on simple regression, this value equals the mean 
of Y, ~, if all variables Xj are centered (for j = 1, ..., p). 

The remaining p coefficients constitute what is termed a regression 
surface or a response surface. This term is appropriate when there are two 
X variables, because two variables indeed span a surface or plane. When 
there are three or more X variables, the term "regression hyperplane" may 
be more suitable. To illustrate, consider the following multiple regression 
equation, where we assume the regression coefficients to be known: 

]~ - 14 + 0.83X1 - 0.34X2. 

When X1 - -  X 2  - 0, the criterion is Y - 14. The independent 
variables, X1 and X2, span the regression surface given in Figure 3.1. The 
grid in Figure 3.1 depicts the regression surface for - 1.0 < X1, X2 ___ + 1.0. 
The regression coefficients can be interpreted as follows: 

�9 Keeping X2 constant, each one-unit increase in X1 results in a 0.83- 
unit increase in Y; this change is expressed in Figure 3.1 by the grid 
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Figure 3.1" Regression hyperplane ~ - 14 + 0.83Xl -0.34x2. 

lines that run parallel to the X1 axis. 

�9 Keeping X1 constant, each one-unit increase in X 2 results in a 0.34- 
unit decrease in Y; this change is expressed in Figure 3.1 by the 
grid lines that run parallel to the X2 axis. 

In more general terms, parameters in multiple regression indicate the 
amount of change in Y that results from a given variable when all other 
variables are kept constant. Therefore, coefficients in multiple regression 
are often called partial regression coefficients. The change is expressed in 
units of Y. 

When a multiple regression equation involves more than two predic- 
tors, the regression hyperplane cannot be depicted as in Figure 3.1. Con- 
sider an equation with four predictors. The hyperplane spanned by four 
predictors has four dimensions. The entire data space under study has 
five dimensions and cannot be graphed. 

One important characteristic of the regression surface depicted in Fig- 
ure 3.1 is that it is completely linear. Linear regression lines and surfaces 
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are valid if there is no interaction between predictors. In this case, regres- 

sion predictors are said to have additive effects. If, however, there exist 

interactions, the regression surface is no longer linear. It may be curved 

or evince leaps. As a matter of course, this can also be the case if the 

relation between predictor and criterion is basically nonlinear. 

To test whether the parameters estimated in multiple regression are 

significantly different than zero, researchers typically employ either the t 

test or the F test. The F test will be explained later in this chapter. The 

t test can be specified in the following two steps: 

1. Estimation of the covariance matrix of the b vector. 

2. Division of bk by the kth diagonal element of the estimated co- 

variance matrix. These two steps result in a t test that  has the 

well-known form 

bk 
t - ( 3 . 1 2 )  ,(bk)' 

where bk is the kth estimate of the coefficient of the multiple regres- 

sion model, and s(bk) is the estimate for the standard deviation of 

this coefficient. 

To derive the covariance matrix of the b vector we use the following result: 

C(ny) = AC(y)A'. 

Recall from Section 2.2.2 that C ( y ) -  a2I, which expresses the as- 

sumptions that  the observations are independent and have constant vari- 

ance. 

The covariance matrix of the b vector, C(b),  can then be calculated 

as follows: 

C(b)  -- C [ ( X ' X ) - l X ' y ]  

= ( X ' X ) - l X ' C ( y ) X ( X ' X )  -1 

= ( X ' X ) - l x ' a 2 I X ( X ' X )  -1 

= 0-2 ( X ' X ) - - l x t x ( x ' x )  - 1  

= ~ 2 ( X , X ) - l .  
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These equations give the true covariance matrix.  When analyzing real 

life data,  however, we rarely know the population variance, a 2. Thus, we 

subst i tute  the mean squared error, MSE, for a2, and obtain 

(~(b) - MSE (X 'X)  -~,  (3.13) 

where the hat  indicates tha t  this is an est imate of the true covariance 

matr ix.  The mean squared error, 

1 
MSE - ) i  ei, 

n - p  i=l 

is an unbiased est imate of the error variance a 2. Taking the square roots 

of the diagonal elements of the covariance matr ix  given in (3.13) yields the 

est imates for the s tandard deviations used in the denominator  in (3.12). 

These are the values tha t  typically appear  in regression analysis output  

tables as standard error of bk. 

3.2 Data  Example  

The following da ta  example uses a classical da ta  set, Fisher 's iris data.  

The set contains information on n = 150 iris flowers. The following five 

variables were observed: Species (three categories), Sepal Length, Sepal 

Width,  Petal  Length, and Petal  Width.  To illustrate multiple regression 

with continuous variables, we predict Petal  Length from Petal  Wid th  and 

Sepal Width.  We use all cases tha t  is, we do not est imate parameters  

by Species. 1 The distribution of cases appears in Figure 3.2, coded by 

Species. 

We est imate parameters  for the following regression equation: 

Petal  Length = bo + bl �9 Petal  Width  + b2 �9 Sepal Width  + Residual. 

1 It should be noted that disregarding Species as a possibly powerful predictor could, 
when analyzing real data, result in omission bias. This is the bias caused by the 
absence of powerful predictors in a regression model. In the present context, however, 
we have to omit predictor Species, because multicategorical predictors will be covered 
later, in Chapter 4. 



3.2. DATA EXAMPLE 

+ 

6 ~ +  + 

~ ,-~. r "~ 

SPECIES 

~.,+--3 

Figure 3.2: Three species of iris flowers. 
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OLS multiple regression yields the following parameter estimates 

Petal Length = 2.26 + 2.16,  Petal Width 

- 0.35 �9 Sepal Width + Residual. 

Figure 3.3 depicts the regression plane created by this function. 

To determine whether the regression coefficients differ from zero we 
use the t test as explained above. Having already obtained the parameter 
estimates as given in the last equation, all we need to be able perform the 
t test is the estimated standard error of each estimated regression coeffi- 
cient, that is, the square roots of the diagonal elements of MSE(X'X) -1. 
The design matrix X has 150 rows and 3 columns; therefore X 'X  is a 
square matrix with 3 rows and columns. In our example the inverse of 
X ' X  yields 

(x,x) 
0.470 -0.042 -0.135 ) 

- -0.042 0.013 0.009 . 
-0.135 0.009 0.041 

Note that this matrix is symmetric. For these data, M S E  = 0.209. 
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Figure 3.3: Regression surface for prediction of iris petal length. 

Now, multiplying (X~X) -1 by M S E  yields the estimated covariance ma- 
trix of the estimated parameter vector. 

0.0983 -0.0088 -0.0282 ) 
(~(b) - 0 . 2 0 9  ( X ' X )  - 1  - --0.0088 0.0028 0.0018 �9 

--0.0282 0.0018 0.0085 

The diagonal elements of this matrix are the estimated variances of the 
estimated regression coefficients. The off-diagonal elements contain the 
covariances. The first diagonal element is the estimated variance of the 
intercept estimate, the second the estimated variance of the Petal Width 
coefficient, and the third the estimated variance of the Sepal Width co- 
efficient. Because we do not need the variance estimates, but rather the 
corresponding standard errors, we take the square roots of the three di- 
agonal elements. The coefficients with standard errors in parentheses are 
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Intercept 2.26 (0.313) 
Petal Width 2.16 (0.053) 
Sepal Width -0.35 (0.092). 

We finally perform the t test, by simply dividing the estimate of the 
regression coefficient by its estimated standard error. Since the intercept 
parameter is not of interest, we do not consider testing it. 

Both slope parameters are statistically significantly greater than zero. 
More specifically, we obtain t147 -- 40.804 and t147 - -3.843 for bl and 
b2, respectively. The two-tailed probabilities for both parameters are 
p < 0.01. Both t tests have 147 degrees of freedom. For these t tests 
the degrees of freedom are given by the formula df = n - p -  1, where n 
is the number of observations and p is the number of predictor variables. 
(For significance testing in multiple regression using the F test see Section 
3.4.) Computer programs for regression analysis usually report in their 
output of regression analyses the estimated regression coefficients, the 
corresponding standard errors, the t values, and the p values. Often, 
the whole covariance matrix of the estimated regression coefficients is not 
needed. Therefore, it is typically not printed by default, but can often be 
requested as an output option. 

Many researchers ask whether, beyond statistical significance, a good 
portion of variance of the criterion can be accounted for by the predictors. 
This portion of variance can be measured via the square of the multiple 
correlation coefficient. The next chapter covers the multiple R. 

3.3 Multiple  Correlation and Determinat ion 

To explain the concept of multiple correlation we use centered variables. 
Centering is a linear transformation that involves subtracting the arith- 
metic mean from each value. The basic equation that underlies the con- 
cept of multiple correlation and determination is that of decomposition 
of variability: 

Total Variability = Residual Variability + Explained Variability. (3.14) 

The total variability, also termed variability of the criterion, can be 
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expressed as follows- 

Total Variabi l i ty-  y~y. (3.15) 

For the sake of simplicity, and because we do not need this detail for 
the following explanation, we express the residual variability as the Sum 
of Squared Residuals, SSR, 

Residual Variabi l i ty-  SSR. (3.16) 

In a fashion analogous to the total variability we express the explained 
variability as 

Explained Variability - :9':9- (3.17) 

Using (3.15), (3.16), and (3.17) we can reexpress the decomposition For- 
mula (3.14) as 

y 'y  - SSR + :9'~. (3.18) 

Dividing (3.18) by the criterion variability expresses variability com- 
ponents as proportions of unity- 

y 'y  SSR :9':9 
y~y y~y y~y 

o r  

1 SSR S"Y 
- + ~ .  ( 3 . 1 9 )  

y 'y  y 'y  

Equation (3.19) can be read as follows: The criterion variability, ex- 
pressed as 1, is composed of one portion that remains unexplained, the 
residual variability, and one portion that is explained. The latter portion 
appears in the second term on the right-hand side of (3.19). This term is 
the ratio of explained variability to criterion variability. It is termed the 
coefficient of multiple determination, R 2. 
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In other words, 

and 

R 2 - 
yly 

R -  

Because of 

:~':~ __ Y'Y, 

we have always 0 _< R 2 _~ 1 and, accordingly, 0 < R < 1. 

In general, the coefficient of multiple determination is a measure of the 
strength of the association between one criterion and multiple predictors. 

In the iris flowers data example of the last section we predicted Petal 

Length from Petal Width and Sepal Width. This predictor set allowed 
us to explain R 2 - 0.933, that is, 93.3% of the variance of Petal Length. 

The multiple correlation was R - 0.966. 

3 . 3 . 1  E x p e c t a n c y  o f  R 2 a n d  S i g n i f i c a n c e  T e s t i n g  

There exist statistical significance tests that allow one to test the null 

hypothesis 

H o "  p~ - O, ( 3 . 2 0 )  

where p is the multiple correlation in the population. The F statistic for 
this null hypothesis is 

R ~ ( ~  - p - 1) 
F = ( 3 . 2 1 )  

(1 _ R 2 ) p  , 

where p denotes the number of predictors and n is the sample size; p and 
n - p -  1 are the degrees of freedom for the F statistic. 

Taking up the iris flower example from Section 3.2, we insert the esti- 
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mate for the coefficient of multiple determination into (3.21) and obtain 

F = 0 .933(150-  2 -  1) _ 137.15 _ 1023.52 
(1 - 0 .93a)2  0 .067  

a value that  is statistically significant. 

While appropriate in many instances, the null hypothesis given in 

(3.20) may not always be reasonable to ask (Huberty, 1994). The reason 

for this caution is that  the expectancy of R 2, E(R2),  tha t  is, the long-run 

mean of R 2, is greater than zero if p = 0 (Morrison, 1990). Specifically, 

P , if p - 0 .  E ( R 2 ) -  n -  1 

For example, in a sample of n = 26 with p = 6 parameters  to estimate 

we have E ( R  2) = 5/25 = 0.20. This means that,  across many independent 

samples, one can expect to obtain, by chance, R 2 -- 0.20. Thus, it can 

occur that  a R 2 is statistically greater than zero but is hardly different or 

even smaller than what one can expect it to be from chance. 

Therefore, it has been proposed to replace the null hypothesis Ho : 
p2 = 0  by 

Ho �9 p2 _ p02, 

where p2 _ E(R2).  This null hypothesis can be tested using the F statistic 

R 2 (n - p - 1)2 (3.22) 
F = (1 - R 2)p(2n - p - 2) '  

with numerator  degrees of freedom 

dr1 - 4 p ( n -  1) (3.23) 
3 n + p - 3  

and denominator  degrees of freedom d.f2 - n - p -  1 (Darlington, 1990; 

Huberty, 1994). 

Consider the data  example with n = 26 and p = 6. Suppose we have 



3.3. MULTIPLE C O R R E L A T I O N  AND D E T E R M I N A T I O N  57 

an est imated R 2 - 0 . 5 0 .  By inserting into (3.22) we obtain 

F - 0.5(26 - 6 - 1) 2 _ _ 180.5 

(1 - 0.5)(6 - 1)(2 �9 26 - 6 - 2) 110 
= 1.64, 

with numerator  degrees of freedom 

4 �9 6 (26  - 1) 600 
d r 1 -  3 , 2 6 +  5 - 3 -  81 

= 7.41. 

Denominator  degrees of freedom are dr2 - 2 6 -  6 -  1 - 19. With these 

degrees of freedom the F value has a tail probability of p - 0.18. Thus, 

we have no reason to reject the null hypothesis that  p2 _ 0.20. 

Now, in contrast  to this decision, we calculate F - 3.17 from inserting 

into (3.21). With  dr1 - 6 and dr2 - 19, this value has a tail probability 

of p - 0.0251. Thus, we would reject the null hypothesis that  p2 _ 0. 

When interpreting results, we now have a complicated situation: while 

p2 is greater than zero, it is not greater than what one would expect from 

chance. In other words, p2 is greater than some value that  is smaller 

than what  one would expect from chance. Since this smaller value may 

be arbitrary, it is recommended using the test statistic given in (3.22). It 

allows one to test whether p2 is greater than one would expect in the long 

run for a sample of size n and for p predictors. 

In contrast  (see Huberty, 1994, p. 353), the null hypothesis H0 " R 2 = 

0 is equivalent to the test that  all correlations between the predictors 

and the criterion are simultaneously equal to 0. Thus, the F test for this 

hypothesis can be applied in this sense. 

The paper by Huberty (1994) has stimulated a renewed discussion of 

methods for testing hypotheses concerning R 2. Snijders (1996) discusses 

an estimate of p2 that  goes back to Olkin and Pra t t  (1958). This estimate 

is very hard to calculate. A second-order approximation of this est imator 

is 

R2oP2 - 1 -  n -  3 ( 1 -  R 2) 
n - p - 1  

{ 1 
�9 1 +  (1 - R2)  + 

n - p - 1  ( n - p - 1 ) ( n - p - 3 )  
(1 - R 2 ) } .  

As long as n < 50, this estimator has considerably less bias than the 
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ordinary R 2. 

Yung (1996) notes that  Huberty's (1994) numerator degrees of freedom 
formula [Formula (3.23)] is incorrect. The correct formula is 

d f -  
[(n - 1)a § p]2 

( n - 1 ) ( a § 2 4 7  ' 

where a = p2 / (1 - p2). 

In addition Yung (1996) notes that  the test proposed by Huberty is 
inconsistent, and cites Stuart  and Ord (1991) with a more general formula 
for the expected value of R 2, given p2 = k. The formula is 

E(R21p 2 - k) - k + 
, m i a 

P ( l - k ) -  2(n p 1)k( l  _ k) 4_ __ 
n -  1 n 2 -  1 n 2" 

The last term in this formula vanishes when p2 = 0 or when p2 __ 1. 

Most important  for practical purposes is that  Yung's results suggest that  
a test of the null hypothesis that  the observed R 2 is statistically not 
different than some chance value can proceed just as the above classi- 
cal significance test. Only the significance level a must be adjusted to 
accommodate the probability of the chance score. If the classical test 
is performed, for instance, in a sample of n - 30 with p = 5 predic- 
tors, and the population p2 = 0 and the specified a* = 0.1, then the 

appropriate significance level is a = 0.04. Yung (1996, p.296) provides 
figures for p2 _ 0, 0.15, 0.30, and 0.90 that  cover between 1 and 8 predic- 

tors, and give the appropriate significance thresholds for the sample sizes 
n - 10, 11, 14, 17, 20, 30, 50, and 100. More elaborate tables need to be 

developed, and the test needs to be incorporated into statistical software 
packages. 

3.4 Significance Testing 

Section 2.5.1 presented an F test suitable for simple regression. This 
chapter presents a more general version of this test. The test requires the 
same conditions to be met as listed in Section 2.5. 

The F test to be introduced here involves comparing two nested mod- 

els, the constrained model and the unconstrained model. The uncon- 
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strained model involves all predictors of interest. Consider a researcher 
that is interested in predicting performance in school from six variables. 
The unconstrained model would then involve all six variables. 

To measure whether the contribution made by a particular variable 
is statistically significant, the researcher eliminates this variable. The re- 
sulting model is the constrained model. If this elimination leads to statis- 
tically significant reduction of explained variance, the contribution of this 
variable is statistically significant. This applies accordingly when more 
than one variable is eliminated. This way one can assess the contributions 
not only of single variables but also of entire variable groups. 

Consider the following example. As is well known, intelligence tests 
are made of several subtests, each one yielding a single test score. Using 
different subtests researchers try to separate, say, verbal intelligence from 
abstract and more formal mental abilities. Thus, it is often of interest 
to assess the contribution made by a group of intelligence variables to 
predicting, for instance, performance in school. 

To assess the contribution of the constrained model relative to the 
unconstrained model, we compare the R 2 values of these two models. Let 
R2u denote the portion of variance accounted for by the unconstrained 
model, and Re 2 the portion of variance accounted for by the constrained 
model. Then, the F statistic for comparing the constrained with the 

unconstrained models is 

- / ( p , ,  - p c )  
F =  ( 1 - R 2 ) / ( n - p u - 2 ) '  for R u < l .  (3.24) 

The upper numerator of (3.24) subtracts the portions of variance ac- 

counted for by the unconstrained and the constrained models from each 
other. What remains is the portion of variance accounted for by the 
eliminated variable(s). The upper denominator contains the number of 
parameters estimated by the eliminated variable(s). In the lower numer- 
ator we find the portion of variance that remains unaccounted for by the 
unconstrained model, weighted by the degrees of freedom for this model. 

The upper denominator in (3.24) contains the numerator degrees of 
freedom. The bottom denominator contains the denominator degrees of 

freedom. 
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The null hypothesis tested with (3.24) is 

H o : ~ = O  

or, in words, the weight of the eliminated variables is zero in the popula- 
tion under study. The alternative hypothesis is 

no :3-#  0 

or, in words, the weight of the eliminated variables is unequal to zero. 

Note that this test is applicable in situations where ~ is a vector. This 
includes the case that ~ has length one, or equivalently, that ~ is a real 
number. For the latter case, that is, when there is only one regression 
coefficient to be tested, we already have described the t test that can be 

used. It will be illustrated in the exercises that the t test and the F test 
just described are equivalent when ~ is one real number. This equivalence 
between the two tests was already noted in Section 2.5.2 where significance 
tests for the simple linear regression were illustrated. The F test given 
above can be considered a generalization of the t test. 

In the following data example we attempt to predict Dimensionality of 
Cognitive Complexity, CC1, from the three predictors Depth of Cognitive 
Complexity, CC2, Overlap of Categories, O VC, and Educational Level, 
EDUC. Dimensionality measures the number of categories an individual 
uses to structure his or her mental world. Depth of Cognitive Complexity 
measures the number of concepts used to define a category of Cognitive 
Complexity. Overlap of Categories measures the average number of con- 
cepts two categories share in common. Educational Level is measured by 
terminal degree of formal school training, a proxy for number of years 
of formal training. A sample of n - 327 individuals from the adult age 
groups of 2 0 -  30, 40 - 50, and 60 and older provided information on 
Educational Level and completed the cognitive complexity task. 

Using these data we illustrate two types of applications for the F test 
given in (3.24). The first is to determine whether the/~ for a given single 
predictor is statistically significantly different than zero. The second ap- 
plication concerns groups of predictors. We test whether two predictors 
as a group make a statistically significant contribution. 

The first step of data analysis requires estimation of the unconstrained 
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model. We insert all three predictors in the multiple regression equation. 

The following parameter  estimates result: 

CC1 - 22.39 - 0.21 �9 CC2 - 22.40 �9 OVC + 0.39 �9 EDUC + Residual. 

All predictors made statistically significant contributions (one-tailed 

tests), and the multiple R 2 -- 0.710 suggests that  we explain a sizeable 

portion of the criterion variance. Readers are invited to test whether this 

R 2 is greater  than  what  one would expect from chance. 

To illustrate the use of the F test when determining whether a single 

predictor makes a statistically significant contribution, we recalculate the 

equation omit t ing EDUC. We obtain the following parameter  estimates: 

CC1 - 31.40 - 0.21 �9 CC2 - 22.83 �9 OVC + Residual. 

Both predictors make statistically significant contributions, and we 

calculate a multiple R 2 - 0.706. 

To test  whether  the drop from R 2 -- 0.710 to R e - 0.706 is statistically 

significant we insert in (3.24), 

0.7097--0.7064 

F = 4-3  = 3.6490.  
I-0.7097 
327--4--2 

Degrees of freedom a r e  dr1 - 1 and dr2 - 321. The tail probability 

for this F value is p - 0.0570. The t value for predictor E D U C  in the 

unconstrained model was t - 1.908 (p - 0.0573; two-sided), and t 2 = 

1.908 e - 3.6405 - F.  The small difference between the two F values 

is due to rounding. Thus, we can conclude tha t  predictor E D U C  makes 

a statistically significant contribution to predicting CC1. However, the 

value added by ED UC is no more than 0.4 % of the criterion variance. 

One more word concerning the equivalence of the t test and the F test. 

The t distribution, just  like the normal, is bell-shaped and symmetrical.  

Thus, the t test  can, by only using one half of the distribution, be per- 

formed as a one-sided test. In contrast,  the F distribution is asymmetric.  

It may be the only sampling distribution tha t  never approximates the 

normal,  even when sample sizes are gigantic. Thus, there is no one-sided 

version of the F test. 

Information concerning the contribution of single predictors is par t  of 
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s tandard  computer  printouts.  2 In addition, one also finds the F test tha t  

contrasts the unconstrained model with the model tha t  only involves the 

intercept. However, one rarely finds the option to assess the contribution 

made by groups of predictors. This option is i l lustrated in the following 

example. In the example we ask whether the two cognitive complexity 

variables, Depth and Overlap, as a group make a statistically significant 

contribution to explaining Breadth.  This is equivalent to asking whether  

these two predictors combined make a significant distribution. It is pos- 

sible, tha t  groups of predictors, none of which individually makes a sig- 

nificant contribution, do contribute significantly. To answer this question 

we first calculate the parameters  for the simple regression tha t  includes 

only Educat ion as predictor. The resulting equation is 

CC1 - 1.963 + 1.937 �9 EDUC § Residual. 

The/~ for predictor Education is statistically significant (t - 5.686; p < 

0.01), and R 2 - 0.090. Inserting into (3.24) yields 

0 . 7 1 0 - 0 . 0 9 0  
F - 4-2 0.31 

1-o.71o - 0.0009 - 343.15. 
327--4 --2 

Degrees of freedom are dr1 - 2 and d.f2 - 321. The tail probabil i ty 

for this F value is p < 0.01. Thus, we can conclude tha t  the two variables 

of cognitive complexity, CC2 and OVC, as a group make a statist ically 

significant contribution to predicting CC1. 

As an aside it should be noted tha t  the F test tha t  tests whether the 

f~ for a group of variables is unequal to zero can be applied in analysis of 

variance to test the so-called main effects. Each main effect involves one 

(for two-level factors) or more (for multiple-level factors) coding vectors 

in the design matr ix,  X. Testing all coefficients together tha t  describe one 

factor yields a test for the main effect. The same applies when testing 

together all vectors tha t  describe an interaction. Testing single vectors is 

equivalent to testing single contrasts. 

2What we discuss here is standard output in SYSTAT's MGLH module and in the 
Type III Sum of Squares in the SAS-GLM module. Variable groups can be specified 
in SYSTAT. 



Chapter 4 

C A T E G O R I C A L  

P R E D I C T O R S  

We noted in Section 2.2.1 that the linear regression model does not place 
constraints on the predictor, X, that would require X to be distributed 
according to some sampling distribution. In addition, we noted that X 
can be categorical. The only constraint placed on X was that it be a 
constant, that is, a measure without error. 

In the present chapter we discuss how to perform simple regression 
analysis using categorical predictors. Specifically, we discuss regression 
analysis with the predictor measured at the nominal level. Example of 
such predictors include religious denominations, car brands, and person- 
ality types. An example of a two-category predictor is gender of respon- 
dents. This chapter focuses on two-category predictors. Section 4.2 covers 
multiple-category predictors. In each case, the scale that underlies X does 
not possess numerical properties that would allow one to perform opera- 
tions beyond stating whether two objects are equal. Therefore, the step 
on X that determines the regression slope is not quantitatively defined. 
Not even the order of categories of X is defined. The order of categories 
can be changed arbitrarily without changing the information carried by a 
categorical variable. 

However, there are means for using categorical, nominal-level predic- 
tors in regression analysis. One cannot use categorical predictors in the 

63 
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Figure 4.1" Perceived attitudes toward issues in education in four religious 
groups. 

usual way, that is, inserting it in the regression equation "as is." Rather, 
one must decompose categorical predictors. This decomposition involves 
creating dummy variables or effect coding variables that contrast cate- 
gories or groups of categories. 

Consider the following example. A researcher asks whether adoles- 
cents view faith as predicting liberality of attitudes toward key issues 
of education. Adolescents from the following four groups responded to 
a questionnaire: Roman Catholic, Protestant, Agnostics, and Muslims. 
The Catholics were assigned a 1, the Protestants were assigned a 2, the 
Agnostics were assigned a 3, and the Muslims were assigned a 4. These 
numbers must be interpreted at the nominal scale level, that is, they 
only serve to distinguish between these four groups. There is no ranking 
or interpretation of intervals. Any other assignment of numbers would 
have served the same purpose, as long as the numbers are different from 
each other. Assigning symbols or characters is an alternative to assigning 
numbers. 

The response scale, Y, ranged from 0 to 7, with 0 indicating the least 
liberal attitudes and 7 indicating the most liberal attitudes. Figure 4.1 
displays the responses of the N = 40 adolescents (overlapping values are 
indicated as one value). 

The figure suggests that Agnostics are viewed as displaying the most 
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Table 4.1: Means and Standard Errors of Responses to Attitude Questionnaire 

Group of 
Respondents 

Descriptive Statistics 
Mean Standard Dev. N 

Catholics (1) 
Protestants (2) 
Agnostics (3) 
Muslims (4) 

2.7 0.95 10 
4.1 1.20 10 
4.9 2.10 10 
1.8 0.79 10 

liberal attitudes. Muslims are viewed as displaying the least liberal at- 

titudes. Protestants and Catholics are in between. Table 4.1 presents 

means and standard deviations for the four groups of respondents. 

Figure 4.1 also displays a regression line. This line is incorrect/ It 

was estimated under the assumption that  the numerical values assigned 

to the four respondent groups operate at the interval level. However, the 

numerical values simply serve as names of the respondent groups. Thus, 

they operate at the nominal level and are arbitrary. Readers are invited 

to assign the "1" to the Muslims, to increase all other group indicators 

by 1, and to recalculate the regression line. The result, a regression line 

with a positive slope, seemingly contradicts the result presented in Figure 

4.1. This contradiction, however, is irrelevant, because both solutions are 
.false. 1 

4.1 Dummy and Effect Coding 

There are several equivalent ways to create dummy variables and effect 

coding variables for analysis of variance and regression analysis. In the 

present section we introduce two of these methods. 

A dummy variable (also termed indicator variable or binary variable) 

can only assume the two values 0 and 1. Dummy variables can be used to 

discriminate between the categories of a predictor. Consider the following 

1The calculated regression equation for the line presented in Figure 4.1 is: 
Attitude -- 0.38- 0.19, Group + Residual, and R 2 -- 0.017; the calculated regres- 
sion line for the recoded group values is: Attitude - 0.25 + 0.35 �9 Group + Residual, 
and R 2 = 0.059. 
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example. A researcher is interested in predicting durability of cars from 

car type. Two types of cars are considered, pickup trucks and sedans. 
The researcher sets up a dummy variable as follows: 

1 if car is a pickup (4.1) 
X 1 -  0 if car i s a s e d a n  

and 

1 if car is a sedan (4.2) 
X2 - 0 if car is a pickup. 

The constant in the design matrix, X, is often also considered a 
dummy variable (although it only assumes the value 1). 

While intuitively plausible, the approach demonstrated using Formu- 
las (4.1) and (4.2) leads to a problem. The problem is that  the design 
matrix, X, will have linearly dependent columns and, therefore, not have 
full column rank. Recall that  in Section 2.2.1 we assumed that  the design 
matrix was of full column rank, and that  this can always be achieved by 
reparameterization. Consider the following example. The researcher in- 
vestigating durability of cars analyzes data from the first five cars: three 
pickups and two sedans. The design matrix, X, for these five cars, appears 
below: 

1 1 0 

1 1 0 

X -  1 1 0 . (4.3) 
1 0 1 

1 0 1 

In this matrix, the first column is the sum of the last two columns. 
Thus, X is not of full column rank. As a result, the product X~X is 
singular also, and there are no unique estimates of regression coefficients. 

The problem is solved by reparameterization. The term reparameter- 
ization indicates that  the meaning of the parameters depends on how the 
rank deficiency of X is overcome. There are several ways to achieve this. 
The most obvious, simple, and frequently used option involves dropping 
one of the vectors of the indicator variable. In the car-type example, 
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dropping the second vector results in the following design matrix: 

X 

1 1 

1 1 

1 1 

1 0 

1 0 

In contrast to (4.3), this matrix is easily analyzed using standard sim- 

ple regression because now the two columns of X are linearly independent 

and, therefore, X is of full column rank. In general, for a variable with 

c categories, one sets up no more than c -  1 independent dummy cod- 

ing vectors. The following data  example analyzes data  that  describe the 

length of usage of three pickup trucks and two sedans, measured in years. 

The regression equation for these data can be presented in the following 

form: 

6 1 1 el 

10 1 1 e2 
8 - 1 1  ( b ~  e3 . 

9 1 0 bl e4 

10 1 0 e5 

Est imating the parameters for this equation yields 

Years = 9.5 - 1.5 �9 Type of Car + Residual. 

The coefficient of determination is R 2 = 0.24 and the t test for the 

slope coefficient is not significant (t = -0 .0976;p  = 0.401). That  the 

slope coefficient is not statistically different from zero is most probably 

due to the small sample size and the resulting lack of power. 

The interpretation of the estimated slope coefficient is that  for pick- 

up trucks length of usage is about one and a half years shorter than that  
for sedans. To be more specific, we estimate length of usage in years for 

pickup trucks to be 9.5 - 1.5 �9 1 = 8 years, while for sedans we calculate 

est imated length of usage to be 9 . 5 -  1 . 5 , 0  = 9.5 years. The estimated 

difference is therefore 1.5 years. The intercept parameter  estimates the 

mean value for sedans, and the slope coefficient estimates the difference 
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of mean length of usage between sedans and pickup trucks. 

As an alternative to dummy coding, effect coding is often used. Effect 

coding makes it easy to set up comparisons. Comparisons always involve 

two groups of cases (subjects, data carriers, respondents, etc.). As this 

section focuses on two-category predictors, effect coding is established 

quite easily. Vectors are set up according to the following rule: Members 

of the first group are assigned a 1, and members of the second group are 

assigned a-1 .  It is of no importance which of the groups is assigned the 

1 and which is assigned the -1. Reversing assignment results in a change 

in the sign of the regression coefficient. Results of significance testing 
remain the same. 

Using effect coding, the regression equation is set up as follows: 

6 1 1 el 

10 1 1 ( b 0 )  e2 

8 - 1 1 bl ~ e 3  �9 

9 1 - 1  e4 

10 1 - 1  e5 

Estimating parameters using this design matrix, one obtains 

Years = 8.75 - 0.75 �9 Type of Car + Residual. 

Both the t test for the slope coefficient and the coefficient of deter- 

mination do not change from the results obtained using dummy coding. 

We therefore come to the same conclusion as before. What  has changed 

are the values of the regression coefficients. The intercept parameter now 

estimates the overall mean of the five cars in the analysis, plus b ,  X1, 

and the slope coefficient estimates how much length of usage [in years] 

differs for the two types of cars from this overall mean. For pickups we 
estimate, as before, 8 . 7 5 -  0 . 7 5 , 1  = 8 years, and for sedans we estimate 

8 . 7 5 - 0 . 7 5 , ( - 1 )  = 9.5 years, also as before. Again, the difference between 
the two car types is 1.5 years. 

It is often seen as problematic in this analysis that the intercept pa- 

rameter is not a very reliable estimate of overall length of usage, as it 
depends on more sedans than pickup trucks. Imagine that  we have data 

available from 998 sedans and only two pickup trucks. When we calcu- 
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late the average length of usage for the 1000 cars, this mean would be 

just an estimate of the mean for sedans as the two values of the pickup 

trucks virtually do not influence the overall mean. In cases where group 

sizes differ it is often more meaningful to calculate a weighted mean that 
reflects group size. 

This can be accomplished by selecting scores for the effect coding 
vector that  discriminates groups such that the sum of scores is zero. 

The following example analyzes the car-type data again. Using effect 

coding with equal sums of weights for the two types of cars we arrive at 

the following regression equation: 

6 1 1 el 

10 1 1  

8 - 1 1 ~ ) bl + e3 
9 1 -1 .5  e4 

10 1 -1 .5  e5 

Once again, the t test for the slope parameter and R 2 have not changed. 

The interpretation of the intercept and the slope parameter is the same 

as in the last model, but the intercept is now a more reliable estimate 

of overall length of usage of sedans and pickup trucks. The regression 

equation is now 

Years - 8.6 - 0.6 �9 Type of Car + Residual. 

This equation suggests that the estimated duration for pickups is 8 . 6 -  
0 . 6 , 1  = 8 years, and for sedans it is 8 . 6 -  0 .6 ,  (-1.5)  = 9.5 years, which 

is the same as before. 

What  should be noted from these comparisons is that different coding 

schemes do change values and interpretation of regression coefficients, 
that  is, the parameters of the model - hence the name reparameterization. 

However, model fit, predicted values, and the significance test for the slope 

parameter stay the same, regardless of which coding scheme is employed. 

This section covered the situation in which researchers at tempt to 

predict one continuous (or categorical, dichotomous) variable from one 

dichotomous predictor. The following section extends this topic in two 

ways. First, it covers predictors with more than two categories. Second, 
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it covers multiple predictors. 

CATEGORICAL PREDICTORS 

4.2 More Than Two Categories 

Many categorical predictors have more than two categories. Examples 
include car brand, religious denomination, type of cereal, type of school, 
topic to study, type of mistake to make, race, citizenship, ice cream flavor, 
swimming stroke, soccer rule, and belief system. 

To be able to use categorical predictors in regression analysis one cre- 
ates dummy coding or effect coding variables as was previously explained. 
Recall that the way in which the predictors are coded determines the way 
the regression coefficient is interpreted. Therefore, if the coding of the 
design matrix can be done such that the parameters to be estimated cor- 

respond to research hypotheses of interest, then these hypotheses tests 
are equivalent to the tests of the related regression coefficient. How this 
can be achieved is demonstrated in this section by applying effect coding 
of multicategory variables. 

Consider a predictor with k categories. For k categories one can create 
up to k -  1 independent contrasts. Contrasts compare one set of categories 
with another set, where each set contains one or more categories. There 
are several ways to create contrasts for these k categories. If the number 

of cases per category is the same, researchers often create orthogonal 

contrasts, that is, contrasts that are independent of each other. If the 

number of cases per category differs, researchers typically create contrasts 
that reflect category comparisons of interest and either accept bias in the 
parameter estimates or deal with multicollinearity. 

O r t h o g o n a l  Contras t s  

To begin with an example, consider the variable Swimming Stroke with 
the four categories Back Stroke (BS), Butterfly (BF), Breast (BR), and 
Crawl (CR). Since we focus in the following paragraphs on the mechanics 
of constructing a design matrix we do not have to consider a particular 
dependent variable. The meaning of contrasts will be illustrated in the 
subsequent data examples. To create orthogonal contrasts one proceeds 
as follows 
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Select a pair of categories to contrast. This first selection is arbi- 

t ra ry  from a technical viewpoint. The following orthogonal contrasts 

may not be, depending on the number of categories. In the present 

example, we select the category pair BS - BF. The effect coding 

variable identifies members of this pair by assigning value +1 to 

members of one pair and -1 to members of the other pair. If one 

group contains more categories than the other, values other than 

1 and -1 can be assigned. For instance, if one group contains four 

categories and the other group contains two categories, the scores 

for each category in the first group can be +0.5, and the scores for 

each category in the second group can be -1. The values assigned 

must always sum up to zero. Cases that  do not belong to either 

pair are assigned a 0. For the present example we thus create the 

contrast  vector c~= ( 1 , - 1 ,  0, 0). 

Repeat  Step 1 until either all k -  1 contrast vectors have been cre- 

ated or the list of contrasts that  are of interest is exhausted, what- 

ever comes first. 2 If the goal is to create orthogonal contrasts, it 

is not possible to create k -  1 contrasts where each comparison in- 

volves only two single-categories. One must combine categories to 

create orthogonal contrasts. Specifically, for even k one can create 

k/2 single-category orthogonal contrasts. For odd k one can create 

( k -  1)/2 single-category orthogonal contrasts. For the present ex- 

ample we can create 4/2 single-category orthogonal contrasts, for 

example c~ - (1, - 1 ,  0, 0) and c~ - (0, 0, 1, - 1 ) .  Alternatively, 

we could have created c~ - (1, 0, - 1 ,  0) and c~ - (0, 1, 0, - 1 ) ,  

' - (0,1 - 1  0). All contrasts after or c~ - ( 1 , 0 , 0 , - 1 )  and c 2 , , 

single category orthogonal contrasts combine two or more cate- 

gories. (One can, however, start  creating contrasts with combi- 

nations of categories and use single category contrasts only when 

necessary.) One complete set of k -  1 = 3 orthogonal contrasts 

for the present example is c~ - ( 1 , - 1 ,  0, 0), c~ - (0, 0, 1 , - 1 ) ,  and 

2Note that some authors recommend including contrasts even if they are not of 
particular substantive interest if they allow researchers to bind significant amounts of 
systematic variance. The price for each of these vectors is one degree of freedom. The 
benefit is that the residual variance will be reduced and, therefore, the contrasts of 
particular interest stand a better chance of capturing significant portions of variance. 
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c~ - (0.5, 0 . 5 , - 0 . 5 , - 0 . 5 ) .  It should be noted that  the term or- 

thogonality refers to the columns of the design matrix and not to 

the orthogonality of the c~. Only if the number of observations in 

' and ' (where each group is the same is the orthogonality of c i c] 

i ~ j)  equivalent to the orthogonality of the corresponding columns 

of the design matrix. Note that  some authors recommend that  for 

weighting purposes the sum of all absolute values of contrast val- 

ues be a constant. Therefore, the last vector would contain four 

0.5 values rather than four l 's. If the absolute values of coefficients 

are of no interest, the following specification of c~ is equivalent" 

e~ - (1, 1 , - 1 , - 1 ) .  

Create coding vectors for the design matrix. Each contrast vector 

corresponds to one coding vector in the design matrix. Contrast 
! vectors, %, are translated into design matrix coding vectors, xl, 

by assigning each case the same value as its group in the contrast 

vector. In the present example, each case that  belongs to category 

BS is coded 1 for the first coding vector, 0 for the second coding 

vector, and 0.5 for the third coding vector. Accordingly, each case 

that  belongs to category BF is coded-1 for the first coding vector, 

0 for the second coding vector, and 0.5 for the third coding vector. 

Suppose a researcher investigates four athletes in each of the four 

swimming stroke categories. Using the above set of coding vectors, the 

design matrix displayed in Table 4.2 results. 

Readers are invited to create alternative design matrices using the 

alternative first two contrast vectors listed above. 

To make sure the coding vectors in the design matrix are orthogonal, 

one calculates the inner product of each pair of vectors. Specifically, there 

are (~) pairs of coding vectors, where m - k -  1. If the inner product 

equals zero, two vectors are orthogonal. For example, the inner product, 

x~x3, of the first and the last vectors is x~ x3 - 1 �9 0.5 + 1 �9 0.5 + 1 �9 0.5 + 

1 , 0 . 5 -  1 , 0 . 5 -  1 , 0 . 5 -  1 , 0 . 5 -  1 , 0 . 5 - 0 , 0 . 5 - 0 , 0 . 5 - 0 , 0 . 5 -  

0 �9 0.5 - 0 �9 0.5 - 0 �9 0.5 - 0 �9 0.5 - 0 �9 0.5 - 0. Readers are invited to 

calculate the inner products for the other two pairs of vectors, x~x2 and 

X~X3. 
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Table 4.2- Design Matrix ]or Analysis o] Four Swimming Strokes 

Coding Vectors 
Case xl  x2 X3 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

1 0 0.5 
1 0 0.5 
1 0 0.5 
1 0 0.5 

- 1  0 0.5 
- 1  0 0.5 
- 1  0 0.5 
- 1  0 0.5 

0 1 -O.5 
0 1 -0 .5  
0 1 -0 .5  
0 1 -0 .5  
0 - 1  -0 .5  
0 - 1  -0 .5  
0 - 1  -0 .5  
0 - 1  -0 .5  
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S e l e c t i o n  and  C h a r a c t e r i s t i c s  of  C o n t r a s t s  

In the following paragraphs we discuss a number of issues related to se- 

lection and characteristics of contrasts in regression. 

1. As was indicated earlier, the selection of the first contrast is largely 

arbitrary. Therefore, researchers often select the substantively most 

interesting or most important groups of categories for the first pair. 

2. If one creates orthogonal contrasts for k categories, the kth contrast 
is always a linear combination of the k -  1 orthogonal ones. Consider 

the following example. For a three-category variable, we create the 

following two orthogonal contrast vectors" c~ - ( 1 , -  1, 0) and c~ = 

(0.5, 0.5, -1 ) .  A third vector could be c~ - (1, 0, -1 ) .  Vector c3 

is linearly dependent upon c~ and c~ because c~ - 0.5c~ + c~. 

Specifically, we obtain for the first value of c3, 1 - 0.5 �9 1 + 0.5; 

for the second value of c3, 0 - 0.5 �9 ( -1 )  + 0.5; and for the third 
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value of c3, - 1  - 0 . 5 . 0 -  1. It is important to note that the 
bivariate correlations among linearly dependent variables are not 
necessarily equal to one. The correlations among the three vectors 

Cl, c2, and c3 are c~c2 = 0.00, c~c3 - 0.50, and c~c3 = 0.87. Thus, 
inspection of correlation matrices does not always reveal patterns of 
linear dependencies. Only if correlations are numerically zero, that 
is, r - 0 . 0 ,  can variables be assumed to be independent. 

. The sign given to categories is arbitrary also. Reversing the sign 
only reverses the sign of the parameter estimated for a particular 
vector. Orthogonality and magnitude of parameter estimates will 
not be affected, and neither will results of significance testing. Signs 
are often selected such that those categories that are assumed to 
predict larger values on Y are assigned positive values in the coding 
vectors. In other words, the signs in coding vectors often reflect the 
direction of hypotheses. 

4. Effect coding vectors that are created the way introduced here are 
identical to effect coding vectors created for analysis of variance 
main effects. Defining analysis of variance main effects using this 
type of effect coding vectors is known as the regression approach to 
analysis of variance (Neter et al., 1996). 

5. There is no necessity to always create all possible effect coding vec- 
tors. If researchers can express the hypotheses they wish to test 
using fewer than k -  1 vectors, the remaining possible vectors do 
not need to be included in the design matrix. 

The following data example analyzes user-perceived durability of Ger- 
man cars, measured in number of miles driven between repairs. Five 
brands of cars are considered: Volkswagen (V), Audi (A), BMW (B), 
Opel (0), and Mercedes (M). Five customers per brand responded to the 
question as to how many miles they typically drive before their car needs 
repair. Figure 4.2 displays the distribution of values. 

Note that in this example the sample sizes in each category are equal. 
The figure suggests that customers perceive BMW and Mercedes cars as 
equally durable - more durable than the other three brands that seem 
to be perceived as equal. To compare these responses using regression 
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analysis we have to first specify contrast vectors. For the present example 
we create the following orthogonal vectors: 
c~ - (1, -1 ,  0, 0, 0), 
c~ - (0, 0, 1 , -  1, 0), 
c~ - (1/2, 1 / 2 , - 1 / 2 , - 1 / 2 ,  0), and 
c~ - (1/4, 1/4, 1/4, 1 /4 , -1 ) .  

The first of these vectors compares user perceptions of Audis and 
BMWs. The second vector compares Mercedes and Opels. The third 
compares perceptions of Audi and BMW in one group with Mercedes and 
Opel in the other. The fourth contrast juxtaposes the largest German car 
producer, Volkswagen, and all the other brands in the sample. 

After specifying contrasts one translates the contrast vectors into cod- 
ing vectors. Each respondent is assigned the values of the respective con- 
trast category. Table 4.3 displays the raw data and the resulting coding 
vectors. The constant vector, consisting of only ones, is omitted in the 
table. 

Using the data from Table 4.3 we estimate parameters for the following 
multiple regression equation: 

Miles Between Repairs - bo + blxl  + b2x2 + b3x3 + b4x4 + Residual. 
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Table 4.3" Perceived Durability of Cars: Raw Data and Design Matrix 

Car Effect Coding Vectors 
Brand Miles Xl x2 x3 x4 

A 24 
A 21 
A 29 
A 26 
A 3O 
B 29.5 
B 29 
B 34 
B 30 
B 33 
M 28 
M 29 
M 34 
M 30 
M 32 
O 20 
O 23 
O 29 
O 30 
O 27 
V 19 
V 25 
V 27 
V 28 
V 31 

1 0 1/2 1/4 
1 0 1/2 1/4 
1 0 1/2 1/4 
1 0 1/2 1/4 
1 0 1/2 1/4 

-1 0 1/2 1/4 
-1 0 1/2 1/4 
-1 0 1/2 1/4 
-1 0 1/2 1/4 
-1 0 1/2 1/4 
0 1 -1/2 1/4 
0 1 -1/2 1/4 
0 1 -1/2 1/4 
0 1 -1/2 1/4 
0 1 -1/2 1/4 
0 -1 -1/2 1/4 
0 -1 -1/2 1/4 
0 -1 -1/2 1/4 
0 -1 -1/2 1/4 
0 -1 -1/2 1/4 
0 0 0 -1 
0 0 0 -1 
0 0 0 -1 
0 0 0 -1 
0 0 0 -1 
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Table 4.4: Regression Analysis of Perceived Car Durability 

Predictor 

Constant 
Xl 

x2 

x3 

x4 

Parameter  Std. Error t value p value, 2-tailed 

27.90 0.71 39.60 < 0.01 
-2 .55 1.11 -2 .29 0.03 

2.40 1.11 2.15 0.04 
0.35 1.58 0.22 0.83 
1.90 1.41 1.35 0.19 

Results of this analysis appear in Table 4.4. The portion of criterion 
variance accounted for is R 2 = 0.37. Table 4.4 suggests that  two pa- 

rameters are unequal to zero. Specifically, parameters for xl and x2 are 
statistically significant. Since each regression parameter corresponds to 
the hypothesis associated with the corresponding contrast vector, we can 
conclude that  BMWs are perceived as more durable than Audis, and that  
Mercedes are perceived as more durable than Opels. 

Readers are invited to 

1. recalculate this analysis including only the first two coding vectors 
and to calculate whether omitting the last three vectors leads to a 
statistically significant loss in explained variance; 

2. recalculate this analysis using different sets of coding vectors; for 
instance, let the first two contrast vectors be Cl = (0, 1 , - 1 ,  0, 0) and 

c~ = (1, 0, 0, 0, -1 ) .  (Hint: the remaining three contrast vectors can 
be constructed in a fashion analogous to Table 4.3;) 

3. recalculate this analysis using a program for ANOVA and compare 
the portions of variance accounted for. 

4.3 Multiple Categorical Predictors 

In general, one can treat multiple categorical predictors just as single 
categorical predictors. Each categorical predictor is transformed into ef- 

fect coding variables. Specifically, let the j t h  predictor have kj categories, 
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Figure 4.3: Scatterplot of the predictors, Educational Level and Text 
Concreteness, and the criterion, Recall. 

with kj > 1. Then, the maximum number of independent coding variables 
for this predictor is kj - 1. 

Interactions among predictors are rarely considered in regression anal- 
ysis. However, interactions among coding variables can easily be taken 
into account, in particular when the number of cases for each category is 
the same, that is, in orthogonal designs. Chapter 10 covers interactions 
in regression in detail. 

In the following paragraphs we present a data example that involves 
two categorical predictors. The data describe Recall Rates, REC,  of 
n = 37 participants of a memory experiment. From the number of par- 
ticipants it should already be clear that this time the numbers within 
each group cannot be the same. The demographic variables describing 
the participants included the variable Education (4, high school; 5, bac- 
calaureate; 6, masters or equivalent). Subjects read texts (Text Groups, 
TG) that were either concrete (TG = 1) or abstract (TG = 2). Figure 
4.3 presents the scatterplot of the predictors, TG and EDUC,  and the 
criterion, REC.  
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Table 4.5: Regression of Recall on Education and Text Group 

Variable 

Intercept 
EDUC1 
EDUC2 

TG 

Coefficient Std. Error t Value p Value 

147.00 14.42 10.19 < 0.01 
7.16 6.26 1.15 0.26 

12.98 8.86 1.46 0.15 
-45.12 9.43 -4 .78 < 0.01 

The plot suggests that  concrete texts are recalled better than abstract 
texts. In contrast, Education does not seem to have any effect on Recall. 
To test the predictive power of ED UC and TG we first create contrast and 

coding vectors for EDUC. There is no need to create contrast or coding 
vectors for TG, because it only has two categories. Thus, the only possible 

contrast compares these two categories, and the contrast vector for TG is 

C~r c - ( 1 , -  1). When the number of respondents in the two categories of 
TG is unequal, the coding of TG is arbitrary and has no effect on results 
(except for scaling of the parameter estimate). If, however, this number 
is equal, the above contrast coding for TG will yield a contrast vector 

that  is orthogonal to the other vectors in the design matrix, X. 
For the three categories of ED UC, we create the following two contrast 

vectors: c~ - (1, - 1 ,  0) and c~ = (-0.5,  -0 .5 ,  1). These two contrast 
vectors are inserted into the design matrix, along with the codes for TG. 
The regression equation that  we now estimate is 

Recall = b0 + bl �9 EDUC1 + b2 �9 EDUC2 + b3 * TG + Residual, 

where EDUC1 is the coding vector from cl and EDUC2 is the coding 
vector from c2. Parameter  estimates and their standard errors, t values, 
and tail probabilities (two-tailed) appear in Table 4.5. 

The multiple R 2 = 0.482 suggests that  we can explain 48.2% of the 
variation of Recall Rates from Education and Text Group. Table 4.5 
indicates that  Text Group is the only variable that  has a statistically 
significant effect on Recall. The two EDUC variables do not have sta- 
tistically significant effects. This result confirms the impression we had 

when inspecting Figure 4.3. 

In the following paragraphs we ask whether the coding vectors in X 
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are orthogonal or are correlated. If they are correlated they could possibly 
suffer from multicollinearity. Vector correlations are possible because the 
predictor categories did not occur at equal frequencies. Specifically, we 
obtain the following univariate frequency distributions for the predictors: 

EDUC1 

EDUC2 

TG 

= (-1:6 times; 0 : 6  times; 1:25 times), 

= (-0.5:31 times; 1 :6  times), 

= (1 : 19 times; 2 : 1 8  times). 

From the uneven distribution of the Education categories one cannot 
expect predictors to be orthogonal. Indeed, correlations are nonzero. Ta- 
ble 4.6 displays the correlations among the predictors, EDUC1, EDUC2, 
and TG, and the criterion, REC. 

It is obvious from these correlations that the strategy that we use to 
create contrast vectors leads to orthogonal coding vectors only if variable 
categories appear at equal frequencies. The magnitude of correlations 
suggests that there might be multicollinearity problems. 

Table 4.6: Spearman Correlations among the Predictors, EDUC1, EDUC2, 
and TG, and the Criterion, Recall 

EDUC2 
TG 

REC 

EDUC1 EDUC2 TG 
-0.47 

0.17 
-0.01 

-0.28 
0.25 -0.69 



Chapter 5 

O U T L I E R  A N A L Y S I S  

While in many instances researchers do not consider fitting alternative 
functions to empirical data, outlier analysis is part of the standard arsenal 
of data analysis. As will be illustrated in this chapter, outliers can be of 
two types. One is the distance outlier type, that is, a data point extremely 
far from the sample mean of the dependent variable. The second is the 

leverage outlier type. This type is constituted by data points with undue 
leverage on the regression slope. The following sections first introduce 
leverage outliers and then distance outliers. 

5.1 Leverage Outliers 

Leverage outliers are defined as data points that exert undue leverage 
on the regression slope. Leverage outliers' characteristics are expressed 
in terms of the predictor variables. In general, a data point's leverage 
increases with its distance from the average of the predictor. More specif- 
ically (for more details on the following sections see Neter et al., 1996), 
consider the hat matrix, H, 

H = X ( X ' X ) - l x  ', 

where X is the design matrix. X has dimensions n • p, where p is the 
number of predictors, including the term for the constant, that is, the 
intercept. Therefore, H has dimensions n • n. It can be shown that 

81 
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the estimated values, yi, can be cast in terms of the hat matr ix  and the 

criterion variable, Y, 

S' - H y ,  (5.1) 

and that ,  accordingly, the residuals can be expressed as 

e - y - H y .  

From (5.1) it can be seen that  matr ix H puts the hat  on y. The i th 

element of the main diagonal of the hat matr ix is 

hii - x ~ ( X ' X ) - l x i ,  (5.2) 

where xi is the i th row in X, that  is, the row for case i. The element hii 
has the following properties: 

1. It has range 0 _ hii < 1. 

2. The sum of the hii is p: 

n 

E hii - p, 
i - - 1  

for i -  1 , . . . , n ;  

3. hii indicates how far the x value of case i lies from the mean of X.  

4. hii is known as the leverage of case i. Large values of hii indicate 

that  the x value of case i lies far from the ari thmetic mean of X; if 

hii is large, case i has a large influence on determining the estimated 

value Yi. 

5. The variances of residual ei and hii are related to each other as 
follows: 

a2(ei) = a2(1 - hii). 

From (5.2) one can see that  the variance of a residual depends on the 

value of the predictor for which the residual was calculated. Specifically, 

a2(ei) decreases as hii increases. Thus, we have zero variance for ei if 
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hii - 1. In other words, when hii increases, the difference between the 
observed and the estimated y values decreases, and thus the observed 
y value will lie closer to the regression line. The observed y value lies 

exactly on the regression line if hii = 1. Because of the dependence of 
the variance of a residual upon the predictor value one often uses the 
studentized residual, which is defined as ei/a2(ei), for comparisons. 

In empirical data  analysis the following rules of thumb are often used 
when evaluating the magnitude of leverage values: 

1. hii is large if it is more than twice as large as the average leverage 

value. The average leverage value is 

- h i i -  P. 
n n 

i---1 

2. hii > yl indicates very high leverage; 0.2 _< hii _< 0.5 suggests mod- 
erate leverage. 

3. There is a gap between the leverage for the majority of cases and a 
small number of large leverage values. 

For the following example we use data from the Finkelstein et al. 

(1994) study. Specifically, we use the scores in verbal aggression (VA85) 
and physical aggression against peers (PAAP85), collected in 1985. The 
sample consists of n = 77 boys and girls. We ask whether verbal aggres- 
sion allows one to predict physical aggression. The following parameters 
are estimated for this regression problem: 

PAAP85 = 9.51 + 0.46 �9 VA85 + Residual. 

The slope parameter  is significantly greater than zero (t - 4.07; p < 
0.01). The scatterplot of VA85 and PAAP85 appears in Figure 5.1. 

The figure shows that  most of the data points nestle nicely around 
the regression line. It also suggests that  applying a linear regression line 
matches data  characteristics. However, there are two data points that  

are abnormal. One of these points describes a boy with slightly above 
average verbal aggression but a very large number of physical aggression 
acts against peers. While an outlier on the dependent variable's scale, this 
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Figure 5.1" 
Adolescents. 

Regression on physical aggression on verbal aggression in 

data point has no strong influence on the regression slope. In contrast, 

the data point in the lower right corner of the figure does have above 

average leverage. It is an outlier on the predictor variable's scale, and 

thus a leverage point with a leverage value of h = 0.126. 

We now analyze the leverage values for the present sample. The mean 

of leverage values is = 2/77 = 0.026 with a minimum of h = 0.013 and 

a maximum of h = 0.126. The median is md = 0.021. Clearly, the 

leverage point meets the first of the above criteria by being more than 

twice as large as the average leverage. In addition, it meets the third 
criterion in that  there is a gap between the crowd of leverage points and 
this individual point. This is illustrated by the histogram in Figure 5.2. 

Figure 5.2 shows that the majority of the leverage values is grouped 

around the median. The leverage value of this boy appears only after a 
large gap. 

For a more in-depth analysis of the effects of this leverage point we 

reestimate the regression parameters after excluding it. The resulting 
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Figure 5.2" Bar graph of leverage scores of data points in Figure 5.1. 

regression equation is 

PAAP85 - 8.113 + 0.53 �9 VA85 + Residual. 

The slope parameter is significantly greater than zero (t = 4.52; p < 

0.01). A comparison with the original regression parameter estimates 

suggests that  the leverage point did indeed "pull the slope down." Figure 

5.3 shows the new regression slope for the data without the leverage point. 

Inspection of leverage values for this analysis does not reveal any ad- 

ditional or new leverage point. Only the outlier, high up in the number 

of aggressive acts, is still there. 

D i s t a n c e  O u t l i e r s  

Leverage outliers are cases with extreme values on the predictor vari- 

able(s). Distance outliers are cases with extreme values on the criterion 
variable. They can be identified using the studentized residuals, that  is, 

residuals transformed to be distributed as a t statistic. Specifically, for 
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Figure 5.3: Regression of physical aggression on verbal aggression after 
removal of leverage point. 

each case, the studentized residual, d~, is given by 

/ 

. _  ~ ~ n2- p - 1  2, (5.3) 
di e i  ( Y ' ~ i = I  ei)(1 - hii) - e i  

where p is the number of parameters estimated by the regression model, 
including the intercept parameter. Studentized residuals have the follow- 
ing characteristics: 

1. Each value d~ is distributed as a t statistic with n - p -  1 degrees 
of freedom. 

2. The d~ are not independent of each other. 

3. To calculate the d~* one only needs the residuals and the hii values. 

To determine whether a given value, d~, is an outlier on the criterion, 
one (1) calculates the critical t value for c~ and the n - p -  1 degrees of 
freedom and (2) compares the d~ with this value, t~,dj. If d~ > ta,df, case 
i is a distance outlier. 
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Figure 5.4: Density histogram of studentized residuals for data  in Figure 
5.1 

For a numerical example we use the v e r b a l -  physical aggression data  

from Figure 5.3. The critical t value for d f  - 7 6 - 2 - 1  - 73 and a - 0.05 is 

t0.05,73 - 1.666. The density histogram for the 76 cases appears in Figure 

5.4. 

The histogram shows that  there is one case that  is far out on the t 

distribution scale. This is the case with the very large number of physical 

aggressive acts in Figure 5.3. This boy's studentized residual is d~ - 6.77; 

this value is clearly greater than the critical t. However, the figure also 

suggests tha t  there are more cases with d~ values greater than the critical 

one. We find two such cases. The first (order is of no importance) has 

values V A 8 5  - 12, P A A P 8 5  - 27, and d~ - 1.85. This is the case in the 

upper  left of the data  cloud in Figure 5.3. The second has values V A 8 5  

= 23, P A A P 8 5  - 32, and d* - 1.85. This is the case with the second 

highest P A A P 8 5  score in the distribution. 

These two data  points suggest that  it is both the absolute magnitudes 

of scores on Y and the difference between the observed and the estimated 

scores tha t  determine whether or not a case is a distance outlier in terms 
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of Y. 

OUTLIER ANALYSIS 

Cook's Distance, Di 

Cook's distance is a measure of the magnitude of the influence that  case 

i had on all of the parameter estimates in a regression analysis. The 

measure is defined as 

Di = e2hii (5.4) 
t n e 2 ) ( l _  hii) 2, P~(Ei=I 

where p is the number of parameter estimates, including the intercept 

parameter. 

Cook's distances, Di, have the following characteristics: 

1. Although Di is not distributed as an F statistic, it usually is eval- 

uated in regard to Fa with p and n - p  degrees of freedom. 

2. The following rules of thumb apply: 

�9 When p(Di) < 0.10, case i is said to have little influence on 

the magnitude of parameter estimates; 

�9 When p(Di) > 0.50, case i is said to have considerable influence 

on the fit of the regression model 

3. As the dii, the Di can be calculated from the residuals and the hii 
values. 

Instead of giving an application example of Cook's distance, we il- 
lustrate the relationship between Cook's distance and the studentized 

residual. A comparison of Formulas (5.3) and (5.4) suggests that,  while 

dii and Di use the same information, they process it in different ways. 
Specifically, the relationship between the two measures does not seem to 

be linear. This is illustrated in Figure 5.5. 

Figure 5.5 displays the scatterplot of the studentized residuals and the 

Cook distances for the data in Figure 5.1. In addition to the data points, 

the figure shows the quadratic regression line for the regression of the 

Cook distances onto the studentized residuals. Obviously, the fit is very 

good, and both measures identify the same cases as extremes. 
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Figure 5.5: Scatterplot and quadratic curve for regression of the Cook 
statistic on studentized residuals. 

Around the value of dii = 0 the data are denser and follow a quadratic 
pattern. The outlier is identified by both measures. Thus, we conclude 
that, while dii and Di will not always suggest the same conclusions, their 
relationship is strong and they tend to agree in outlier identification. 

5.2 R e m e d i a l  M e a s u r e s  

Thus far, this chapter has presented methods for identifying specific prob- 
lems with the d a t a -  model fit when employing a particular regression 

model. It is most important to note that any of these problems is defined 
only with respect to the data estimation methods and statistical evalu- 
ation methods employed. Using other methods, the problems may not 
surface or even exist. For example, the problem with the residuals not 
being much different than the raw scores in the two panels of Figure 6.1 
could have been avoided by using curvilinear regression. 

Nevertheless, the question is what one can do to overcome or remedy 
problems with the da t a -  model fit. Obviously, problems with this fit can 

lead to misestimations of parameters and their standard errors and thus 
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to misrepresentations of variable relationships. There is no common cure 

for lack of da t a -  model fit. Each problem must be approached by specific 
remedial measures. The following sections present remedial measures for 
specific problems with the model - data fit. 

5 . 2 . 1  S c a l e  T r a n s f o r m a t i o n s  

When data show a pattern that is nonlinear, as, for example, in Figures 6.1 
and 8.1, researchers may wish to consider either of the following measures: 

1. Application of curvilinear regression; 

2. Data transformation. 

Solution 1, the application of curvilinear regression, is typically ap- 
proached either from an exploratory perspective or from a theory-guided 
perspective. The exploratory approach is where researchers try out a 
number of types of curves and select the one that yields the smallest sum 
of squared residuals, that is, the smallest value for the least squares crite- 
rion (see Section 2.2.2). While appealing in many respects, this approach 
is seen by many as too close to data fitting, that is, as an approach where 

functions are fit to data with no reference to theory. 

Theory-guided approaches to curvilinear regression start from a type 
of function for a shape that a curve can possibly take. Then, the data 
are fit to a selection of such functions. Only functions with interpretable 
parameters are selected, and each of these functions corresponds to a 
particular interpretation of substantive theory. 

The second measure, data transformation, is a widely used and widely 
discussed tool. It can serve to deal not only with problems of nonlinear- 
ity, but also with problems of unequal error variances, skewness of the 
distribution of error terms, and nonnormality. The best known group 

of procedures to deal with the first three of these problems are known 
as Box-Cox transformations (Box & Cox, 1964; Cox, 1958; Neter et al., 
1996; Ryan, 1997). Box-Cox transformations use power transformations 
of Y into Y' of the kind 

yI  __-- y~X, 
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Figure  5.6: Sample t rans format ions  of Y. 

where  A is a p a r a m e t e r  t ha t  is de te rmined  specifically for a given d a t a  

set. Examples  of A and the resul t ing t rans formed variables Y' appear  in 

Table 5.1 (cf. Ryan,  1997). 

The  effects of the  last four of these nonlinear  t rans format ions  I on a 

variable Y tha t  ranges from 1 to 50 (in steps of 1) are i l lus t ra ted in Figure  

5.6. 

Table 5.1: Examples of Power Transformations of the Criterion Variable, Y 

Value of Paramete rA Transformed Variable Y' 

2 y , _  y2  

1/2 Y ' - V ~  
0 Y' - log Y (by definition) 

-1 /2  Y ' - l / x / ~  
-1 y l _  1 /Y  

1 It should be noted that these transformations do not vary monotonically depending 
on A when Y~ -- log Y for A - 0. Therefore, Box and Cox (1964) specified that 
Y' = (Y;~ - 1)/A if A ~ O, and Y' - logY if A - O. 
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Explanations of these transformations follow below. A typical appli- 

cation of Box-Cox transformations aims at minimizing the residual sum 

of squares. There is computer software that  performs the search for the 

optimal transformation. 

However, in many instances, researchers do not need to search. Rather,  

there is a data  problem that  can be solved by a specific transformation. 

In addition, some transformations help solve more than just one data  

problem. The following paragraphs describe examples. 

The Square Root  Transformation 

Both across the categories of categorical predictors and for continuous 

predictors it can occur that  means and standard deviations of the criterion 

variable are functionally related. This is the case for Poisson processes, 

that  is, rare events assessed by counting, given certain assumptions like 

independence of events for different time intervals. The standard square 

root transformation is 

When there are measures 0 < Y < 10, the following transformation 
seems more suitable: 

y '  - y/-y + l /2 .  

Square root transformations stabilize, that  is, render more homoge- 

neous, variances and, in addition, normalize distributions. 

The Logarithmic Transformation 

When, for a continuous predictor or across the categories of a categori- 

cal predictor, standard deviations are proportional to means, logarithmic 

transformations may be considered. Specifically, one transforms Y into 
Y' by 

Y' - log Y, 

where log is the natural logarithm, that  is, the logarithm with base e - 

2.71828 . . . .  When there are values yi - 0 one adds to all scores a constant 
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A, where A is a small constant that  is often set to 1 or 0.5. In other words, 
one uses the transformation 

v ' - l o g ( y  + A) 

instead of a simple logarithmic transformation. 

The logarithmic transformation is among the most frequently em- 

ployed transformations. Some of the scales we use everyday, for example, 

the phone scale for acoustic intensity, are logarithmic scales. In psychol- 

ogy, GSR (galvanic skin resistance) scales are typically logarithmic also. 

Trigonometric Transformation 

Chiefly to reduce instability of variances when the dependent measures 

are proportions, one employs trigonometric transformations. The best 
known of these is the inverse sine transformation 

Y' - arcsin v ~ .  (5.5) 

Often researchers multiply the term on the right-hand side of (5.5) by 

2 and add a constant to Y when there are values Y - 0. 

Reciprocal Transformation 

When the squares of means are proportional to some unit of Y, one may 

consider a reciprocal transformation such as 

1 
Y ' - I / Y  or Y ' =  

Y + I '  

where the second of these equations is appropriate when there are values 

y - 0. The reciprocal transformation is often employed when the de- 

pendent measure is time, for example, response times or problem solving 
times. 

Many more transformations have been discussed, in particular, trans- 
formations to correct lack of normality (cf. Kaskey, Koleman, Krishna- 

iah, & Steinberg, 1980; Ryan, 1997). It is most important to realize 
that  nonlinear transformations can change many variable characteristics. 

Specifically, nonlinear transformations not only affect mean and standard 
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deviations, but also the form of distributions (skewness and kurtosis) and 
additivity of effects. In addition, the power of tests on transformed vari- 
ables may be affected (Games, 1983, 1984; Levine & Dunlap, 1982, 1983). 
Therefore, routine application of transformations can have side effects be- 
yond the desired cure of data problems. Researchers are advised to make 
sure data have the desired characteristics after transformation without 
losing other, important properties. 

5 . 2 . 2  W e i g h t e d  L e a s t  S q u a r e s  

This section describes one of the most efficient approaches to dealing with 
unequal variances of the error terms: Weighted Least Squares (WLS) (for 
the relationship of WLS to the above transformations see, for instance, 
Dobson (1990, Chapter 8.7)). In Section 2.2.2 the solution for the ordinary 
least squares minimization problem, that is, 

( y -  X b ) ' ( y -  Xb) :; min, 

was given as 

b = ( X ' X ) - l X ' y ,  

where the prime indicates transposition of a matrix. The main character- 
istic of this solution is that each case is given the same weight. Consider 
the weight matrix, W, 

W 

wll 0 . . .  0 
0 W22 - . .  O 

. . - * , 

. �9 

0 0 . . .  w ~  

that is, a matrix with a weight for each case. Then, the OLS solution can 
be equivalently rewritten as 

b -  ( X ' W X ) - l X ' W y ,  (5.6) 

where W - I, the identity matrix. If W is a diagonal matrix with unequal 
diagonal elements, (5.6) is the WLS solution for the least squares problem. 
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S e l e c t i o n  of We igh t s  

In most instances, weights cannot be straightforwardly derived from the- 
ory or earlier results. Therefore, researchers typically select weights such 
that they address their particular data problem. For example, if the het- 
eroscedasticity problem, that is, the problem with unequal error variances, 
is such that the variance of residuals increases with X, one often finds the 
recommendation to consider the following weight: 

1 
W i i  ~ ~ .  

X i  

Accordingly, when the variance of residuals decreases with X, one can 
find the recommendation to consider the weight 

1 
wii  = , ( 5 . 7 )  

X m a x  - -  X i  

where xmax is the largest value that X can possibly assume. 

The following example illustrates the effects one can expect from es- 
timating regression parameters using (5.7) and WLS. We analyze a data 
set with error variance depending on X. For Figure 5.7 we analyzed data 
that describe pubertal developmental status, operationalized by the Tan- 
ner score, T83, and the number of aggressive acts against peers, PAAP83, 
in a sample of n - 106 boys and girls in 1983, all in early puberty. The 
two panels of Figure 5.7 show that there is at least one outlier in this 
data set. In addition, the right panel suggests that the size of residuals 
depends heavily on the predictor, T83. In the following paragraphs we 
reestimate regression parameters for these data using WLS. Before we do 
this, we recapitulate the OLS regression equation obtained for these data: 

PAAP83 - 21.86 - 0.13 �9 T83 + Residual. 

The slope parameter for this analysis had not reached statistical sig- 

nificance (t = -0.32; p = 0.747). 

The right panel of Figure 5.7 suggests that the error variance decreases 
as the values of T83 increase. Therefore, we define as the weight variable 
W - 1 / ( 1 3 -  T83), with 13 being the largest Tanner score in this sample 
and age group. Using this weight variable we perform WLS regression as 
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Figure 5.7: Residual plots for OLS (left) and WLS (right) analyses. 

follows: 

1. We multiply PAAP83 with W to obtain 

PAAP83w - P A A P 8 3 ,  W 

2. We multiply TA83 with W to obtain 

TA83w - TA83 ,  W 

3. We estimate the regression parameters. 

For the present example we calculate 

PAAP83 - 18.04 �9 W + 0.69 �9 T83 �9 Residual. 

The F test for the predictor, T83w, now suggests that  the slope pa- 

rameter is greater than zero. Specifically, we obtain F1,103 = 2.19 and 

p - 0.03. Table 5.2 presents the parameter  estimates for both solutions. 

The two standard errors for the predictor parameters show the benefit 

from WLS most dramatically. The WLS standard error is both in abso- 

lute terms and relative to the magnitude of the parameter  estimate smaller 

than the OLS standard error. As a result, the relationship between phys- 

ical pubertal  development and number of aggressive acts against peers, 
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Table 5.2: OLS and WLS Parameter Estimates for Aggression Data 

Parameter OLS OLS Std. WLS WLS Std. 
Estimate Error Estimate Error 

Constant 
Weight 
T83w 

21.855 1.946 
18.040 2.170 

-0.127 0.392 0.692 0.315 

inconspicuous from OLS analysis, is now statistically significant. 

Figure 5.7 contains the residual plots for the OLS analyses and the 
present WLS solution. 

The first panel of Figure 5.7 shows the residual plot for the OLS so- 

lution. It suggests that the variance of the residuals decreases as the 
predictor values, T83, increase. The right panel of Figure 5.7 shows the 

effects of the weighting for the WLS solution. The effect is that the error 

variance, that is, the variation of residuals around zero, is more even for 
the WLS solution than for the OLS solution. The data points are coded 
according to the value of the original predictor variable, T83. As a result, 
one can make out that the weighting did not change the rank ordering 
of data points. It only changed the scale units and reduced the error 
variance. 

C a v e a t s  

In a fashion similar to the caveats given concerning variable transforma- 

tions, caveats concerning WLS seem in order. The first concerns rec- 
ommendations that are not grounded in substantive theory. Whenever 
weights for WLS are estimated from the data, WLS loses its desirable 
optimality characteristics (even though it may still be better than OLS). 
Relatively unproblematic may be the options to use the scatterplot of 
residuals with Y for weight estimation or to use the residuals for weight 
estimation. 

As was obvious from the present example, WLS can, sometimes, be 
used to change the significance of results. However, WLS is not an all- 
encompassing cure for lack of statistical significance. The specification 

of weights can be as arbitrary as the selection of a transformation proce- 
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dure. Therefore, researchers are well advised to switch from OLS to WLS 
only if either there is a priori knowledge of weights, e.g., in the form 
of a variance-covariance matrix of estimated regression coefficients, or a 
derivation of weights is performed on substantive or theoretical grounds. 
Researchers have to resist abusing such tools as variable transformation 
and weighted least squares for arbitrary manipulation of data. 



Chapter 6 

R E S I D U A L  A N A L Y S I S  

Using methods of residual analysis one can determine whether 

1. the function type employed to describe data reflects the relation- 
ships present in the data; for example, if researchers chose a straight 
line for data  description, curved relationships can be captured only 
in part,  if at all; 

2. there are cases that  contradict 1 this type of relationship, that  is, 
whether there are outliers; and 

3. there are anomalies in the data; examples of such anomalies include 

standard deviations that  vary with some predictor (heteroscedastic- 
ity). 

This chapter presents analysis of residuals, which can be defined as 

ei - Yi - Yi, 

where ei is the residual for case i, yi is the value observed for case i, and 

~)i is the expected value for case i, estimated from the regression equation. 
Before providing a more formal introduction to residual analysis we 

show the benefits of this technique by providing graphical examples of 
cases (1), (2), and (3). 

1The te rms  "contradict ing" and "outliers" are used here in a very broad sense. 
La te r  in this chapter  we introduce more specific definitions of these terms.  

99 
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Figure 6.1" Raw data and residual plot for straight line regression of a 
V-shaped relationship. 

6.1 I l lustrations of Residual  Analys is  

First, we illustrate how far a chosen regression function can be from validly 

describing data. We select linear regression as the sample regression func- 

tion. Similar examples can be constructed for curvilinear regression. Fig- 

ure 6.1 gives an example (two panels). The example describes the number 

of misses made by professional dart players under a range of stress intensi- 

ties. Stress ranged from very low as in a pub situation, to intermediate as 

in a local competition, to very high as in the world championships. There 

was a total of eight stress levels, with 1 indicating the lowest level. Levels 
2 through 8 were realized in the experiment. The dependent variable was 

the number of misses, averaged over teams of three players in a total of 
n = 180 games. 

The left-hand panel of Figure 6.1 displays the scatterplot of the misses 

in n = 180 games. The distribution of averaged misses suggests a V- 

shaped function of misses, depending on stress level. In addition, the 

curve suggests that, on average, higher stress causes more misses than 

lower stress. This is also indicated by the regression line, which has 

a positive slope. The regression function for the relationship between 

Number of Misses M and Stress Level S is 

M - 3.99 + 0.08 �9 S + Residual. 



6.1. ILLUSTRATIONS OF RESIDUAL ANALYSIS 101 

The F value for the regression slope is F = 6.66. This value is, for 

dr1 = 1, and dr2 = 178, statistically significant, p = 0.011. The squared 
multiple R is smallish. It is R 2 = 0.036. 

In standard application of regression analysis researchers may be temp- 

ted to content themselves with this result. They might conclude that there 

is a statistically significant linear relationship between Number of Misses 

and Stress Level such that increases in stress cause increases in the num- 

ber of misses. However, an inspection of the residuals suggests that  the 

linear regression model failed to capture the most important aspect of 

the relationship between Stress Level and Number of Misses, that  is, the 

curvilinear aspect. 

The right-hand panel of Figure 6.1 displays the residual plot (predictor 

x residuals) for the above regression equation. It plots Estimate against 

Size of Residuals. The comparison of the two panels in Figure 6.1 reveals 

two important characteristics of the present example: 

1. The curvilinear characteristics of the raw data and the residuals are 

exactly the same. This does not come as a surprise because the 

regression model employed in the left panel is not able to capture 

more than the linear part of the variable relationship. 

2. The increase in misses that  comes with an increase in stress does 

not appear in the residual plot. The reason for this is that  the linear 

regression model captured this part of the variable relationship. 

Thus, we can conclude that when a regression model captures all of the 

systematic part of a variable relationship the residuals will not show any 

systematic variation. In other words, when a regression model captures 
all of the systematic part of a variable relationship, the residuals will vary 

completely at random. 

This characteristic is illustrated in Figure 6.2. The left-hand panel of 

this figure displays two random variates that correlate to r = 0.87. The 

joint distribution was created as follows. A first variable, NRAN1, was 

created using a standard normal random number generator for n = 100. 

A second variable, NRAN2, was created the same way, A third variable, 

NRAN3, was created using the following formula: 

NRAN3 = NRAN1 + 0.6 �9 NRAN2. 
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Figure 6.2: Residual plot for linear relationship. 

The left-hand panel of Figure 6.2 displays the joint frequency distri- 

bution of N R A N 1  and NRAN3.  

Because of the random character  of these two variables and because 

of the built-in linear relationship between them, we expect no systematic  

variation in the residuals. This is i l lustrated in the r ight-hand panel of 

Figure 6.2. This panel displays a bivariate normal distribution. It is as 

perfect as a random number generator can create for the (relatively small) 

sample size of n - 100. 

In the second example we illustrate outliers. From the many defini- 

tions of outliers, we use here distance outliers. These are da ta  points 

located unusually far from the mean of the dependent measure. Among 

the many reasons why there are outliers, the following two are most often 

discussed: 

1. Measurement error. This is the most often considered reason for 

the existence of outliers. The measurement  ins t rument  may have 

indicated wrong values or may have been misread; da ta  typists may 

have hit the wrong key; coders may have miscoded a response; or 

respondents may have crossed the wrong answer. If the number  

found in the da ta  is theoretically possible (as, for instance, an IQ 

of 210), it may be hard, if not impossible, to identify a value as a 

mistake. If, however, a value lies beyond the limits of the scale used 

(as, for instance, the value 9 on a rating scale with a range from 1 
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to 5), it can be detected relatively easily. 

. Presence of unique processes. If an outlier displays an extreme value 

that,  in theory, is possible, this value is often explained as caused by 

unique processes. Examples of such processes include luck, extreme 

intelligence, cheating, and pathological processes. If any of these or 

similar phenomena are considered, researchers often feel the tempta- 

tion to exclude outliers from further analysis. The reason given for 

excluding cases is that  they belong to some other population than 
the one under study. Statistical analysis of outliers can provide re- 

searchers with information about how (un)likely a given value is, 

given particular population characteristics. 

The following data example illustrates the presence and effects of dis- 

tance outliers. Finkelstein et al. (1994) analyzed the development of 

aggressive behavior during adolescence in a sample of n = 106 adoles- 

cent boys and girls with a 1983 average age of 12 years. The authors 

estimated a Tanner score and an Aggression score for each adolescent. 
The Tanner score, T, is a measure of physical development. The higher 

the Tanner score, the more advanced is a child's physical development. 

The Aggression score measured frequency of Physical Aggression Against 

Peers, PAAP83. The higher the PAAP83 score, the more frequent are an 

adolescent's aggressive acts against peers. In their analyses the authors 

at tempted to predict aggression from physical pubertal development. 

The left-hand panel of Figure 6.3 displays the scatterplot of Tanner 

scores and PAAP83 scores in the sample of 106 adolescents. The plot 

displays the data points and the regression line. The regression function 
is 

PAAP83 = 21.86 - 0.13 �9 T 4- Residual. 

The t value 2 for the slope coefficient is t = -0.324 and has a tail 

probability of p = 0.747. Thus, physical development does not allow 
researchers to predict frequency of physical aggression against peers. 

In the left-hand panel of Figure 6.3 stars below the regression line 

2It should be emphasized that, in the present context, the t test and the F test for 
regression coefficients are equivalent. Selection of test is arbitrary. 
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Figure 6.3: Leverage outlier and linear relationship. 

indicate aggression values that are smaller than estimated from the re- 
gression function (bottom half of the scatterplot). Stars above the re- 
gression line indicate aggression values greater than estimated from the 
regression function (top half of the scatterplot). The largest residual was 
calculated for a boy with a PAAP83 value of 44 (highest in the sample) 
and a Tanner score of 11 (tied for second highest in the sample). From 
the regression function, this boy was expected to have an aggression score 
of PAAP83 = 20.46. Thus, the residual is e = 23.54. The star for this 
boy appears in the upper right corner of the plot. 

Assuming this boy may not only have an extremely large PAAP83 
score but also may have leveraged the slope of the regression line to be less 
steeply decreasing (see leverage outliers in Section 5.1), we reestimated the 
regression parameters under exclusion of this boy. The resulting function 
is 

PAAP83 - 23 .26-  0.49,  T + Residual. 

This function suggests a steeper decrease of aggression frequency with 
increasing Tanner score. Yet, it is still not statistically significant (t - 

-1.25; p - 0.216). 

The right panel of Figure 6.3 displays the data points and the regres- 
sion line for the reduced data set. The data points in both panels of 
Figure 6.3 are presented under the assumption that each point carries the 
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same weight. 

The following, third data example illustrates the use of residual anal- 

ysis for detection of data anomalies. One data characteristic that tends 
to inflate standard errors of parameter estimates is that error variances 
are unequal (heteroscedasticity). An example of unequal error variances 
is that  the error variance depends on the predictor. 

The following example shows error variances that increase monotoni- 
cally with the level of the predictor. In this example, the regression slope 
is positive and the variance of the residual term increases with the ex- 
pected value of the response variable. Indeed, this a very common feature 

of many empirical data sets. Therefore, one should always check one's 
data for presence of heteroscedasticity. 

The data describe the n - 69 boys and girls available for a third 

examination of Tanner scores (T) and Aggression in 1987 (PAAP87) from 
the Finkelstein et al. (1994) study. The left-hand panel of Figure 6.4 
presents the scatterplot of the predictor, Tanner Score, and the criterion, 
Frequency of Aggressive Acts. 

The regression equation estimated for the data in Figure 6.4 is 

PAAP87 - 13.43 + 0.30 �9 T + Residual. 

The statistical relationship between PAAP87 and T is not significant 

(t - 0.94; p -  0.35). 
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The left panel in Figure 6.4 illustrates that the variation around the 
regression line, that is, the error variance, increases with the level of 
the predictor. For small Tanner scores we notice a relatively small error 
variance, that is, the residual scatter is very close to the regression line. 
As Tanner scores increase, the error variance increases as well, in other 
words, scatter of the residuals from the regression line increases. The 
residual plot for this regression analysis appears in the right- hand panel 
of Figure 6.4. Section 5.2 described measures for remedying problems of 
this type. 

6.2 Residuals and Variable Relationships 

The two panels of Figure 6.1 illustrate that any type of regression function 
can depict only a certain type of variable relationship. In Figure 6.1 the 
portion of variance that can be captured using straight regression lines 
is minimal (3.6%), although it is statistically significant. The residual 
plot (predictor x residuals) looks almost like the original data plot. It 
suggests that there is a substantial portion of systematic variation that 
can be explained using curvilinear regression. 

We make two attempts to capture the curvilinear portion of the vari- 
ation of the Dart Throw data. The first is to fit a quadratic polynomial. 
Results of this attempt appear in Figure 6.5. 

The curve in Figure 6.5 suggests a relatively good fit. However, there 
is still a systematic portion of the data unexplained. The figure suggests 
that, through Stress Level 4, data points are about evenly distributed to 
both sides of the quadratic curve. Between Stress Levels 4 and 6, the 
majority of the data points are located below the regression line. Beyond 
Stress Level 6, most of the data points are located above the regression 
line. Only for the highest stress levels are data points below the regression 
line again. 

Now, one way to further improve the model is to include a third- 
or even a higher degree polynomial, as will be explained in Section 7.2. 
Alternatively, one can look for a transformation of the predictor variable 
that gives a good model fit. For example, the scatter of the points for 
this example bears some similarity to a segment of the sine (or possibly a 
cosine) curve. Therefore, a sine or a cosine transformation of the predictor 
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Figure 6.5: Quadratic regression of number of misses onto stress level. 

may be a sensible alternative to fitting a higher degree polynomial. 

To capture this portion of the data also, we substituted a sine function 
for the quadratic curve. Specifically, we fit the function Number of Misses 
- Constant + sin(Stress Level). The following estimates resulted: 

Number of Misses - 4.44 + 0.99 �9 sin (Stress Level) + Residual. 

The fit for this function is as perfect as can be. The significance tests 

show the following results: Fl,17s = 961.83,p < 0.01. The residual plot 
for this function appears in Figure 6.6. 

Figure 6.6 suggests that,  across the entire range of sin (Stress Level), 
residuals are about evenly distributed to both sides of the regression line. 
There is no systematic portion of the variation of the Number of Misses 

left to be detected (cf. Figure 6.2, right panel). 

One word of caution before concluding this section. What  we have 
performed here is often criticized as data fitting, that  is, fitting curves 
to data  regardless of theory or earlier results. Indeed, this is what we 
did. However, it was our goal to illustrate (1) how to explain data and 
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Figure 6.6" Residual misses after sine transformation of the predictor, 
Stress Level. 

(2) what criteria to use when discussing residual plots. In real life data 

analysis researchers are well advised to use theory as a guide for selecting 

functions to fit to d a t a  

The following paragraphs present three methods for analysis of the 

distribution of residuals: 

1. Statistical analysis of the distribution of standardized residuals. 

2. Comparison of calculated vs. expected residuals. 

3. Normal probability plots. 

A n a l y s i s  of  t he  D i s t r i b u t i o n  of  S t a n d a r d i z e d  R e s i d u a l s  

In addition to asking whether a particular type of function best fits the 

data, one can analyze the distribution of residuals. If the systematic por- 

tion of the criterion variation was covered by a regression model, there is 

only random variation left. As a result, residuals are expected to be nor- 

mally distributed. Any deviation from a normal distribution may suggest 
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either the existence of variance tha t  needs to be explained or the presence 

of outliers or both. In the following sections we describe methods for 

analyzing the distribution of outliers. 

Consider the following regression equation: 

yi - bo + 2_., bjxij + el. 
j>0 

For the analysis of the distribution of residuals we ask whether the appro- 

priate portion of residuals, el, is located at normally distributed distances 

from the Expectancy of ei, E(ei) = O. For instance, we ask whether 

�9 68% of the residuals fall between z - - 1  and z - + 1 of the s tandard  

normal distribution of the residuals; 

�9 90% fall between z = -1 .64  and z = +1.64; 

�9 95% fall between z = -1 .96  and z = +1.96; 

�9 99% fall between z = -2 .58  and z = +2.58; and so forth. 

To be able to answer this question, we need to standardize the resid- 

uals. The s tandardized residual, ze~, can be expressed as 

ei 
Zei  - -  - - ,  (6.1) 

8e 

where 

i E ie2  (6.2) 

Using these terms, determining whether residuals are normally dis- 

t r ibuted can be performed via the following three steps: 

�9 Calculate for each case i the standardized residual, ze~; 

�9 Count the number  of cases tha t  lie within a priori specified bound- 

aries; 

�9 Determine whether  the number of cases within the a priori specified 

boundaries deviates from expectation; this step can be performed 

using X 2 analysis. 
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Figure 6.7: Residual plot for regression of Aggressive Acts on Tanner 
score. 

For the following example consider the n - 40 boys of the Finkelstein 
et al. (1994) study that were still available in 1987 for assessment of puber- 
tal status, Tanner Stage (T87), and Frequency of Aggressive Acts against 
Peers (A87). Regressing A87 onto T87 yields the following parameter 
estimates: 

A87 - 1.59 + 1.10. T87 + Residual. 

The relationship between these two variables is statistically not sig- 
nificant (t = 1.746; p -  0.09). The residual plot appears in Figure 6.7. 

The figure suggests that the size of residuals increases with the level 
of the predictor, Tanner Stage (cf. Figure 6.4). For the present purposes, 
however, we focus on the distribution of the residuals. 
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Table 6.1: Raw Scores and Residuals for Aggression Study 

T87 PAAP87 Estimate Res Res 2 Std. Res 
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14 8 16.97 -8 .97 80.49 -1.68 
14 8 16.97 -8 .97 80.49 -1.68 
14 9 16.97 -7 .97 63.54 -1.49 
14 10 16.97 -6 .97 48.60 -1.31 
13 9 15.87 -6.87 47.24 -1.29 
14 11 16.97 -5 .97 35.66 -1.12 
14 12 16.97 -4 .97 24.72 -0.93 
11 9 13.68 -4.68 21.86 -0.88 
14 13 16.97 -3 .97 15.77 -0.74 
13 12 15.87 -3 .87 15.00 -0.73 
10 9 12.58 -3.58 12.79 -0 .67 
14 14 16.97 -2 .97 8.83 -0.56 
14 14 16.97 -2 .97 8.83 -0.56 
14 14 16.97 -2 .97 8.83 -0.56 
14 15 16.97 -1 .97 3.89 -0 .37 
14 15 16.97 -1.97 3.89 -0 .37 
10 11 12.58 -1.58 2.49 -0.30 
14 16 16.97 -0.97 0.94 -0.18 
14 16 16.97 -0 .97 0.94 -0 .18 
13 15 15.87 -0 .87 0.76 -0.16 
9 11 11.48 -0.48 0.23 -0 .09 

14 17 16.97 0.03 0.00 0.01 
12 15 14.77 0.23 0.05 0.04 
14 18 16.97 1.03 1.06 0.19 
14 18 16.97 1.03 1.06 0.19 
14 18 16.97 1.03 1.06 0.19 
14 18 16.97 1.03 1.06 0.19 
14 19 16.97 2.03 4.11 0.38 
13 18 15.87 2.13 4.52 0.40 
13 18 15.87 2.13 4.52 0.40 
13 20 15.87 4.13 17.03 0.77 
14 23 16.97 6.03 36.34 1.13 
14 23 16.97 6.03 36.34 1.13 
14 23 16.97 6.03 36.34 1.13 
14 24 16.97 7.03 49.40 1.32 
10 20 12.58 7.42 55.10 1.39 

continued on next page 
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T87 PAAP87 Estimate Res Res 2 Std. Res 

14 25 16.97 8.03 64.46 1.50 
14 26 16.97 9.03 81.51 1.69 
14 27 16.97 10.03 100.57 1.88 
13 26 15.87 10.13 102.56 1.90 

Table 6.1 contains the Tanner scores, the aggression frequencies, the 

estimates from the above regression equation, the residuals and their 

squares, and the standardized residuals, calculated using (6.1) and (6.2). 

The n = 40 cases in Table 6.1 are rank ordered according to the size of 

their standardized residual, beginning with the largest negative residual. 

The counts are as follows: 

�9 There are 25 z values less than -t-1; 

�9 There are 15 z values between Ill and ]1.96p. 

To determine whether this distribution fits what one would expect for 
40 normally distributed values, we apply the Pearson X 2 test. The arrays 

of observed and expected frequencies appear in Table 6.2. 

The X 2 for the frequencies in Table 6.2 is X 2 = 4.61 (dr = 2;p = 

0.10). This value suggests that  the observed distribution of standardized 

residuals does not deviate significantly from the expected distribution. 

We therefore conclude that  the linear regression model was appropriately 

applied to these data. 

Another motivation for standardization of raw residuals comes from 

the fact that  raw residuals do not have standard variance. Lack of con- 

stant variance is, in itself, not a problem. However, comparisons are easier 

when scores are expressed in the same units. 

Table 6.2: Observed and Expected Frequencies of Residual z Values 

Frequencies 
Izl<_l  1 < 1 z 1 < 1 . 9 6  

Observed 25 
Expected 27.2 

1.96 < Izl 

15 0 
10.4 2.4 
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As an alternative to standardizing, researchers often studentize raw 
residuals, that  is, standardize with respect to the t distribution (for ex- 
amples see, for instance, Neter et al., 1996). Studentization is often pre- 

ferred when sample sizes are relatively small. However, conclusions drawn 

from inspection of standardized residuals and studentized residuals rarely 
differ. Therefore, studentization will not be presented here in more detail. 

Comparison of Calculated and Expected Residuals 

A more detailed analysis of the distribution of residuals can be performed 
by comparing the calculated and the expected residuals. The expected 
residuals are estimated under the assumption that  residuals are normally 
distributed. The two arrays of calculated and expected residuals can be 
compared by correlating them, by employing an F test of lack of fit (Neter 

et al., 1996) and by visual inspection (see below). 
Expected residuals can be estimated as follows: 

E(e i )  - V n - -  z . (6.3) n + 0.25 

To estimate the expected residuals, the calculated residuals must be 
rank ordered in ascending order. Beginning with the smallest residual, 

i - 1, the E(e~) can be determined. For the sake of efficiency notice that  

the number of expected residuals that  needs to be calculated will never 
exceed n / 2 .  The reason is that,  for even sample sizes n, only the first 

half of the E(e i )  need to be calculated. The second half mirrors the first 
around 0. For odd sample sizes n one can set the middle E(ei),  where 
i - n / 2  + 0.5, to E(e i )  - 0 and proceed with the remaining residuals as 
with even sample sizes. 

To evaluate the degree to which the expected residuals parallel the 
calculated ones, one can apply the standard Pearson correlation. If the 
correlation is r >_ 0.9, one can assume that  deviations from normality are 
not too damaging. 
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Table 6.3: Comparing Calculated and Expected Residuals for Data from 
Aggression Study 

T87 PAAP87 Res. 

14 8 -8.97 
14 8 -8.97 
14 9 -7.97 
14 10 -6.97 
13 9 -6.87 
14 11 -5.97 
14 12 -4.97 
11 9 -4.68 
14 13 -3.97 
13 12 -3.87 
10 9 -3.58 
14 14 -2.97 
14 14 -2.97 
14 14 -2.97 
14 15 -1.97 
14 15 -1.97 
10 11 -1.58 
14 16 -0.97 
14 16 -0.97 
13 15 -0.87 
9 11 -0.48 

14 17 0.03 
12 15 0.23 
14 18 1.03 
14 18 1.03 
14 18 1.03 
14 18 1.03 
14 19 2.03 
13 18 2.13 
13 18 2.13 
13 20 4.13 
14 23 6.03 
14 23 6.03 
14 23 6.03 
14 24 7.03 

Exp. Res. i z(...) z 

-10.94 1.00 0.02 -2.05 
-9.34 2.00 0.04 -1.75 
-7.90 3.00 0.07 -1.48 
-7.15 4.00 0.09 -1.34 
-6.57 5.00 0.11 -1.23 
-5.77 6.00 0.14 -1.08 
-5.28 7.00 0.16 -0.99 
-4.70 8.00 0.19 -0.88 
-4.32 9.00 0.21 -0.81 
-3.79 10.00 0.24 -0.71 
-3.42 11.00 0.26 -0.64 
-2.94 12.00 0.29 -0.55 
-2.67 13.00 0.31 -0.50 
-2.19 14.00 0.34 -0.41 
-1.92 15.00 0.36 -0.36 
-1.49 16.00 0.39 -0.28 
-1.23 17.00 0.41 -0.23 
-0.80 18.00 0.44 -0.15 
-0.53 19.00 0.46 -0.10 
-0.16 20.00 0.49 -0.03 
0.16 21.00 0.51 0.03 
0.53 22.00 0.54 0.10 
0.80 23.00 0.56 0.15 
1.23 24.00 0.59 0.23 
1.49 25.00 0.61 0.28 
1.92 26.00 0.64 0.36 
2.19 27.00 0.66 0.41 
2.67 28.00 0.69 0.50 
2.94 29.00 0.71 0.55 
3.42 30.00 0.74 0.64 
3.79 31.00 0.76 0.71 
4.32 32.00 0.79 0.81 
4.70 33.00 0.81 0.88 
5.28 34.00 0.84 0.99 
5.77 35.00 0.86 1.08 

continued on next page 
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T87 PAAP87 Res. 

10 20 7.42 
14 25 8.03 
14 26 9.03 
14 27 10.03 
13 26 10.13 

Exp. Res. i z(...) z 

6.57 36.00 0.89 1.23 
7.15 37.00 0.91 1.34 
7.90 38.00 0.93 1.48 
9.34 39.00 0.96 1.75 

10.94 40.00 0.98 2.05 
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Table 6.3 displays results of the calculations for the expected residuals. 
The first three columns in this table are taken from Table 6.1. The last 

four columns were created to illustrate calculations. The rows of Table 6.3 
are sorted in ascending order with residual size as the only key. Counter 

i in Formula (6.3) appears in the second of the four right-hand columns. 
The third of these columns lists the values of the expression in parentheses 
in Formula (6.3). These values are areas under the normal curve. The 
last of these columns lists the z values that correspond to these areas. 
These are the values for the terms in parentheses in Formula (6.3). The 
values for the expected residuals, E(ei), appear in the first of these four 
columns. 

Correlating the calculated residuals from Table 6.3 (termed "Res." in 
the header of the table) with the expected residuals yields a Pearson corre- 
lation of r - 0.989. 3 This seems high enough to stay with the assumption 
of parallel calculated and expected residuals. 

Normal  Probability Plots 

Normal probability plots provide a graphical representation of how close 
the expected and the calculated residuals are located to each other. Part  
of many graphics packages (for example, SYSTAT and SPSS for Win- 
dows), normal probability plots represent a scatterplot of expected and 
calculated residuals. The points in this scatterplot follow a straight di- 
agonal line if the calculated residuals are perfectly normal. Deviations 

3For the present  purposes  we focus on the size of correlat ion ra ther  t han  on sig- 
nificance test ing.  Raw correlat ion coefficients can be squared and then  indicate the  
por t ion  of variance shared in common.  This  informat ion seems more impor t an t  here 
t h a n  s ta t is t ica l  significance. 
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Figure 6.8: Normal probability plot for data from aggression study. 

from normality result in deviations from this straight line. The plot al- 
lows researchers to exactly identify where in the distribution of residuals 

deviations from normality are greatest. 
For the following example we use the same data as in the last example. 

Specifically, we plot the estimated residuals against the calculated ones, 
both from Table 6.3. This plot appears in Figure 6.8. 

Figure 6.8 displays the normal probability plot for the Tanner Stage 
- Aggression residuals. The plot suggests that the coordinates of the 
expected and calculated residuals very nearly follow a straight line. This 
line is inserted in the figure as the regression line for the regression of the 
calculated residuals on the expected residuals. 



Chapter 7 

P 0 L Y N  0 M I A L  

R E G R E S S I O N  

7.1 B a s i c s  

In many instances, relationships between predictors and criteria are known 
to be nonlinear. For instance, there is a nonlinear relationship between 
pitch and audibility, between activation level and performance (Yerkes 
& Dodson, 1908), between the amount of thrill and experienced pleasure, 
and between speed driven and fine handed. Figure 7.1 depicts the Yerkes- 
Dodson Law. The law states that, for a given task difficulty, medium 
activation levels are most inducive for performance. The law suggests 
that performance increases with activation level. However, as soon as 
activation increases past a medium level, performance decreases again. 

Using one straight regression line, researchers will not be able to validly 
model this law. The regression line will be horizontal, as the thin line in 
the figure, and not provide any information about the (strong) relation- 
ship between the predictor, Activation, and the criterion, Performance. 

There are two solutions to this problem. One is called nonlinear re- 
gression. This approach involves fitting a nonlinear function f(x;/30, ~1) 
to the data, for instance, f (x;  ~o,~1) = 1 -  e x p ( - ~ l ( X - / 3 0 ) ) .  Because 
of the nonlinearity of these functions in the parameters, the procedures 
for parameter estimation, and hypothesis testing and the construction of 
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y 
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Figure 7.1: Yerkes-Dodson Law of the dependence of performance on 
activation. 

confidence intervals do not carry over in a simple way to this situation. 

Parameter  estimates are no longer given explicitly but must be deter- 

mined iteratively, some distributional results hold only asymptotically, 

and so on. 

However, polynomial regression is a way that  allows one to fit to the 

data  all nonlinear functions in the predictor that  can be expressed as 

polynomials while retaining all that  has been said about linear regression 

so far. Polynomials can be described, in general, as the product sum of 

parameters and x values, raised to some power, 

- bo + blx + b2x 2 + . . .  + b j x  J 
J 

-- ~ bj x j  , 
j = O  

where the bj are the polynomial parameters, and the vectors x contain x 

values, termed polynomial coefficients. The reason for using polynomial 

coefficients is that  while we usually consider the response Y as a function 
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of the predictor X, when parameter estimation is concerned we consider 

the regression line as a function of the parameters. In this aspect, the pre- 
vious polynomial has the same form as that of a multiple linear regression 
equation. While with polynomial regression not all the freedom of fitting 
general nonlinear models is obtained the approach is flexible enough to 
model a wide range of nonlinear relations without further technical com- 
plexities. 

The highest power to which an x value is raised determines the degree 
of the polynomial, also known as the order of the polynomial. For exam- 
ple, if the highest power to which an x value is raised is 4, the polynomial 
is called a fourth-degree polynomial or fourth-order polynomial. If the 
highest power is J,  the polynomial is a Jth-order polynomial. The form 
of a polynomial depends on its degree. To give an impression of possi- 
ble shapes of polynomials with degrees of two, three, and four, consider 
Figure 7.2. 

First- and second-order polynomials do not have inflection points; that 
is, they do not change direction. "Changing direction" means that the 
curve changes from a curve to the right to a curve to the left and vice 
versa. A look at Figure 7.2 suggests that neither the first-order polyno- 
mial nor the second-order polynomial changes direction in this sense. In 

contrast, third- and higher-order polynomials do have inflection points. 
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For example, the third-order polynomial changes direction at X = 4 and 
Y = 0 .  

The size of the parameter of the third-order polynomial indicates how 
tight the curves of the polynomial are. Large parameters correspond with 
tighter curves. Positive parameters indicate that the last "arm" of the 
polynomial goes upward. This is the case for all polynomials in Figure 
7.2. Negative parameters indicate that the last "arm" goes downward. 

The fourt-order polynomial has two inflection points. Its curve in 
Figure 7.2 has two inflection points, at X - 2.8 and X - 5.2, both at 

Y - 0. The magnitude of the parameter of fourth- order polynomials 
indicates, as for the other polynomials of second and higher order, how 
tight the curves are. The sign of the parameter indicates the direction of 

the last arm, with positive signs corresponding to an upward direction of 
the last arm. 

Consider again the example of the Yerkes-Dodson Law. Theory dic- 

tates that the relationship between Activation and Performance is in- 
versely U-shaped. 

Figure 7.2 suggests that with only six coordinates one can create a 
reasonable rendering of what the Yerkes-Dodson Law predicts: At the 

extremes, Performance is weak. Closer to the middle of the Activation 
continuum, Performance increases. The simplest polynomial having such 
characteristics is one of second degree, that is, 

y = bo + blx + b2x 2. 

To estimate the unknown parameters using OLS we set up the design 
matrix 

1 X12 X22 

1 X22 X~2 
X - . . . ( 7 . 1 )  

2 1 Xn2 Xn2 

and perform a multiple regression analysis. From R 2 it can be seen how 

well the model fits, and from the scatterplot of Y against X including 
the fitted second degree polynomial it can be seen whether the selected 

polynomial gives a good description of the relation. 
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Figure 7.3: Graphical representation of the data from Table 7.1. 

In the following data example we investigate whether the performance 
measures, obtained at six equidistant levels of Activation in a Trivial 
Pursuit Task, can be fit using a quadratic polynomial. Figure 7.3 displays 
the empirical values. Table 7.1 presents the raw data. 

Taking one look at Figure 7.3 it is clear that a linear regression model 
is not appropriate. Nevertheless, the results of this analysis are given for 
completeness in Table 7.2. 

The coefficient of determination is merely R 2 - 0.131. The slope 

coefficient is far from being significant. This means that a simple linear 
regression model can virtually explain nothing. 

Table 7.1: 
Levels 

Raw Data for Test of Yerkes-Dodson Law Using Six Activation 

Activation Level Performance 

1 2 
2 3 
3 6 
4 6.5 
5 5.4 
6 3 
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Table 7.2: Results of Simple Linear Regression Analysis of Activation Data 

Coefficients Value Std. Error t Value p Value 

b0 3.047 1.821 1.673 0.170 
bl 0.363 0.468 0.776 0.481 

On the other hand, performing standard OLS regression analysis re- 
gressing Performance on a second-order polynomial in Activation level 

suggests a good model fit. Specifically, we calculate 

~) - -2.52 + 4.54x - 0.60x 2, 

where y denotes Performance, x Activation, and x 2 the squared Activation 
level. The results of the regression analysis are given in Table 7.3. 

The coefficient of determination is R 2 -- 0.89. The one-sided t test 
for the quadratic term in the model is significant at the 5% level, that is, 
p = 0.0105. We have performed the one-sided test because we hypothe- 
sized an inversely U-shaped relation and therefore expected the regression 
coefficient for the squared Activation level to be negative,/ /1 :/~2 < 0. 
This test can be interpreted as the test of whether allowing for curvature 

in the regression equation improves the model fit above what would have 
been obtained by using only a simple linear regression model. Note that 
the test for the linear term, bl, has now become statistically significant. 

When selecting the polynomial to fit to a given data set, researchers 
need to respond to two criteria. The first is that the polynomial should, 
whenever possible, reflect theory. In other words, specification of shape of 

polynomial and number of inflection points should be based on theoretical 

Table 7.3: Quadratic Polynomial Regression Analysis of Activation Data 

Coefficients Value Std. Error t Value p Value 

bo -2.520 1.469 1.715 0.185 
bl 4.538 0.961 4.721 0.018 
b2 -0.596 0.134 -4.437 0.021 
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Table 7.4: Cubic Polynomial Regression Analysis of Activation Data 

Coefficients Value Std. Error t Value p Value 

b0 0.700 2.505 0.279 0.806 
bl 0.487 2.855 0.171 0.880 
b2 0.745 0.914 0.816 0.500 
b3 -0.128 0.086 - 1.480 0.277 

considerations or earlier results. 1 The second criterion concerns the order 

of the polynomial. Scientific parsimony requires that  the polynomial be 

of lowest possible order. 

There is, in addition, a formal constraint on the order of the polyno- 

mial to be fit to empirical data. This order cannot be greater than t -  1, 

where t is the number of different values of the predictor. 

In the last example we had six different predictor values, so we could 

have fitted a fifth-order polynomial. As the scatterplot of Performance 

and Activation with the regression curve is quite acceptable, we do not 

expect to improve the model fit by using a third- or even fourth-degree 

polynomial. Nevertheless, we fit a third-degree polynomial to see whether 

any improvement can be achieved; that is, we use the model 

~) - bo + bl x -t- b2x 2 + b3x 3. 

We solely append a column with the Activation level in the third power 

to the design matrix X and do a multiple linear regression. It is common 

practice that  if a kth order term is included in the model all lower order 

terms should be included as well and should stay in the model regardless 

of whether the t tests for the corresponding coefficients were significant 

or not. Although there may be exceptions to this rule we do not further 

comment on this. For a discussion of this point, see McCullagh and Nelder 

(1989, pp. 69). The results are given in Table 7.4. 

The coefficient of determination is now R 2 = 0.945. It has increased 

1 This does not mean that polynomial approximation is not applicable in exploratory 
research. However, testing whether one particular polynomial provides a satisfactory 
rendering of a given data set presupposes theory-guided selection of polynomial. 
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6% over the model without the third-order term. Table 7.4 shows some 
very interesting facts. First of all, while the increase in R 2 suggests a 
third-order term may be valuable for the model, the t test of its coefficient 
is far from being significant. As is well known from multiple regression 
analysis, when adding predictors to the equation, R 2 always increases. 

What  is perhaps the most striking feature in Table 7.4 is that  the t tests 
for the quadratic and for the linear coefficient are now far from significant. 

This contradicts the earlier finding that  a quadratic term will considerably 
improve model fit. The reason for this is that  the estimated standard 
errors for these terms have dramatically increased. This is due to the 
high intercorrelations (or more generally to the almost complete linear 
dependency) between the X values of the first-, second- and third-order 
terms in the regression equation. The only reliable test is the test for 
the highest order term. As this test is not significant we conclude that  a 
second-degree polynomial is adequate. 

For social science data it often suffices to fit a polynomial of second 
or third degree as there is usually considerable variation in the data  that  

does not allow one to determine the functional relation between Y and 
X more precisely. As in the example this can be done by fitting two or 
three different regression models of various degrees and then using the t 
test to find the highest order term for which the model is adequate. But 
sometimes the situation is not so simple, that  is, higher order terms are 
needed to obtain an adequate model fit. In these cases the procedure 
suggested so far would be very laborious and time consuming and the 
fitting of many different regression models will often lead very quickly to 
confusion concerning the results and their interpretation. In these cases 
orthogonal polynomials are a good alternative. 

7.2 Orthogonal Polynomials 

Orthogonal polynomials can be considered as a technical device to over- 
come the problems mentioned in the last paragraph. As before, regression 
using orthogonal polynomials tries to fit a polynomial regression curve to 
the data  and obtains exactly the same R 2 as using the polynomial re- 
gression approach of the last section. We will illustrate this using the 
example from the last section. As should be recalled, the main reason for 
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Table 7.5: Polynomial Coefficients .for First-, Second-, Third-, and Fourth- 
Order Polynomials for Six Values of X 

Predictor Polynomials (Order) 
Values First Second Third Forth 

1 - 5  5 - 5  1 
2 - 3  - 1  7 - 3  
3 - 1  - 4  4 2 
4 1 - 4  - 4  2 
5 3 - 1  - 7  - 3  
6 5 5 5 1 

the unreliability of the t tests other than that for the highest order term 
in the regression model is the high degree of linear dependency among 
the predictors. This phenomenon is also known as multicollinearity (see 
Chapter 8). In the case where the predictor is random, this is equivalent 
to saying that the predictors are highly intercorrelated, thus containing 
nearly the same information. Before going into more technical details we 
will analyze the foregoing example using orthogonal polynomials. If the 
values of the predictor are equally spaced and the number of observations 
belonging to each predictor value is the same, the values of the orthog- 
onal polynomials can simply be read off of a table. In our example the 
predictor values are equally spaced and to each predictor value belongs 
a single observation. With six different predictor values the orthogonal 
polynomials up to the fourth degree are given in Table 7.5. 

Textbooks of analysis of variance contain tables with polynomial coef- 
ficients for equally spaced predictors that typically cover polynomials up 
to fifth order and up to 10 different values of X (Fisher & Yates, 1963; 
Kirk, 1995). 

Instead of using the design matrix X with the original predictor val- 
ues in the second column (recall the column of ones in the design matrix) 
we replace the X values by the values of the column labeled "First" in 
Table 7.5. Likewise the squared predictor values in the third column of 
the design matrix are replaced by the column labeled "Second" in Table 
7.5, and so on. This may seem quite surprising at first sight since the 
values in the table have obviously nothing to do with the observed Ac- 
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tivation levels. That this is nevertheless possible is due to the fact that 

the predictor values are equally spaced. Note that the values of the col- 

umn labeled "First" in Table 7.5 are equally spaced as well. Thus, these 

values can be considered a linear transformation of the original Activa- 

tion levels. Recall that linear transformations will possibly change the 

magnitude of the corresponding regression coefficient, but its significance 

remains unchanged. While the second order column of Table 7.5 is not a 

linear transformation of the squared activation levels, the second-degree 

polynomial regression model is equivalent to a model including a column 

of ones and the first- and second order columns of Table 7.5. This carries 

over to higher order polynomial models. To be more specific, the design 

matrix that is equivalent to the third-degree polynomial model of the last 

section is 

X -  

1 - 5  5 - 5  

1 - 3  - 1  7 

1 - 1  - 4  4 
1 1 - 4  - 4  " 

1 3 - 1  - 7  
1 5 5 5 

The tilde above the X indicates that it is different from the design 

matrix X used earlier. Now, we perform a multiple linear regression 

using this design matrix and obtain the results given in Table 7.6. 

First we note that the coefficient of determination is as before R 2 = 

0.945. In addition, the t value for the third-order term and therefore its 

p value have not changed. This suggests that we are actually doing the 

Table 7.6: 
Polynomials 

Cubic Regression Analysis of Activation Data Using Orthogonal 

Coefficients Value Std. Error t Value p Value 

bo 4.317 0.284 15.217 0.004 
bl 0.181 0.083 2.185 0.161 
b2 -0.398 0.076 -5.244 0.035 
b3 -0.077 0.052 - 1.480 0.277 
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same test as before with the conclusion that this term adds nothing to 
the model. What has changed is the significance test of the second order 
term. Now, this test suggests, as expected, that this term contributes 
significantly to the model fit. In addition, the linear term is also not sig- 
nificant. Therefore, we have obtained the same conclusions as before but 
we have fitted only a single regression model rather than three different 
models, that is, a simple linear regression and a second- and third-order 
polynomial regression model. Of course, what would be worthwhile after 
the appropriate model has been selected is to fit this model to obtain, for 
example, the corresponding R 2. This can be done by dropping the third 
column from X.  

From this analysis it can be seen that the use of orthogonal poly- 
nomials in regression analysis can considerably simplify the analysis by 
drawing all important conclusions from a single analysis. This is partic- 
ularly useful when the degree of the polynomial needed gets higher. 

Before doing another analysis using orthogonal polynomials in which 
all the restrictions on the predictor values are abandoned, for example, 
the predictor values need no longer be equally spaced, we give an expla- 
nation as to why this simplification is achieved when using orthogonal 
polynomials. 

Recall from Appendix A that two vectors xl  and x2 are said to be 
orthogonal if their inner product xlx2~ is zero. As the name already sug- 
gests this is the case for orthogonal polynomials. Indeed every polynomial 
column in Table 7.5 is orthogonal to any other polynomial column in this 
table. This includes the column of ones usually added as the first column 
in the design matrix. This can be checked by simply calculating the in- 
ner product of any two polynomial columns in Table 7.5. These columns 
enter into the design matrix used in multiple linear regression. Therefore 
the matrix X ~ X  is considerably simplified as it contains as its elements 
the inner products of all pairs of column vectors of the design matrix. 
In this case all off-diagonal elements of X~X are zero and therefore the 
inverse of X ~ X  is readily found when calculating the OLS estimators of 
the parameters. Recall that 

b -  ( X ' X ) - I X ' y .  

That OLS estimates can be easily calculated is important from a com- 
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putational viewpoint. But there is another important application of the 
inverse of X IX.  As outlined in Chapter 3 on multiple regression, the 
parameter estimates have a multivariate normal distribution with a co- 
variance matrix given by 

V ( b ) - a 2 ( X ' X )  -1. 

As this matrix is diagonal, all covariances between two different ele- 
ments of the b vector are zero; hence they are statistically independent. 
Therefore, when we add further columns with higher order terms to the 
design matrix, the parameter estimates obtained so far will not change as 
long as the added columns are orthogonal to all other columns already in 
the design matrix. This can be checked by dropping the fourth column of 
X and fitting a multiple regression model with this new design matrix. 

The coefficients for the intercept, and the linear and second-order term 
will not change. 

The general strategy when using orthogonal polynomials in regression 
analysis is therefore to fit a polynomial with a degree that is expected to 

describe the data a little bit too well and then look at the t values of the 
regression coefficients to see which degree will be sufficient to describe the 
data. This is now outlined in the following section. 

7.3 Example of Non-Equidistant Predictors 

Again consider the Yerkes-Dodson Law. While in the last example we 
had only six different observations and the predictor variable was assumed 

to be under the control of the experimenter, we now have data available 
from 100 persons without controlling the predictor X (Activation); that  
is, we observe 100 random values of the predictor. Of course these values 
are not equally spaced and we perhaps observe certain predictor values 
more often then others. The data are plotted in Figure 7.4. 

The plot is again inversely U-shaped, but between the Activation levels 
of 2 and 6 the plot suggests that Performance is nearly constant. If we 
fit a second-degree polynomial to the data, using orthogonal polynomials 
or the approach of the last section, and include the fitted values in the 
scatterplot, we see that a second-degree polynomial is obviously not a 

good choice to model the data. This can be seen from Figure 7.5. 
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Figure 7.4: Sample of 100 Activation and Performance pairs of scores, 
with both the Activation and Performance variables being random. 
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Figure 7.5: Quadratic polynomial for data in Figure 7.4. 
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Table 7.7: p Values for Polynomial Terms for Data in Figure 7.4 

Coefficients p Value 

bo 0.000 
bl 0.000 
b2 0.000 
b3 0.000 
b4 0.000 
b5 0.000 
b6 0.000 
b7 0.355 
b8 0.269 

For these data to be adequately described a higher degree polynomial 
would be necessary. Assuming we have a computational device for ob- 
taining orthogonal polynomials with these data, we decide to fit a model 
including all terms up to the eighth degree. The result of the analysis is 
given in Table 7.7. Because the actual values of the regression coefficient 
are not of interest only the p values are given. 

From Table 7.7 it can be seen that a sixth-order polynomial should 
be selected. Figure 7.6 shows the fitted values within the scatterplot of 
Performance and Activation level. 

As the plot suggests, the model fit is excellent. The coefficient of 
determination using a sixth-order polynomial is R 2 = 0.986. If we had 
not used orthogonal polynomials it would have been considerable work to 
find which polynomial would yielded an adequate fit. 

What was left open thus far was the problem of obtaining the coef- 
ficients for the orthogonal polynomials in the general case. While for a 
moderate number of predictor values this could be done by hand (see, for 
example, Kirk, 1995, p. 761), this is not practical in the current exam- 
ple. For 100 observation points this would have required us to calculate 
polynomial coefficients to the eighth degree, that is, about 800 different 
values. Of course this work should be done using a computer. In S-Plus 
software such a function is already implemented. If the statistic software 
includes a matrix language, like SAS-IML, one can obtain the polynomial 
coefficients by implementing the Gram-Schmidt orthogonalization algo- 
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Figure 7.6: Sixth-order polynomial for data in Figure 7.4. 
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rithm. A description of the algorithm can usually be found in elementary 
textbooks of linear algebra. One starts with a design matrix, X, for in- 
stance, Formula (7.1). That is, the design matrix contains a column of 
ones as the first column, the original values in the second column, the 
squared values in the third column, and so on. The Gram-Schmidt algo- 
rithm takes the second column vector, that is, the values of the predictor, 
and orthogonalizes it to the first. This is done by simply centering the 
predictor values. Let 1 denote a column vector of ones. The inner product 
of I and the centered predictor is, 

n 

l ' ( x  - ~1) - 2 ( z i  - ~) - 0. 
i--1 

After the second column vector is made orthogonal to the first, the 
third column of the design matrix is orthogonalized to both columns pre- 
ceding it, that is, the first and the just obtained second column vector. 
This is a bit more complex than just centering the third column, but the 
procedure stays straightforward. 



This Page Intentionally Left Blank



Chapter 8 

M U L T I  C O L L I N E A R I T Y  

One of the most important components of interpretation of regression 
parameters in multiple regression concerns the relative nature of weights. 
Each weight in a multiple regression equation can be interpreted as the 
number of steps on Y that follow one step on X, given all the other 
predictors in the equation. In other words, the presence of other predictors 
can change the parameter estimate for any given predictor. To illustrate 
this, we summarize parameter estimates from the three regression runs 
for the example from Section 3.4. In the example we predicted Breadth 
(Dimensionality) of Cognitive Complexity, CC1, from Depth of Cognitive 
Complexity, CC2, Overlap of Concepts (Categories), OVC, and Level of 
Education, EDUC. Table 8.1 presents the variable intercorrelations. 

All correlations in Table 8.1 are statistically significant (even after 
Bonferroni adjustment for experiment-wise error; n = 327). Correlations 
in Table 8.1 suggest that Cognitive Complexity variables show high inter- 

Table 8.1: Intercorrelations of CC1, CC2, 0 VC, and ED UC 

CC2 
EDUC 
OVC 

CC1 CC2 EDUC 
0.154 
0.301 
-0.784 

0.233 
-0.527 -0.340 
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correlations. In addition, Level of Education is substantially correlated 
with each of the Cognitive Complexity variables. The sign of the correla- 
tions are as one would expect: 

1. The positive correlation between EDUC and CC1 suggests that 
individuals with more formal education display more Breadth of 
Cognitive Complexity. 

2. The positive correlation between EDUC and CC2 suggests that 
individuals with more formal education have more Depth in their 
concepts. 

3. The negative correlation between EDUC and O VC suggests that 
individuals with more formal education have crisper, that is, less 
overlapping, concepts. 

As one can imagine, correlations between predictors can have effects 
on the size of regression parameter estimates. Thus, the presence or 
elimination of variables can have substantial effects on the appraisal of 
any /~. However, this is not necessarily the case. Table 8.2 contains 
examples of both. The variable whose b weight is most affected by the 
presence of the other predictors is ED UC. In the unconstrained model the 
/~ estimate is 0.39. In the second constrained model, which contains only 
predictor ED UC, the estimate is 1.94. 

Suppose the significance tests in the second to last column of Table 8.2 
had been performed in their two-tailed form. Then, whereas the uncon- 
strained model would have suggested that EDUC does not significantly 
contribute to predicting CC1 (p = 0.057), the second constrained model 
would have suggested the opposite conclusion (p < 0.01). 

Largely unaffected in spite of their high correlations with each other 
and other predictors (see Table 8.1), are variables CC2 and OVC. Table 
8.2 suggests that parameter estimates for CC2 and O VC, their standard 
errors, and the t values for these variables remain, within very tight limits, 
the same regardless of whether predictor ED UC is in the equation or not. 

In general, one calls intercorrelated predictors multicollinear. When 
these correlations affect estimation of regression parameters, a problem 
of multicollinearity exists. If this problem exists, answering the following 
questions can become problematic (see Neter et al., 1996, p. 285): 
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Table 8.2: Three Regression Runs for Prediction of Breadth of Cognitive Com- 
plexity 

Variable I Coefficient Std. Error t Value p Value (1 Tailed) 

Unconstrained Model 
Intercept 
CC2 
OVC 
EDUC 

29.39 1.52 19.28 < 0.01 
-0.21 0.02 -10.25 < 0.01 

- 22.40 0.86 - 26.09 < 0.01 
0.39 0.21 1.91 0.03 

Constrained Model 1 
Intercept 
CC2 
OVC 

31.40 1.10 28.45 < 0.01 
-0.21 0.02 - 10.10 < 0.01 

-22.83 0.83 -27.44 < 0.01 
Constrained Model 2 

Intercept 
EDUC 

1.96 1.67 1.18 0.12 
1.94 0.34 5.69 < 0.01 

1. What is the relative effect that each predictor has? 

2. What is the magnitude of each predictor's unique effect? 

3. Can predictors be eliminated because their contribution is too little? 

4. Should one include additional predictors in the equation? 

Answering these questions is straightforward only if the predictors in 
the equation are uncorrelated and, in addition, do not correlate with other 
variables that could possibly be used as predictors. In this case, param- 
eter estimates remain the same regardless of what other (uncorrelated) 
predictor is included in the equation. If, however, and this is typical of so- 
cial science empirical data, predictors are correlated, problems may occur. 
While multicollinearity does not, in general, prevent us from estimating 
models that provide good fit (see Table 8.2), interpretation of a parameter 
estimate becomes largely dependent upon what other predictors are part 
of the regression equation. 
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8.1 Diagnosing Multicollinearity 

Among the most important indicators of multicollinearity are the follow- 
ing: 

1. Correlations exist among predictors (see Table 8.1). 

2. Large changes occur in parameter estimates when a variable is added 
or removed (see Table 8.2). 

3. Predictors known to be important do not carry statistically signif- 
icant prediction weights (see two-tailed test of EDUC in uncon- 
strained model in Table 8.2). 

4. The sign of a predictor is counterintuitive or even illogical. 

5. Surprisingly wide confidence intervals exist for parameter estimates 
for predictors known to be of importance. 

6. There exists a large variance inflation factor (VIF). 

While many of these indicators are based on prior knowledge and 
theory, others can be directly investigated. Specifically, Indicators 3 and 
4 are fueled by substantive knowledge and insights. All the others can 
be directly investigated. In the following we give a brief explanation of 
Indicator 6, the variance inflation factor. 

Consider an unconstrained multiple regression model with p predictors 

(p > 1). Regressing predictor m onto the remaining predictors can be 
performed using the following regression equation: 

Xm -- bo + E bjXj + Residual, for j # m. 
jeM 

Let R2m be the coefficient of multiple determination for this model. 
Then, the VIF for predictor m is defined as 

1 
VIF m = , ~ . .  (8.1) 

1 /~n 

The VIF has a range of 1 _< VIF _< +co. The VIF increases with the 
severity of multicollinearity. Only when R~m - 0, that  is, when predictors 
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Table 8.3" Regressing Predictors CC2, O VC, and EDUC onto Each Other 

Variable I Coefficient Std. Error t Value p Value(1 Tailed) 

Dependent Variable CC2 
Intercept 
EDUC 
OVC 

46.25 3.25 14.21 < 0.01 
0.68 0.56 1.21 0.11 

-20.59 2.04 -10.11 < 0.01 
Dependent Variable OVC 

Intercept 
EDUC 
CC2 

1.24 0.068 18.86 < 0.01 
-0.06 0.01 -4.90 0.01 
-0.01 0.001 -10.11 < 0.01 

Dependent Variable EDUC 
Intercept 
CC2 
OVC 

5.14 0.30 17.30 < 0.01 
0.01 0.01 1.21 0.11 

- 1.10 0.22 -4.90 < 0.01 

are uncorrelated, does one obtain the minimum value, VIF - 1. It is 
important to note that the VIF is variable-specific. As was indicated in 
the example at the beginning of this chapter, not all variables are equally 
affected by multicollinearity. 

The VIF increases as the multiple correlation among predictors, pre- 
dicting other predictors, increases. A rule of thumb is that when the 
VIF __ 10, problems with multicollinearity are severe, that is, multi- 
collinearity greatly influences the magnitude of parameter estimates. 

To illustrate the VIF we use the example again where we predict 
Breadth of Cognitive Complexity (CC1), from Depth of Cognitive Com- 
plexity (CC2), Overlap of Concepts (OVC), and Level of Education 
(ED UC). In the following we estimate the VIF for each of the three pre- 

dictors, CC2, 0 VC, and ED UC. 
To do this, we have to estimate the following three regression models" 

CC2 

OVC 

EDUC 

- b0 4. bl �9 OVC 4- b2 �9 EDUC + Residual, 

= b0 4- bl �9 CC2 + b2 �9 EDUC + Residual, 

= bo + bl �9 CC2 + b2 �9 OVP + Residual. 

Results of these analyses appear in Table 8.3. 
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The multiple correlations for the three regressions are 0.281, 0.328, 
and 0.119, respectively. Inserting the R 2 into Equation (8.1) yields 

1 
VIFcc2 = = 1.391, 

1 - 0.281 
1 

VIFovc = - 1.488, 
1 - 0.328 

1 
VIFEDuC -- -- 1.135. 

1 --0.119 

These values can be interpreted as the factor by which the expected 
sum of squared residuals in the OLS standardized regression coefficients 
inflates due to multicollinearity. In other words, because the predictors 
are correlated, the expected sums of squared residuals are inflated by a 
factor of the VIF. 

For example, because the three predictors CC2, 0 VC, and ED UC are 
correlated, the expected residual sum of squares for CC2 is inflated by a 

factor of 1.391. In the present example, none of the VIF values come even 
close to the critical value of 10. Therefore, we can conclude that  analysis 

of the present data does not face major multicollinearity problems. Nev- 
ertheless, notice how the sign of the regression coefficient for CC2 changes 
in the presence of EDUC, and how the sign of the coefficient for EDUC 
changes depending on whether CC2 or O VC is in the equation (Table 
8.3). 

8.2 Countermeasures  to Mult icol l ineari ty  

There is a number of countermeasures one can take in the presence of 
multicollinearity. In the following paragraphs we give a brief overview of 
countermeasures. Examples and more detailed explanations of the effects 
of centering follow. 

Centering Predictors 

Centering predictors often reduces multicollinearity substantially. For ex- 
ample, squaring coefficients of a linear trend to assess a quadratic trend 

generates vectors that  are strongly correlated with each other. Using 
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orthogonal polynomial parameters reduces this correlation to zero. Or- 
thogonal polynomial parameters are centered (see Section 7.2; an example 
of the effect created by centering predictors is given below). 

Dropping Predictors 

When parameter estimates for certain predictors severely suffer from mul- 
ticollinearity one may drop one or more of these predictors from the mul- 
tiple regression equation. As a result, inflation of standard errors of pa- 
rameter estimates will be reduced. There are, however, several problems 
associated with this strategy. Most importantly, dropping predictors pre- 
vents one from estimating the contribution that these predictors could 
have made to predicting the criterion. In addition, estimates for the pre- 
dictors remaining in the model may be affected by the absence of the 
eliminated predictors. 

Ridge Regression 

This method creates biased estimates for ~. However, these estimates 
tend to be more stable than the unbiased OLS estimates (for details see 
Neter et al., 1996, cf. Section 12.3). 

Performing Regression with Principle Components 

This approach transforms predictors into principal component vectors 
which then are used as predictors for multiple regression. For details 
see Rousseeuw and Leroy (1987); for a critical discussion of this method 
see Hadi and Ling (1998). 

8 . 2 . 1  D a t a  E x a m p l e  

In the following paragraphs we illustrate the effect created by centering 
predictors. For an example, consider the case in which a researcher asks 
whether there exists a quadratic trend in a data set of five measures. To 
test this hypothesis, the researcher creates a coding variable that tests 
the linear trend, and a second coding variable that is supposed to test the 
quadratic trend. Table 8.4 displays the coding variables created by the 
researcher. 
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Table 8.4: Centering a Squared Variable 

Lin Trend I Lin Trend II Quad Trend I Quad Trend II 
A B F G 

1 - 2  1 4 
2 - 1  4 1 
3 0 9 0 
4 1 16 1 
5 2 25 4 

Table 8.4 displays four coding variables. Variable A was created to 

assess the linear trend. It shows a monotonic, linear increase. Variable 

B results from centering A, that is, from subtracting the mean of A, 
fi~ = 3, from each value of A. Variable F was created to assess the 

expected quadratic trend. Variable F results from squaring the values of 

A. Variable G was also created to assess the quadratic trend. It results 

from squaring B, the centered version of A. 

As a means to determine whether using variables from Table 8.4 could 

cause multicollinearity problems we correlate all variables that  could pos- 

sibly serve as predictors in a multiple regression, that  is, all variables in 

the table. The correlation matrix appears in Table 8.5. 

Table 8.5 shows a very interesting correlation pattern. As expected, 

Variable A correlates perfectly with Variable B. This illustrates that  the 

Pearson correlation coefficient is invariant against linear transformations. 

Both Variables A and B correlate very highly with Variable F,  that  is, 

the square of A. This high correlation illustrates that  squaring variables 

typically results in very high correlations between the original and the 

Table 8.5: Correlation Matrix of Centered and Uncentered Predictors 

B 
F 
G 

A B F 
1 

0.98 
0 

0.98 
0 0.19 
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Figure 8.1" Relationships between linear and quadratic predictors before 
and after centering. 

squared variables. However, the square of B, called G in Tables 8.4 and 
8.5, correlates neither with A nor with B. It correlates only with F, 
the other squared variable. Figure 8.1 displays the relationships between 
Variables A and G and A and F. 

The results from Tables 8.4 and 8.5 and Figure 8.1 can be summarized 
as follows: When predictors are highly correlated with other predictors 
because they result from multiplying predictors with themselves or each 
other, centering before multiplication can greatly reduce variable intercor- 
relations. As the present example shows, variable intercorrelations can, 
under certain conditions, even be reduced to zero. 
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Chapter 9 

M U L T I P L E  

C U R V I L I N E A R  

R E G R E S S I O N  

Chapter 8 introduced readers to simple curvilinear regression. This topic 
is taken up here again. Although researchers in the social sciences chiefly 
rely on describing variable relationships using straight regression lines, it 
is generally acknowledged that there are many applications for curvilinear 
relationships. Examples of such relationships include the Yerkes-Dodson 
Law (see Figure 7.1), learning curves, forgetting curves, position effects 
in learning, learning plateaus, item characteristics, and the concept of 
diminishing returns. In other sciences, curvilinear relationships are quite 
common also. For example, in physics the relationship between tempera- 
ture and vapor pressure is curvilinear, and so is the function relating heat 
capacities and temperature to each other. Similarly, sone (loudness) scales 
are nonlinear. Parameters for many of these functions can be estimated 
using the least squares methods discussed in this volume. 

The first two figures depict two scenarios of multiple regression. Fig- 
ure 9.1 depicts standard linear multiple regression using the function 
Z - X + Y. The graph shows a straight plane, a regression hyperplane, 
sloped at a 45 ~ angle. Figure 9.2 presents an example of a curvilinear re- 
gression hyperplane using the function Z = 0.5X 2 + 0.2Y 3. A function of 
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Figure 9.2" Regression hyperplane for Z - 0.5X 2 + 0.2Y 3 
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are as before. The minimization process produces 

0 
0b--~. SSR(b) - O, 

for all bi where i = 0, ..., p, and with p + 1 denoting the number of vectors 

in X. 

The following are examples of curvilinear functions: 

1. Exponential  Function 

y -- bo + bl exp(b2x) 

2. Polynomial 

p 

Y - E bJ xj 
j - O  
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3. Trigonometric Function 

y = b0 + bl sin x + b2 cos x 

4. Vapor Pressure Function 

bl 
y - b0 + - -  + b2 log x + bax + . . . ,  

X 

where x is the vapor temperature (in Kelvin) and the dependent 
variable is y - log P, the logarithm of vapor pressure 

5. Heat Capacity Function 

y = b o + b l x +  m 
b3 
X 2 

6. Negatively Accelerated Function of Practice Trials (Hilgard & Bower, 
1975) 

Pn = 1 - (1 - pl)(1 - O) n - l ,  

where n denotes the trials, 0 is the flatness parameter indicating 
how steep the increase is in response probability (pn), and pl is the 
probability of the first response; Figure 9.3 gives three examples of 
such curves. 

The following example uses data from the project by Spiel (1998) on 
the development of performance in elementary school. We analyze the 
variables Fluid Intelligence F,  Crystallized Intelligence C, and Grades in 
German G in a sample of n - 93 second graders. The hypotheses for the 
analyses are: 

1. Grades in German can be predicted from a linear combination of 
Fluid Intelligence, that  is, training-dependent Intelligence, and Crys- 
tallized Intelligence; 

2. The effects of Fluid Intelligence taper off, so that  the relationship 
between Fluid Intelligence and Grades is nonlinear; and 

3. The relationship between Crystallized Intelligence and Grades is 
linear. 
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Figure 9.3: Three examples of functions of practice trials 
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To test this set of hypotheses we perform multiple, nonlinear regression 
as follows. We create a nonlinear version of variable Fluid Intelligence. For 
starters, we square the raw scores and obtain F2. The second predictor 
is Crystallized Intelligence. We use this variable without transforming it. 
From the data we estimate the following regression parameters 

G - 4.94 + 0.11 �9 F2 + 0.02 �9 C + Residual. 

The multiple R 2 for this equation is 0.43. The statistical analyses 
indicate that whereas F2 makes a statistically significant contribution 
(t = 9.613;p < 0.01), C does not (t = 1.19;p = 0.239). Figure 9.4 
displays the relationship between F2, C, and G. 

The following second example analyzes data using polynomial regres- 
sion. In an experiment on the effectiveness of an antidepressive drug, 
it was asked whether the proportion of patients that recovered from re- 
active depression could be predicted from the dosage of the drug. The 
researchers used five doses of the drug: 1/2 a unit, 1 unit, 3/2 units, 2 
units, and 5/2 units. Figure 9.5 displays the proportions of patients that 
recovered after taking the drug for four weeks (line with triangles, PROP) 
and the curves of the parameters of the first (line with circles ; P 1), second 
(line with • signs, P2), and third (line with + signs, P3) order polyno- 
mials used to approximate the observed proportions. Proportions were 
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3 

Figure 9.4" Multiple nonlinear relationships between the predictors, Crys- 
tallized Intelligence and Fluid Intelligence, and the criterion, Performance 
in German. 
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Figure 9.5: Raw scores of drug effects and indicators used to predict the 
raw data curve. 
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Table 9.1: Raw Scores and Polynomial Coe]ficients for Drug E O%iency Exam- 
ple 

Observed Polynomial Coefficients 
Dosage Proportion Linear Quadratic Cubic 

1/2 0.05 
1 0.25 

3/2 0.4 
2 0.45 

5/2 0.43 

- 2  2 - 1  
- 1  - 1  2 

0 - 2  0 
1 - 1  - 2  
2 2 1 

calculated using independent samples. 

The raw scores the polynomial coefficients used to smooth the poly- 

nomials I appear in Table 9.1. Using these values to estimate parameters 

for a multiple regression equation yields 

Proportion = 0.32 + 0.096 �9 P1 - 0.039 �9 P2 + 0.002 �9 P3 + Residual. 

Whereas the parameters for the linear and the quadratic component 

of this equation are statistically significant, the parameter  for the third- 

order polynomial is not. More specifically, we calculate the following t 

values and tail probabilities: for PI:  t = 31.75, p = 0.02; for P2: t = 

-15.09, p = 0.04; and for P3: t = -0.661, p = 0.628. 

The multiple R 2 is 0.999. We thus conclude that  the curve of propor- 

tions can be approximated almost perfectly from the first-, second-, and 

third-order orthogonal polynomials. 

Because the third-order polynomial did not contribute significantly to 

the model -da ta  fit, we now consider a reduced model. Specifically, we 

consider the model that  only includes the first- and second-order polyno- 

mials. The polynomials included in the first model are orthogonal (see 

Section 7.2). Therefore, there is no need to recalculate the above equa- 

tion to obtain parameter  estimates for the reduced model. One can simply 

drop the term of the predictor not included in the reduced model. We 

1Smoothing in Figure 9.5 was performed using the spline smoother in SYSTAT's 
GRAPH module. 
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Figure 9.6" Second-order polynomial describing dosage effects (R 2 - 
0.999). 

obtain in the present example 

Proportion - 0.32 + 0.096 �9 P1 - 0.039 �9 P2 + Residual. 

The portion of variance accounted for by this model is still R 2 - 0.999. 

The test statistics for the slope parameters are: for PI:  t = 37.45, p = 

0.001; and for P2: t -- -17.80, p = 0.003. 

We thus conclude that  the reduced model also provides excellent fit. 

To illustrate how good the fit is, consider Figure 9.6. 

Figure 9.6 displays the observed proportions and the fitting curve from 

the first- and second-order polynomials. Obviously, the fit is close to 

perfect. Only for the 1 and 3/2 doses are there minor deviations. 

The figure illustrates also, however, that  extrapolation can suggest 

very misleading conclusions. Administering a dose greater than 2 units 

of the drug is displayed as having a lesser effect than doses just around 2 

units. While this trend may be plausible within a certain range, for larger 

doses this would mean that  proportions are negative. Readers are invited 

to interpret negative proportions in this particular example. 



Chapter 10 

I N T E R A C T I O N  T E R M S  

IN R E G R E S S I O N  

Regression interaction is one of the hotly and widely discussed topics of 
regression analysis. This chapter provides an overview of the following 
three topics: First, it presents a definition, along with examples, of in- 
teraction in regression. Second, it discusses the meaning of multiplicative 
terms in regression models. Third, it introduces the distinction between 
multiplicative terms and interaction terms in regression models and illus- 
trates the use of interaction models. 

1 0 . 1  D e f i n i t i o n  a n d  I l l u s t r a t i o n s  

To define interaction in regression, one needs at least three variables. Two 
of these are predictors and the third is the criterion in multiple regression. 
Consider the case where researchers predict the criterion, Y, from the 
predictors, X1 and X2, using the following regression equation: 

Y = Z0 + Z~XI + Z2X2 + e. (10.1) 
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In this model, parameters /~1 and /~2 represent the regression main 

effects 1 of the predictors, X1 and X2. Interpretation of regression main 

effects was discussed in Section 2.3 and Section 3.2. In brief,/~1 indicates 

how many steps on Y follow from one step on X1, given X2. This applies 

accordingly to/~2. 

Application of Equation (10.1) implies that the effects of X1 and X2 

are independent in the sense that neither/31 nor/32 change with X2 or X1, 

respectively; that is, neither/31 or/32 are functionally related to X2 or X1, 

respectively. In other words, suppose that the first predictor is changed 

by one unit; then the change of the criterion is exactly/31 regardless of the 

value that  the second predictor currently has. An example of a regression 

hyperplane (also termed a response surface) for this situation is given in 

Figure 3.1. Noninteracting variables are also termed "additive". 

There are many instances, however, where the assumption of inde- 

pendent regression main effects does not apply. Consider, for example, 

the effects of drugs taken together with alcohol. Drug effects can vary 
dramatically depending on blood alcohol level. In technical terms, the 

regression slope of drug on behavior varies with blood alcohol level. The 

same may apply to the effects of alcohol. 2 

Thus, regression interaction can be defined as follows: When the es- 

timate of the slope parameter for one predictor depends on the value of 
another predictor, the two predictors are said to interact. There are two 

subtypes of regression interactions. 

1. Symmetrical Regression Interaction: Two predictors mutually affect 

each other's slopes; 

2. Asymmetrical Regression Interaction: One predictor affects the slope 
of the other predictor but its own slope is not affected. 

When predictors interact, regression hyperplanes display curvature, 
indicating the changes in regression slopes. The curvature of regressions 

l In the current context, we use the term "effect" in a very broad sense. When, in 
earlier and later chapters we say a variable allows one to predict some other variable, 
we associate the same meaning as when saying a variable has an effect. We use the 
term "effect" here for brevity of notation and because of the association to analysis of 
variance. 

2In analysis-of-variance contexts, where predictor levels are categorical or catego- 
rized, this type of interaction is termed treatment-contrast interaction (see Kirk, 1995). 



10.1. DEFINITION AND ILL USTRATIONS 153 

55 ". "-. ~\ ". ' . . .  ".. ~x',kk.. " , . "  

" " " " ""':"x 

,.~ -0.5I: ',, '. ". ". ",, .... "~ 
2 ~ - ~ ~ "  ' '~" "" " """" 1 

_ l . o l _ _ _ _ _ _ m  " I". �9 iX ' . /  
-1.0 -0.5 0.0 0.5 1.0 

" ~ " X 

Figure 10.1: Response surface and its contours when no interaction is 
present. 

with interactions are of a certain kind: the contour lines 3 are not parallel. 

In contrast, when there exists no interaction, contour lines are parallel. In 

order to give a visual impression of these three-  dimensional surfaces we 

suppose for the moment that  the true regression coefficients are known. 

Three pairs of figures illustrate this relationship. The left panel of Figure 

10.1 displays the hyperplane of the multiple regression function, Y = 

15 + 5X1 + 3X2. Interactions are not part  of the model. Therefore, the 

plane is without curvature. The contour lines for this hyperplane appear 

in the right panel. The lines are perfectly parallel. They indicate that  

the hyperplane slopes upward as the values of both X1 and X2 increase. 

This happens in a perfectly regular fashion. 

In contrast, Figure 10.2 displays a response surface with an interaction. 

Specifically, the left panel of Figure 10.2 displays the surface for the model 

Y = 15 4- 5X1 4- 3X2 - 15XIX2, that  is, the same model as in Figure 

10.1, but with an added multiplicative term. The figure indicates that  Y 

increases with X1 and X2, and that  the increase is negatively accelerated, 

that  is, becomes smaller. In addition, the response surface displays smaller 

values as the difference between X1 and X2 becomes smaller. 

The right panel of Figure 10.2 displays the contour lines for this re- 

3Contour lines are projections of elevation on the Z-axis onto the X-Y plane. Con- 
tour lines indicate where the elevation is the same. 
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Figure 10.2: Response surface and its contours when multiplicative inter- 
action is present. 

gression model. No doubt, these lines are not parallel. This can be seen 
from the elevations indicated by the lines. 

It is important to notice that nonlinear response surfaces do not nec- 
essarily suggest the presence of interactions. This is illustrated in Figure 
10.3. The left panel of this figure displays the response surface for the 
model Y - 7 0 -  2X~ - 3X22. The contour plot for this model appears in 
the right panel. Obviously, the contour lines are not linear, but they are 
parallel. We conclude from these examples that it may not always be ob- 

vious from the Y • X1 x X2 plot whether there exists an interaction. The 
contour plot can reveal the existence of interaction. When there are more 

than two predictors, it may not be possible to create a visualization of 

variable relationships. Therefore, researchers typically focus on using sta- 
tistical and conceptual approaches to discuss possible interactions. The 
following section introduces readers to concepts of multiplicative terms 
and interactions. 

10.2 Multipl icative Terms 

This section explains and illustrates two situations in which a regression 
model contains a multiplicative term. First, this chapter addresses the 
problem of asymmetric regression interaction, that is, the case where one 

predictor in multiple regression determines the slope of the second. Sec- 



10.2. MULTIPLICATIVETERMS 

3o0 -" ::!~ ;~- :'-:- .%: :A!.LL: :: ::: .'-'.:-:.:~2~/,; .. 
" " " / -  " �9 " " " " " " - \ "  " "  �9 " : 2 ~  ;oo 5 k.....,.-.. " . ' , ................. .. �9 ,',...... 

e .  " / : . - ' .  - H ' "  . . . .  " ' - , , -  . "  ' \ ' - ' . ' ~  

[ : ! : . . , . "  ., .. .. . ~.  ' . ' , t  

,~oo i .i, ;1 

- 10 -5 0 5 10 
. . .  X 

155 

Figure  10.3: Nonlinear  response surface and its contours  when no inter- 
act ion is present .  

ond, the  chapter  addresses the case where one predictor  determines  bo th  

the  in tercept  and the  slope of a second predictor  (for more i n -dep th  cov- 

erage of these topics see Cohen,  1978; Fisher,  1988; Bryk  & Raudenbush ,  

1992; Rovine & von Eye, 1996). 

10.2.1 Predic t ing  the Slope Parameter  from a Second 
Predictor  

Consider  the case of a simple regression tha t  relates a predictor,  X1, and 

a cri terion, Y, to each other,  or 

Y = r + r X~ + e. 

If one adds a second predictor ,  X2, to this model,  one can create  a 

s t a n d a r d  mult iple  regression equation,  t ha t  is, 

Y =/30 + ~1 X1 + ~2X2 + e. 

In this case, one would assume tha t  the predictors  X1 and X2 have 

independent  effects upon the criterion Y. 

In contras t ,  we now assume tha t  X2 has an effect on the regression 

slope of X1, ~1. This  can be expressed using the following sys tem of two 
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equations 

Y = 130 +/~IX1 + e  (10.2) 

/~1 = /~2 +/~3X2. (10.3) 

Note that Equation (10.3) describes a functional relationship between 
the regression slope of the first predictor and the values of the second 
predictor that is linear. This should not be confused with the usual re- 
gression equation that relates a criterion to a predictor, allowing for a 
residual term that is supposed to be stochastic. Substituting Equation 
(10.3) into Equation (10.2) yields the multiple regression equation 

Y =/30 + (/~2 +/~3X2)X1 + e, 

which has the form of a simple regression of Y on X1, but the slope now 
depends on X2. Solving the middle expression yields 

Y =/~0 +/32X1 +/~3X~ X~ + e. (10.4) 

This equation does include a multiplicative (or product) term, X1X2. 
The model described by this equation assumes that the slope of the re- 
gression of Y on X1 depends on the value of X2. More specifically, for a 
discrete subset of values of X2, this equation assumes that the slope/31 
varies monotonically with X2. For example, it could be that the slope 
increases proportionally with X2. In addition, Equation (10.4) implies 
that the criterion, Y, does not vary with X2 when X1 = 0. 

Equation (10.4) can be estimated. If parameter estimate b3 is statis- 
tically significant, one can assume that the effect of X1 on Y depends on 
X2, or is mediated by X2. In other words, if b3 ~ 0, then the effect of X1 
on Y is not constant across the values of Y2. 

Equation (10.4) illustrates that the assumption that the regression 
of one variable onto a second depends on a second predictor yields a 
regression equation with one main effect and one product term. Treating 
the multiple regression model given in (10.4) as the unconstrained model 
and the simple regression model given in (10.2) as the constrained model, 
one can test whether including the product term results in a significant 
improvement over the simple model. If the interaction accounts for a 
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significant portion of variance, parameter estimate b3 will be different 

than zero, and one can conclude that  the parameter estimate, bl, is not 
constant across the observed range of values of predictor X1. 

The following numerical examples use data from an experiment on 
recall of short narratives that  differed in concreteness, TG (von Eye, 
SSrensen, & Wills, 1996). A sample of n = 327 adults, aged between 

18 and 70, read two short narratives each. The instruction was to read 
and memorize the texts. Before reading the texts, each participant solved 
a task that  allowed researchers to determine cognitive complexity, CC1. 
The dependent variable was the number of text propositions recalled, 
REg. 

In the first example we illustrate use of Formulas (10.2), (10.3), and 
(10.4). We regress recall performance, REC, onto text concreteness, TG, 
and obtain the following regression equation: 

REC = 113 .39-  25.54.  TG + Residual. 

The negative sign for TG in this equation suggests that  more concrete 

texts are better recalled than more abstract texts. The slope coefficient is 
statistically significant (t = -6 .27 ;p  < 0.01), thus suggesting that  recall 
depends on text concreteness. The portion of criterion variance accounted 
for is R 2 - 0.11. 

For the following analysis we assume that  the slope parameter for text 
concreteness is mediated by subject cognitive complexity. Specifically, 
we assume that  subjects differing in cognitive complexity differ in the 
way they exploit the recall advantage of text concreteness. From this 

assumption we create an equation of the form given in (10.4) and obtain 

the following parameter  estimates: 

REC -- 112.60 - 30.24 �9 TG + 0.47 �9 (TG �9 CC1) + Residual. 

Both parameters in this equation are significant (t = -6 .53 ,p  < 
0.01; t = 2.11,p - 0.04, respectively), thus indicating that  the null hy- 
pothesis of no mediation can be rejected. The portion of variance ac- 
counted for by the model with the product term is R 2 - 0.12. 

The left panel of Figure 10.4 displays the response surface for the 
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Figure 10.4: Relationship between the predictors, Text Concreteness and 
interaction with Cognitive Complexity, and a contour plot. 

regression model that includes the interaction term. 4 The surface suggests 
a bimodal distribution with a higher peak for concrete texts than for 
abstract texts. (Intermediate texts were not used in this experiment.) 
This suggests that recall is better for concrete texts than for abstract 
texts. The figure also suggests that the variance of (TG �9 CC1) values is 
greater for TG = 2. Thus, there may be a problem with heteroscedasticity 
in these data. The right panel of Figure 10.4 displays the contour plot for 
these data. 

We now ask whether the model with the product term is statistically 
better than the model without. To do this, we consider the model with the 
product term the unconstrained model. The model without the product 
term is the constrained one. Inserting into Formula (3.24) of Section 3.3.1 
we obtain 

0 . 1 2 0 - - 0 . 1 0 8  

2-1 - 4.418, 
F - -  1 - 0 . 1 2 0  

3 2 7 - 2 - 1  

a value that is identical to the t value given above (t = 2.112 = 4.45) 
which is, within rounding, equal to F = 4.418 (this relationship between 
t and F always applies, when dfl = 1 for the F test). For dfl = 1 and 

4The surface was created using SYSTAT's kernel estimation option, available in the 
CONTOUR routine of the GRAPH module. 
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Table 10.1: Intercorrelations of Text Concreteness, TG, Recall, REC, Cognitive 
Complexity, CC1, and the Product Term, REC. CC1 

TG 
REC 

TG �9 CC1 

CC1 TG REC 
-0.071 1.000 
0.119 -0.328 
0.792 0.483 

1.000 
-0.062 

dr2 = 324 this F value has a tail probability of p = 0.036. Smaller than 
a - 0.05, this value allows us to conclude that  the more complex model, 
the one with the multiplicative term, explains the data better than the 
more parsimonious model without the multiplicative term. 

Table 10.1 contains the correlations between the variables used for 
these analyses. Readers are invited to discuss possible multicollinearity 

problems present in these analyses. 

1 0 . 2 . 2  P r e d i c t i n g  B o t h  S l o p e  a n d  I n t e r c e p t  

Consider the case where not only the slope but also the intercept depends 
on the level of a second predictor. This case can be described by the 

following system of three equations: 

Y = Zo + Z,x ,  + ~ (10.5) 

~1 = /~2 +/~3X2 (10.6) 

/~o = f~4 +/~5X2. (10.7) 

Inserting (10.6) and (10.7) into (10.5) yields 

Y -"/~4 ~- ]~5X2 ~-/~2X1 ~-/~3XIX2 -~- s (10.8) 

Obviously, this is a multiple regression equation that  includes both 
main effects and the multiplicative term. In this equation, the tests con- 
cerning the parameters/~4, ;35,/~2, and f~3 have a meaning different than 
the meaning usually associated with these tests. 5 More specifically, the 

5It should be noted that one of the main differences between the model given in 
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following tests are involved: 

�9 Test of ~5: is the intercept, ~0, dependent on X2? 

�9 Test of/~a: is the slope,/~1, dependent upon X2? 

Results of these tests can be interpreted as follows: 

1. If/~5 is not zero, then the intercept of the regression of Y on X1 

depends on X2 

2. If ~5 = 0, then the relationship between /~0 and ~4 is constant, 

regardless of what value is assumed by X2, and the intercept, /~0, 

remains the same for all values of X2 

3. If/~3 is zero, the slope of the regression of Y on X1 is constant and 

unequal to zero across all values of X2 

4. If both/~2 and ~3 are zero, there is no relationship between Y and 

X1 

5. If ~3 is not zero, then the slope of the regression of Y on X1 depends 

on X 2. 

The following example uses data  from the von Eye et al. (1996) ex- 

periment again. We now regress the adults'  recall on their educational 

background ED UC. For the n = 327 participants we estimate 

REC = 46.07 § 6.03 �9 EDUC § Residual, 

which indicates that  subjects with a higher education (measured as num- 

ber of years of formal school training) tend to have higher recall rates. 

While only accounting for R 2 - 0.020 of the criterion variance, this rela- 

tionship is statistically significant (t - 2.60,p = 0.010). 

One may wonder whether the regression line and intercept of this 

relationship depend on the subjects' cognitive complexity. If this is the 

(10.8) and the model given in (10.4) is that in (10.8) the criterion, Y, can depend on 
X2 even if X1 assumes the value 0. 
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Table 10.2: Significance Tests for Prediction of Intercept and Slope Parameters 
of Regression of Recall on Education 

Variable Parameter Std. Error t value p value 

Intercept b4 - - 1 0 . 7 8  26.24 -0.41 0.682 
CC1 b5 - 5.33 2.06 2.58 0.010 

EDUC b2 - 16.60 5.50 3.02 0.003 
CC1 * EDUC b3 - - 0 . 9 7  0.41 -2.35 0.019 

case, the intercept of the slope and the slope itself may vary with subjects' 

cognitive complexity. We estimate the following regression parameters: 

REC = -10.78 + 5.34 �9 CC1 + 16.60 �9 EDUC 

- 0.97 �9 CC1 �9 EDUC + Residual. 

While still only explaining 4.3% of the criterion variance, this equation 
contains only significant slope parameters. The intercept parameter is not 

significant. Table 10.2 gives an overview of significance tests. 

These results can be interpreted as follows: 

�9 The intercept of the regression of REC on EDUC is zero (p(bs) > 

0.05); 

�9 However, this intercept varies with CC1 (p(b4) < 0.05) 

�9 The slope of the regression of REC on EDUC depends on CC1 
(p(b2) < 0.05 and p(b3) < 0.05). 

Caveats  and P r o b l e m s  

There are two major issues that  need to be considered when including mul- 

tiplicative terms in multiple regression. The first of these issues concerns 

model specification. The second concerns characteristics of the multiplica- 

tive terms. The former issue is addressed in the following paragraphs, and 

the latter in Section 10.3. 
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Model Specification 

Section 10.2 illustrated that hypotheses concerning interactions between 
two predictors can lead to two different types of models. The first type of 
model involves one main effect term and one product term. This model 

is asymmetric in nature in that it considers the effect of predictor P2 on 
the slope of the regression line for C on P1. Investigating the inverse 
effect, that is, the effect of predictor P1 on the slope of the regression 
line of C on P2, implies a different model. This model involves the same 
multiplicative term as the first. However, it involves the main effect of 

the other predictor. 
In contrast, investigating a multiple regression model of the type given 

in Formulas (10.5), (10.6) and (10.7) implies a symmetrical model in the 

sense that (10.8) does not allow one to discriminate between the models 

that investigate 

1. the effects that predictor P2 has on the slope and intercept of the 

regression line for C on P1, and 

2. the effects that predictor P1 has on the slope and intercept of the 

regression line for C on P2. 

Thus, researchers should be aware that always using one particular 
regression model to treat interaction hypotheses can lead to misspecified 
models and, therefore, to wrong accounts of data characteristics. Re- 
searchers should also be aware that the models discussed in the last sec- 
tions are only two of many possible models that lead to a multiplicative 

term. 
Although these models can differ widely in meaning, they are often 

treated as equivalent in that the model that involves both main effects 
and the product term is suggested for testing all interactions (see also 

Aiken & West, 1991). 

10.3 Variable Character is t ics  

This section addresses three issues that arise when including multiplica- 

tive terms in multiple regression: 

1. Multicollinearity 
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2. Leverage points 

3. Specific problems concerning ANOVA-type interactions 

1 0 . 3 . 1  M u l t i c o l l i n e a r i t y  o f  M u l t i p l i c a t i v e  R e g r e s s i o n  

T e r m s  

Table 10.1 indicated that the intercorrelations between the variable T G ,  

CC1 and its constituents were very high. Specifically, the correlation 
between T G  �9 CC1 and TG was r = 0.483, and the correlation between 
T G  �9 CC1 and CC1 was r - 0.792. Another example appears in Table 
10.3. 

In a fashion analogous to Table 10.1, the variable that resulted from 
element-wise multiplying two other variables with each other, E D U C  �9 

CC1,  is highly correlated with each of its constituents, EDUC and CC1. 

These examples are indicative of a ubiquitous problem with multiplica- 
tive terms in regression analysis: Variables that result from element-wise 
multiplying two variables with each other tend to be highly correlated 
with their constituents. As a result, researchers face possibly severe mul- 
ticollinearity problems. It is easy to imagine that models that involve both 
CC1 and E D U C ,  CC1 can suffer from severe multicollinearity problems. 
Readers may wish to go through Section 8.2 again for countermeasures 
to multicollinearity. 

A method often used since a paper by Cohen (1978) is termed "par- 
tialling regression terms." It involves the following three steps: 

1. Calculating multiple regression including only the main effect terms, 
and not the multiplicative term; 

Table 10.3: Intercorrelations of Cognitive Complexity, CC1, Educational Level, 
ED UC, the Multiplicative Term, ED UC, CC1, and Recall, REC 

EDUC 
EDUC * CC1 

REC 

CC1 EDUC EDUC �9 CC1 
0.301 1.000 
0.941 0.574 
0.119 0.143 

1.000 
0.127 
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2. Saving residuals from Step 1; and 

3. Calculating simple regression only including the multiplicative term. 

The reasoning that justifies these three steps is as follows: Step 1 al- 
lows one to estimate the contribution made by the predictors. There are 
no more than the usual multicollinearity problems, because the multi- 
plicative term is not part of the analysis. Step 2 saves that portion of the 
criterion variance that was not accounted for by the main effect terms. 
That portion consists of two parts. The first of these is that portion that 
can be explained by the multiplicative term. The second is that portion 
that cannot by covered by the complete regression model. Step 3 attempts 
to cover that portion of criterion variance that the main effects cannot 
account for. Again, there is no multicollinearity problem, because the 
predictor main effect terms, highly correlated with the interaction term, 
are not part of the regression equation. 

Cohen's procedure allows one to consider the distinction between re- 
gression interaction and the multiplicative or product term in the re- 
gression equation. The product term carries the regression interaction. 
However, because of the possible multicollinearity with the main effect 

terms it must not be confounded with the regression interaction itself. 
It should be noted that residuals are always model-specific. This ap- 

plies also to residuals as specified by Cohen's procedure. If some other 
model is specified, residuals from this model should be used to represent 
the interaction. 

10.3.2 Leverage Points  as Results  of Mult ipl icat ive  
Regression Terms 

In addition to multicollinearity, the presence of leverage points is often a 
problem in the analysis of multiple regression with product terms. Mul- 
tiplying the elements of two predictors with each other can create the 
following problems concerning the size of predictors: 

1. Scale values are created that cannot be interpreted. Consider the 
following example. A researcher multiplies the values from two 5- 
point scales with each other. The resulting products can range from 
1 to 25. While numerically correct, values greater than 5 are often 
hard to interpret. They exceed the range of scale values. 
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2. Leverage cases are created. This problem goes hand in hand with 
the first. The larger the products are, the more likely there are 
leverage cases. 

The following numerical example illustrates the problem with leverage 
cases. The example involves two predictors, X1 and X2, and criterion Y. 
It is assumed that X2 affects the slope of the regression of Y on X1. Data 
are available for five cases. Table 10.4 displays these data, along with 
estimates, residuals, leverage values, and studentized residuals. 

Regressing Y on X1 under the assumption that X2 affects the slope 
parameter yields 

Y = 2.36 + 1.48X1 + 0.06 �9 XIX2 + Residual. 

Because of high predictor intercorrelation and low power, none of the 
parameters are statistically significant. However, there are two leverage 
cases. These are Cases 2 and 5 in Rows 2 and 5 of Table 10.4. In addition, 
there is one outlier, Case 4. 

Figure 10.5 displays the Estimate by Residual plot. Size of data points 
varies with leverage value. The figure suggests that the two leverage 
points are located near the regression line. This is to be expected from 
the definition of leverage points (see Section 5.1). In the present example, 
the two leverage points are located at the ends of the distribution of 

estimates, thus illustrating the two problems listed above. 

Section 5.2 presents remedial methods to deal with outlier problems. 

Table 10.4: Raw Data and Results of Residual Analysis 

Raw Data Results of Residual Analysis 
Y X1 X2 X1X2 Estimate Residual Leverage Student 

7 5 3 15 
3 0 2 0 
4 4 1 4 

19 5 4 20 
20 7 20 140 

10.61 -3.61 0.38 -0.51 
2.36 0.64 0.98 0.53 
8.50 -4.50 0.31 -0.65 

10.89 8.11 0.33 9.39 
20.64 -0.64 0.99 -1.50 
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Figure 10.5: Leverage cases in regression with product term. 

1 0 . 3 . 3  P r o b l e m s  w i t h  A N O V A - T y p e  I n t e r a c t i o n s  

This section deals with specific problems with multiplicative interaction 
terms that  can be best illustrated using ANOVA-like interactions (cf. 

Rovine &von  Eye, 1996). In this type of interaction one does not assume 

that  slope or intercept parameters vary as some monotonic or polynomial 

function of some other variable. Rather, one assumes that  the regression 

relationship is constant over some range of variable values, is constant 

again but with different parameters over some other range of variable 

values, and so on. The ranges are non-overlapping but not necessarily 

exhaustive; that  is, they do not always cover the entire range of observed 

criterion or predictor values. 

Ranges can result from two procedures. One is to categorize a variable. 

Examples of splits include the median (dichotomization) or the 33 per- 
centile splits. Another way to specify ranges is theory-guided. One can, 

for instance, define the range of geniuses on the IQ scale, the range of 

accident-prone car drivers, or the range of binge-drinking alcoholics. For 

the purposes of this chapter, we define a range as a segment of a variable 

where we assume the regression relationship to be constant. ANOVA-like 
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regression interactions refer to this type of range. 

While the statistical power of detecting regression interaction is gener- 
ally low, it can be shown (Rovine &von Eye, 1996) that it is, in addition, 
not equal across the ranges of some variable. Specifically, the power is 
particularly low when the location of an interaction is in the interior of 
the product distribution. It is proposed that transforming original predic- 
tor values into a set of effect coding vectors (as one would do in ANOVA 
interaction testing) gives one the best chance of showing an interaction 
when it indeed exists. 

Example 

Consider the situation displayed by Table 10.5. This table crosses the two 
predictors Cognitive Complexity, CC, and Educational Level, EL. CC is 
split in the three levels of low, medium, and high. EL is split in the three 
levels of no high school diploma, high school diploma, and higher. 

Both variables, Cognitive Complexity and Educational Level are pre- 
dictive of recall performance. The product of CC and EL forms a bivariate 
distribution. An ANOVA-like interaction would exist if for some combi- 
nation of ranges of these two variables a higher (or lower) value on the 
criterion variable would be measured than one would expect if there were 
a uniform, monotonic relationship. In the example, consider the range of 
subjects with high Cognitive Complexity and higher than high school ed- 
ucation (lowest right-hand cell in Table 10.5). If for these subjects recall 
rates are higher (or lower) than one would expect, then there exists an 
ANOVA-like interaction. An interaction term in regression would have to 
explain this unique portion of variance. 

Table 10.5: Cross-Classification of the Categorized Variables Cognitive Com- 
plexity (CC), and Educational Level 

Low CC 
Medium CC 

High CC 

Educational Level 
No high school High school Higher 

X 
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This interaction (and the one in the top left cell) occurs at the extreme 

of the bivariate distribution. It could, however, have occurred in other 
cells as well. Interactions can occur anywhere in the joint distribution of 

two predictors. If interactions occur in other cells than the extreme ones, 
they are said to occur within the interior of the product distribution. 
Table 10.5 displays possible locations. 

In any case, one can describe interactions by the portion of variance 
of a particular combination of predictor values that  is not accounted for 
by the main effect regression terms. 

For the following considerations suppose that  each of the variables 
that  were crossed to form Table 10.5 has categories with values 1, 2, and 
3. Table 10.6 displays the values that  the multiplicative term of the two 
predictors, Educational Level and Cognitive Complexity, assumes for each 

cell. The values in the cells of Table 10.6 result from multiplying values 
of variable categories with each other. 

Table 10.6 illustrates two important points: 

�9 Element-wise multiplication of predictor values increases the range 
of values. In the example the range increases from 1 - 3 to 1 - 9. 
As a result, the variance of the multiplicative variable typically is 

greater than the variance of its constituents. 

�9 Cases that  differ in predictor patterns can be indistinguishable in 
the value of the product variable. If product terms are created as 

was done in Table 10.6, cases in cells with inverted indexes have 
the same product variable value. In the example of Table 10.6, this 

applies to the cases in cell pairs 12 & 21, 13 & 31, and 23 & 32. 

Table 10.6: Cross-Classification of the Categorized Variables Cognitive Com- 
plexity and Educational Level: Values of Product Term 

Low CC (1) 
Medium CC (2) 

High CC (3) 

Educational Level 
No high school (1) High school (2) Higher (3) 

1 2 3 
2 4 6 
3 6 9 
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From this second characteristic of product variables a problem results. 

The problem is redundancy. Cells in the off-diagonal are redundant in 

the way described. Cells in the diagonal can be unique. The extreme 

cells at both ends of the diagonal are always unique. Diagonal cells be- 
tween the extremes are not necessarily unique in their values. 6 Because of 

uniqueness and leverage, cells with unique values tend to have particular 

influence on the size of the regression coefficient. Contributions made by 

interactions in the interior of the product distribution will be relatively 

smaller, that  is, harder to detect. 

Centering has often been proposed as a means to reduce problems 

with the interaction of multiplicative variables. Table 10.7 shows the 
values of the product term after centering the main effect variables. The 

values in the cells of Table 10.7 result from performing two steps. The 

first is centering the main effect variables. The second is creating the 

multiplicative variable's values by element-wise multiplying the centered 

main effect variables. 

Table 10.7 illustrates two characteristics of multiplicative interaction 

variables that are created from centered main effect variables: 

�9 The rank order of variable category values changes; 

�9 The redundancies are more severe than before: there are only three 

different values in the product term; five cells have the value 0. 

Performing regression analysis involving simultaneously centered main 

effect variables and the resulting multiplicative interaction term typically 

yields the following results: 

The parameter estimates and the significance values for the centered 

and the noncentered multiplicative interaction variable will be the 

same; 

The parameters for the centered main effect variables tend to be 

larger. 

6Readers are invited to demonstrate this using a 4 x 4 Table with variable values 
ranging from 1 to 4. Only three of the four diagonal cells will have unique values. 
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Table 10.7: Cross-Classification of the Categorized Variables Cognitive Com- 
plexity and Educational Level: Values of Product Term 

Low CC (-1) 
Medium CC (0) 

High CC (1) 

Educational Level 
No high school (-1) High school (0) Higher (1) 

1 0 1 
0 0 0 

- 1  0 1 

1 0 . 3 . 4  T h e  P a r t i a l  I n t e r a c t i o n  S t r a t e g y  

Repeatedly proposed (Afifi & Clark, 1990; Cronbach, 1987; Rovine & 
von Eye, 1996), the partial interaction strategy models that part of the 
residual that is systematically related to the independent variables. The 
strategy involves the following three steps: 

Categorization of each variable. This step can be performed in an 
exploratory and explanatory fashion. The former searches for seg- 
ments on both the dependent and the independent variable sides 
that allow one to establish (partial) relationships. This search may 
involve more than one set of splits. The latter derives splits from 
theory or earlier results. In either case, researchers should be aware 
that categorizing typically reduces the power to detect statistically 
significant relationships: The fewer the segments, the lower the 
power. 

2. Creating a coding variable that identifies cases in cells. The typical 
coding variable assigns a 1 to each case in the cell assumed to be the 
location of a partial interaction and a-1 to each case in other cells. 
Alternatively, specific assumptions can be modeled for particular 
cells. 

3. Estimating regression parameters for the model that involves the 
residuals of the main effect regression model as criterion variable 
and the coding variables that specify the partial interactions as pre- 
dictors. 
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Figure 10.6: Smooth response surface for the artificial data example of 
partial interaction. 

Data Example 

The following data example was created to illustrate the partial interac- 
tion strategy. The example involves the two predictors, P1 and P2, and 
a criterion, C, measured on eight cases. The analysis of the predictor- 
criterion relationship involves the following three steps: 

Data Description. To obtain a first impression of the predictor-criterion 
relationship, we create a 3D representation of the data. Rather than plot- 
ting the raw scores, we smooth the response surface using the kernel es- 
timator provided in SYSTAT's GRAPH module. The resulting rendering 
appears in Figure 10.6. 

The figure suggests that the criterion has two peaks. The first peak is 
located where P1 assumes low values and P2 assumes high values. This is 
the left peak in Figure 10.6. The second peak, on the right-hand side in 
Figure 10.6, is located where P1 is high and P2 is low. Between the two 
peaks, criterion values are small. Raw data appear in Table 10.8. 

Estimation of a Main Effect Multiple Regression Model. This model 
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Table 10.8: Raw Data .for Illustration of Partial Interaction Strategy 

Case 
Number 

Raw Data 
P~ P2 C h /2 Residuals 

1 25 5 1 0 
3 22 6 -1 0 
2 18 3 -1 0 
1 17 4 1 0 
5 5 33 0 1 
6 4 36 0 -1 
7 2 49 0 -1 
8 1 55 0 1 

7.35 
-4 .75 
-4 .90  

0.97 
-0 .26 
-3 .47  

2.64 
2.43 

involves only the two predictors P1 and P2. No interaction term is part  

of this model. For the data  in Table 10.8 we estimate the following pa- 

rameters: 

C - 5.46 + 0.04 �9 P1 - 0.16 �9 P2 + Residual. 

The linear response surface from this equation appears in Figure 10.7. 

The residuals from this equation are listed in the last column of Table 

10.8. 

As is obvious from Figure 10.7, the linear regression model accounts for 

a large portion of the criterion variance (R 2 = 0.95). However, none of the 

predictors have a significant slope parameter  (tl -- 1.19,pl = 0.29; t2 = 

-2.02,p2 = 0.10). The residuals from this analysis appear in the last 

column of 10.8. 

Specification of Partial  Interaction Terms. The data  were constructed 

so that  there is a strong negative correlation between P1 and P2, 7 and 

tha t  P1 and P2 each explains a large portion of the criterion variance. In 

addition, the data  show nonlinear variation for values high in P1 and low 

in P2, and for values low in P1 and high in P2. The cutoff is after the fourth 

case in Table 10.8. Therefore, after extracting that  portion of the criterion 

7Readers are invited to determine whether there are multicollinearity problems in 
these data. 



10.3. VARIABLE CHARACTERISTICS 173 

60.0t3 

50.0( 

40.0t3 

30.0(3 

20.0C 

10.0( 

30.00 q 
20.00 10.00 

8.00 

2.00 " u  
O.003.00 

Figure 10.7: Multiple linear regression with no interaction terms for the 
data in Table 10.8. 

variance that  can be accounted for by the main effects of P1 and P2, 

we specified two interaction vectors,/1 and /2 ,  each designed to explain 

nonlinear variation in the residuals. The first vector, /1,  was designed to 

explain nonlinear variance for the Pl-lOw and P2-high sector. The second 

vector, /2,  was designed to explain nonlinear variance in the Pl-high and 

P2-1ow sector. For the sake of simplicity, we designed both interaction 
vectors so that  they represent quadratic trends. Both interaction vectors 

appear in Table 10.8. Regressing the residuals from the main effect model 

onto /1  a n d / 2  yields the following equation: 

Residual - 0.00 + 4.49 �9 11 + 0.75 �9 I2 + Residual2. 

The two interaction vectors allow one to explain the R 2 = 0.66 of the 

variance of the residuals from the main effect model. Only the first of the 

interaction vectors has a significant regression slope (t - 3.05, p -- 0.03). 

The second has a slope not different than zero (t = 0.51, p = 0.63). 
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Caveat  

This example illustrates that custom-tailored specification of regression 
interaction terms allows one to explain substantial portions of variance 
that cannot be explained from the multiple regression main effect model. 
It is important to realize, however, that without guidance by theory, the 
search for interaction sectors can carry researchers to data fitting, that 
is, description of sample-specific data characteristics. Such characteristics 
are often unique to samples. Therefore, unless theory dictates where and 
what type of interaction to expect, replications are strongly recommended 
before publishing results. 



Chapter 11 

R O B U S T  R E G R E S S I O N  

This chapter introduces readers to the concepts of robust regression. 
Specifically, after a brief description of the concept of robustness (Sec- 
tion 11.1) and after presenting ridge regression (Section 11.2.1), Least 
Median of Squares (LMS) regression (Rousseeuw, 1984) (Section 11.2.2), 
and Least Trimmed Squares (LTS) regression (Section 11.2.3), we briefly 
describe M-estimators. Section 11.3 covers computational issues. 

11.1 The Concept  of Robustness  

Robustness can be defined as "insensitivity to underlying assumptions 
- for example, about the shape of the distribution of measurements" 
(Hoaglin, Mosteller, & Tukey, 1983, p. 283). Similarly, Hartigan (1983, 
p. 119) calls a statistical procedure robust "if its behavior is not very 
sensitive to the assumptions which justify it." 

Most investigations of robustness focus on parametric or distributional 
assumptions. These are assumptions about a probability model for the 
observations under study and about a loss function connecting statistical 
decision and an unknown parameter value. 1 Accordingly, a large portion 
of robustness investigations examine the robustness of statistical tests. 
A statistical test is considered robust if its "significance level . . .  and 

1Notice that in Bayesian statistics an additional prior distribution needs to be 
considered. 

175 
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power . . .  are insensitive to departures from the assumptions on which 

it is derived" (Ito, 1980, p. 199). Results of such investigations suggest, 
for example, that the F test used in regression analysis and analysis of 
variance is remarkably robust against heterogeneity of variance and non- 
normality, in particular when group sizes are equal, that is, in balanced 
designs. When groups differ in size and variances differ across groups, 
robustness is clearly less pronounced (Ito, 1980). 

In a similar fashion, there have been investigations of the effects of 
other types of violations of assumptions. For example, von Eye (1983) 
performed a simulation study on the effects of autocorrelation on the 
performance of the t test. Results suggested that positive autocorrelations 
lead to inflated values of the t statistic, and negative autocorrelations 
lead to deflated values of the t statistic. These biases increase with the 

magnitude of correlation. 
More recent examples of simulation studies concerning the robustness 

of estimators include the work by de Shon and Alexander (1996). The 
authors examined the following six tests of regression slope homogene- 
ity: the F test, the X 2 test, James's test, the normalized t test, the 
Welch-Aspin F* test, and Alexander's normalized t approximation. Var- 
ious violations of the conditions for proper application of the standard 
F test were simulated, for instance, nonnormality of the dependent vari- 
able, Y, in one or both populations, heterogeneity of error variances, and 
nonorthogonal designs. Results suggest that none of the tests perform 
well under all conditions. However, when the ratios of Y variance to X 
variance are approximately equal, the X 2 test seems to perform well. It 
has more power than the F test or any of the approximations. When the 
ratio of the largest group error variance to the smallest group error vari- 
ance is smaller than 1.50, Alexander's normalized t approximation should 
be used (Alexander & Govern, 1994). Ito (1980) notes that, in general, 
robustness cannot be exhaustively investigated because there are more 
ways to violate assumptions than to satisfy them. Yet, it is important to 
know effects of the most frequent and most important violations. 

One very important aspect of robustness has to do with outliers, specif- 
ically, leverage outliers. The question that arises in this context concerns 

the extent to which estimation of regression parameters is affected by such 
outliers. It is well known that the OLS method is sensitive to such out- 
liers. Consider the following example. A newscaster tries to answer the 
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question whether the number of years a shooting guard has spent in the 

National Basketball Association league allows one to predict the average 

number of points per game scored. The newscaster draws a random sam- 

ple of n = 13 guards, at different points in their careers, from different 

cohorts. Table 11.1 shows the number of years a guard had spent in the 

league, and the average number of points scored in the last of these years. 

Regressing the number of points scored onto the number of years yields 

the following regression equation: 

Points = 7.61 + 0.67 �9 Year + Residual. 

The slope parameter estimate of this equation is not significant (t = 
1.03;p = 0.33). Figure 11.1 shows the raw data and the thick regression 

line. 

The graph in Figure 11.1 suggests that the thick line is a poor represen- 

tative of the relationship between career length and scoring performance. 

The main reason is that  there is an outlier. One player, nine years in the 

league, had a scoring average of 29 points per game, far above the crowd. 

The thin regression line depicts the relationship between number of 
years in the league and points scored, under exclusion of the outlier. 

In contrast to the thick line, the slope of the thin line is negative, the 

regression equation being 

Points = 11.61 - 0.55 �9 Years + Residual. 

In addition, the relationship now is statistically significant (t = -2.46; 

p = 0.03). 

The comparison of these two results illustrates the effects an outlier 

can have on an OLS estimate of a regression slope. Estimators are robust 

Table 11.1: Number of Years Spent in the Basketball League and Average Num- 
ber of Points Scored in Last Year 

Year 2 3 5 6 6 7 7 3 2 1 9 4 4 
Pts 12 7 12 9 10 6 6 9 10 11 29 9 10 
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Figure 11.1" Regression of number of points scored on number of years in 
the league before (thick line) and after (thin line) elimination of outlier. 

if they are insensitive to the presence of outliers or extreme values. This 
chapter focuses on approaches to creating robust estimates of regression 
slopes. The next section reviews sample models of robust linear regression. 
It includes the Least Median of Squares and the Least Trimmed Squared 
approaches in more detail, and a brief introduction to M-estimators. 

11.2 Models  of Robust  Regression 

This section provides a brief review of models for robust regression. Mod- 
els are reviewed in two groups. The first includes ridge regression. The 
second includes so-called M-estimators for regression parameters (Goodall, 
1983; Hettmansperger & Sheather, 1992; Marazzi, 1980). 

11 .2 .1  R i d g e  R e g r e s s i o n  

The following approach of ridge regression is typically discussed in the 
context of solving multicollinearity problems (e.g., Afifi & Clark, 1990). 
However, estimators from ridge regression tend to be robust. Therefore, 
we review ridge regression in the present context (see also Fennessey & 
D'Amico, 1980; Gruber, 1989). 
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To estimate parameters for ridge regression from standardized vari- 

ables, one introduces a biasing constant c _> 0 as 

b R -  (RRx)- 1Ryx 

with 

Rx~ - Rxx + cI, 

or, more specifically, 

1 + C r 1 2  r 1 3  " ' "  r i p  

R x t t  x _ r21 . . . .  1 -t- c r 2 3  r2p . 

rpl rp2 rp3 1 + c 

(11.2) 

The constant c represents the magnitude of bias introduced in ridge 

regression. When c = 0, the solution is OLS. When c > 0, there is a bias. 

However, solutions from c > 0 are usually more stable, that  is, robust, 

than OLS solutions. 

From an applied perspective most important is the determination of 

a value for the constant, c. The optimum value of c may be specific 

to data sets and, therefore, needs to be found for each data set. One 

method to find the optimum value of c uses information from two sources: 

the Variance Inflation Factor (VIF; see Section 8.1) and the ridge trace. 

The ridge trace is the curve of the values assumed by a regression slope 

estimate when c increases. Typically, after fluctuations, the estimate 
changes its value only slightly when c further increases. Simultaneously, 

the VIF falls rapidly as c first moves away from 0, and changes only 

slightly when c increases further. The value of c finally chosen balances 
(1) the VIF, which must be sufficiently small, (2) the slope coefficient(s) 

which must change only minimally when c is increased further, and (3) 

c itself, which, in order to avoid excessive bias, should be as small as 

possible. 

Alternatively or in addition to the VIF, one inspects the mean squared 

error of the biased estimator, which is defined as the variance of the 

estimator plus the square of the bias. 
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The following two artificial data examples illustrate the use of the ridge 
trace (Afifi & Clark, 1990, pp. 240ff). Consider a criterion, Y, that  is 
predicted from two independent variables, X1 and X2. Suppose all three 
variables are standardized. Then, the OLS estimator of the standardized 
regression coefficient for X1 is 

bl = rly - r12r2y (11.3) 
1 - r22 ' 

and the OLS estimator of the standardized regression coefficient for X2 is 

b2 - -  r 2 y  - -  rl2rly 
1 - r 2 2  " (11.4) 

The ridge estimators for these two regression coefficients are 

"12 
bl R _ r l y -  l + c r 2 y  

2 (11.5) 
1 - (  z~)l+c ( l + c )  

and 

"12 
b ~ -  r 2 y -  l+crly (11.6) 

1 -  
1 + c  

For the next numerical example we proceed as follows: First we specify 
values for the three variable intercorrelations. Second, we insert into 
(11.5) and (11.6) varying values of c. For the variable intercorrelations 
we select the following values: r12 - 0.8, fly - 0.5, and r2y - 0.1. For 
c we specify the range of 0 <_ c _< 8 and an increment of 0.1. Thus, 
we run 81 iterations. For each iteration we determine the values of the 
two regression coefficients, bl and b2. The curve that  depicts these values 
is the ridge trace. Figure 11.2 displays the ridge trace for the present 
correlations for the first 50 iterations. 

Before discussing the figure we insert the correlations into (11.3) and 
(11.4). We obtain the standard OLS estimates bl - 1.17 and b2 - -0.83.  
These are also the first results in the iteration ( c -  0). 

The figure suggests that  with each increase of c the values of the re- 

gression coefficients change. Specifically, b2 decreases and bl increases. In 
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Figure 11.2: Ridge traces for artificial data  example. 

this example, coefficient b2 assumes positive values after the 30th itera- 

tion. It keeps increasing until the 68th iteration. After that ,  it decreases 

again and both coefficients asymptotically approach zero. 

When selecting a ridge constant one selects that  value after which 

there is no longer any substantial change in the regression coefficients. In 

the present example, this seems to be the case after c - 0.7. Notice that ,  

even if the VIF and the mean squared error are also used for selection 

of c, the selection is still a mat ter  of subjective decision making, because 

there are no objective criteria that  could be used to guide decisions. As 

a rule of thumb, one can say that  values of c between 0 and 1 are often 
the most interesting and promising ones. 

Figure 11.2 presents a graph that  is typical of ridge traces. The shape 

of traces, however, depends only on the pat tern of variable intercorrela- 

tions. This is exemplified in a second numerical example. This example 

uses the following correlations- r12 - 0.30, fly - 0.25, and r2y - 0.10. 

The standardized regression coefficients for these correlations are bl = 

0.24 and b2 - 0.03. Figure 11.3 displays the ridge trace for the first 50 
values of c, beginning with c -  0 and using an increment of 0.1. 

As in the first example, the two regression coefficients approach zero 

as c increases. After about c - 0.6, there are no substantial changes in 

the coefficients when considering small to moderate changes in c. Thus, 
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Figure 11.3: Ridge traces for two positive slope coefficients. 

we may select c -- 0.6 as the ridge constant  for this example. 

The  following da ta  example investigates two predictors,  Bread th  of 

Cognit ive Complexi ty  (CC1) and Depth  of Cognitive Complexity (CC2), 
and a criterion, Text Recall (REC).  In a sample of n - 66 adult  females, 

these three  variables correlated as shown in Table 11.2. 2 . 

Table 11.2: Intercorrelations of the Predictors, CC1 and CC2, and the crite- 
rion, REC 

CC2 
REC 

CC1 CC2 

0.066 
-0.074 0.136 

Table 11.2 suggests tha t  the variable intercorrelations are low. Thus,  

we cannot  expect  to explain large port ions of the criterion variance. The  

highest  correlat ion is the one between the two predictors. S tandard  OLS 

2The following calculations are performed using the correlation matrix method de- 
scribed in Section 11.3.1. This method estimates the slope parameter from a correlation 
matrix. Correlations do not contain information on the means of variables. Therefore, 
regression models from correlation matrices do not include the intercept parameter. 
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Figure 11.4: Ridge traces for cognitive data. 

regression of REC onto CC1 and CC2 explains no more than 2.5% of 
the variance, and the regression model fails to be statistically significant 
(F2,64 = 0.83;p > 0.05). Accordingly, neither regression slope is signif- 
icantly different than zero. The following OLS regression equation was 
calculated3: 

REC - -0 .08 �9 CC1 + 0.14 �9 CC2 + Residual. 

To perform a ridge regression we first create a ridge trace. In this 
example, we use values for the constant that  vary between 0 and 1 in 
steps of 0.1. Figure 11.4 displays the resulting ridge trace. 

In addition to the ridge trace we consider the standard error of the 
estimates. These estimates are the same for the two predictors. Therefore, 
only one needs to be graphically displayed. Figure 11.5 contains the 
standard error for the 11 ridge regression runs. 

3Notice that in the present context we estimate regression slopes that go through 
the origin (no intercept parameter is estimated). This procedure is put in context in 
the section on computational issues (Section 11.3). 
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Figure 11.5: Change in standard error of regression estimates in cognition 
data. 

Figure 11.4 suggests that  values greater than c = 0.4 do not lead to a 

substantial decrease in parameter  estimates. Figure 11.5 shows an almost 

linear decrease in standard error with slightly bigger decreases for smaller 

c values than for larger c values. From these two sources we select a 

ridge constant of c = 0.4. The regression coefficients for this solution are 

b~c  I - -0 .057 and bRc2 -- 0.100. Both coefficients are smaller than the 

original O LS coefficients for which c = 0. 

Problems with Ridge Regression 

The following paragraphs review three problems with ridge regression. 

The first is the bias that  comes with ridge regression solutions with c > 0. 

It is one of the virtues of ordinary least squares that  its solutions are 

unbiased. Unless there are strong reasons why a (slightly) biased solution 

is preferable, this advantage should not be abandoned. 

Second, it has to be emphasized again that  the decision for a constant, 

c, is a subjective one. There are still no methods for objectively deter- 

mining a constant from a sample. The main argument supporting ridge 

regression is that  ridge estimates will perform better than OLS estimates 

in the population or, more specifically, will provide better predictions in 
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the population. However, ridge regression estimates do not explain as 
much of the sample criterion variance as do OLS estimates. 

This can be illustrated using the previous example. As was indicated 
before, the standard O LS solution with CC1 and CC2 as predictors and 
REC as criterion has an R 2 of 0.025. The ridge regression solution only 
has an R 2 of 0.018. With increasing c the portion of variance accounted for 
decreases even more. For instance, when c = 1, we calculate R 2 = 0.012. 

Third, there are no statistical significance tests for solutions from ridge 
regression. The tests printed out when simulating ridge regression using 
standard OLS regression programs must not be trusted (one reason why 
is explained in Section 11.3 on computational issues). 

1 1 . 2 . 2  L e a s t  M e d i a n  o f  S q u a r e s  R e g r e s s i o n  

Introduced by Rousseeuw (1984), the method of Least Median Squares 
(LMS) allows one to estimate most robust estimates of regression parame- 
ters (see also Rousseeuw & Leroy, 1987). As the median, the LMS method 
has a breakdown point of 50%. That is, up to 50% of the data can be 
corrupt before parameter estimates are substantially affected. 

To introduce readers to LMS regression we draw on the concepts of 
OLS regression. We start from the regression model 

y = X / 3 + e ,  

where y is the vector of observed values, X is the matrix of predictor 
values (the design matrix), ~ is the vector of parameters, and e is the 
residual vector. To obtain an estimate b of/3, OLS minimizes the sum of 

squared residuals, 

( y -  Xb) ' (y  - Xb) ---4 rain. (11.7) 

or, in other terms, 

2 Z ei --+ min, (11.8) 
i 

In contrast, Rousseeuw (1984) proposes minimizing the median of the 
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squared residuals rather than their sum, 

md(e 2) ) min, 

where md(e 2) is the median of the squared residuals. 
Solutions for (11.7) are well known (see Section 3.1). These are closed- 

form solutions, that is, they can be calculated by the one-time application 
of a set of formulas. In contrast, there is no closed form that can be used 
to solve (11.8). Therefore, iterative procedures have been devised that 
typically proceed as follows (Rousseeuw & Leroy, 1987): 

1. Select a subsample of size nj and calculate the median of the squared 
residuals along with the regression parameter estimates; save me- 
dian and parameter estimates; 

2. Repeat step (1) until smallest median has been found. 

The following example uses data from the statistical software pack- 
age S-Plus (Venables & Ripley, 1994). The data were first published by 
Atkinson (1986). The data describe the three variables Distance, Climb, 
and Time from Scottish hill races. Distance is the length of a race, Climb 
is the height difference that must be covered in a race (in feet), and Time 
is the record time for a race. 

In this example we regress Time on Climb. In order to be able to 
compare LMS regression with O LS regression we first perform a standard 

OLS regression. We obtain the regression equation 

Time = 12.70 + 0.025 �9 Climb + Residual. 

The slope estimate is significant (t = 7.80;p < 0.01). Figure 11.6 

displays the raw data and the OLS regression line. 
The figure suggests that, although there clearly is a trend that higher 

climbs require longer times to complete the race, there are exceptions. 
Some of the shorter races seem to take longer to complete than one would 
predict from the regression relationship. In particular, one of the races 
that covers a climb of about 2000 feet is far more time consuming than 
one would expect. 

One may suspect that this data point (and a few others) exert undue 
leverage on the regression slope. Therefore, we perform, in a second run, 
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Figure 11.6: OLS and two robust methods of regression solutions for hill 
data. 

LMS regression. The slope estimated for LMS regression should not be 
affected by the presence of outliers. Up to 50% of the data points may be 
outliers before the LMS regression slope is affected. 

The LMS regression equation is 

Time - 16.863 + 0.015 �9 Climb + Residual. 

Obviously, the slope of the LMS regression line is less steep than the 
slope of the O LS regression line. There is no significance test for LMS 
regression. However, the program (see Chapter 5) identifies outliers. Six 
of the 35 race track data points are outliers. Figure 11.6 also presents 
the LMS regression line. This line is, in the present example, virtually 
identical to the LTS regression line (to be explained in the next section). 

Recently, LMS regression has met with criticism (Hettmansperger & 
Sheather, 1992). The reason for this criticism is that whereas LMS regres- 
sion is clearly one of the most robust methods available when it comes to 
not being affected by bad outliers, it seems to be overly sensitive to bad 
inliers. These are data points that lie within the data cloud. They look un- 
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suspicious and are hard to diagnose as problematic data points. Yet, they 
have the leverage to change the slope of LMS regression. Hettmansperger 
and Sheather (1992) present an artificial data set in which moving one of 
the bad inlier data points by a very small amount results in a change of 
the LMS regression slope by 90 ~ 

1 1 . 2 . 3  L e a s t  T r i m m e d  S q u a r e s  

In response to these criticisms, Venables and Ripley (1994) and Rousseeuw 
and Leroy (1987) recommend using Least Trimmed Squares (LTS) re- 
gression. This approach estimates parameters after trimming, that is, 
excluding observations at both tails of the distribution. The number of 
observations to be excluded is controlled by choosing q in the following 
formula, 

q 

i - -1 

min. 

LTS regression is more efficient than LMS regression. In addition, it 
has the same extreme resistance, that is, high breakdown point. There 
has been a discussion as to what value is best specified for q, that is, the 
number of observations to be included. Most frequently, one finds the 
following two definitions: 

n p + l  

and 

n 
q - ~ + l .  

In the examples in this book we use the first definition of q. 
regression line estimated using LTS regression is 

The 

Time - 16.863 + 0.015 �9 Climb + Residual. 

As for the LMS regression, there is no significance test except for 
jackknife procedures. 

Figure 11.6 also displays the LTS regression line. Both, the formula 
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and the figure suggest that the LMS and the LTS regression estimates 
are very close to each other. However, it still needs to be investigated in 
detail whether LTS regression is generally better that LMS regression, in 
particular, in regard to bad inliers. 

1 1 . 2 . 4  M - E s t i m a t o r s  

When discussing M-estimators of location, Goodall (1983) defines the 
M-estimate Tn(x l , . . .  ,Xn) for t, given some function p(x;t) and sample 
x 1 , . . . ,  xn, as that value of t that minimizes the objective function 

n 

E P ( x i ; t ) ,  
i--1 

where the xi are the observed values and t is the location estimate. The 
characteristics of p determine the properties of the estimator. Let the 
first derivative of the objective function be called r Then, the minimum 
of the function is 

n 

E r t) - O. (11.9) 
i - -1  

The best known M-estimate is the sample mean. For this estimate of 
location, estimated by least squares, p is the square of the residual, 

p ( : ;  t )  = - t )  

The expression 

1 n 

t - -  - E x i  
n 

i - 1  

gives the minimum of (11.9). It is the sample mean. 

The r function of a robust M-estimator has a number of very desir- 
able properties (Goodall, 1983), the most important of which is that the 
breakdown point of the estimator is very large. Here, the breakdown point 
of an estimator is the smallest portion of the data that can be replaced 
by arbitrary values to cause the estimator to move an arbitrary amount. 
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Thus, the breakdown point is a measure of an estimator's robustness. 

The higher the breakdown point, the more robust is an estimator. The 
highest possible breakdown point is 50%. If more than 50% of the data 

are contaminated, one may wonder whether the remaining portion that  
is less than 50% is the contaminated one. The median is an M-estimator 
with a breakdown point of 50% for the location problem. 

The approach of Marazzi (1980, 1993) to describing M-estimators in 
regression is based on the standard regression model, 

y = X ~ + e ,  

where X is the design matrix and the residuals are normally distributed 
with expectancy 0 and variance a 2. Marazzi solves the following system 
of equations for ~ and a: 

i • 1 r  ri w i x i j  - 0, for j -  1 , . . .  ,p 
%_. 

E l  ri 2 X w i - constant 

where ri  is defined as 

I 
ri - Yi - x i ~ ,  

where x i  is the ith column of the design matrix X. X and r are user- 
defined functions, the wi  are given weights, and the constant is a given 
number. Depending on what values are chosen for function parameters, 
special cases result. For example, for constant = 1 one obtains the ap- 
proach of Huber (1981). 

11.3 Computational  Issues 

This chapter gives two computational examples of robust regression. The 
first example applies ridge regression. For the illustration of ridge regres- 
sion we use SYSTAT for Windows, Release 5.02. The second example 
illustrates M-estimators, specifically, LMS and LTS regression. It uses 
the statistical software package S-Plus (Venables & Ripley, 1994). 
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1 1 . 3 . 1  R i d g e  R e g r e s s i o n  

SYSTAT does not include a module for ridge regression. Therefore, we 

present two equivalent ways to estimate parameters in the absence of 

such a module. The first involves translating the procedures outlined by 

Afifi and Clark (1990) for the BMDP statistical software package 4 into 

the SYSTAT environment. We term this method the Dummy Observa- 

tion Method. The second option works with the correlation matrix of 

predictors and criteria. We term it the Correlation Matrix Method. 

Afifi and Clark's Dummy Observation Method 

The Dummy Observation Method can be employed for estimating ridge 

regression parameters using practically any computer program that  per- 

forms ordinary least squares regression. The only requirement is that the 
program use raw data. To introduce the method consider a multiple re- 

gression problem with p :> 1 predictors, X1, X2 , . . .  , Xp, and criterion Y. 

The Dummy Observation Method involves the following two steps: 

1. Standardization of All Variables. As a result, all variables have a 

mean of 0 and a standard deviation of 1; no intercept needs to be 

estimated. 

2. Addition of Dummy Observations. For each of the p predictors, 

one dummy observation is appended to the standardized raw data. 

These observations are specified as follows: Y = 0, and the j t h  

predictor assumes the value 

X k - {  0 
V/c(n- 1) 

i f k ~ j  
i f k = j  

where c is the ridge constant. 

In other words, the appended dummy observations are all zero for Y. 

For the p predictors, one appends a p x p matrix with (c(n- 1)) 1/2 in the 

main diagonal and 0 in the off-diagonal cells. 

4A number of statistical software packages do provide modules for ridge regression. 
Examples include the BMDP4R and the SAS-RIDGEREG modules. 
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For an illustration consider a data set with the two predictors X1 
and X2, criterion Y, and n subjects. After appending the p dummy 
observations, the regression equation appears as follows: 

(' Yl 

Y2 

o o 

\ 0 

I 1 Xll x12 

1 X21 X22 
�9 o . 

1 Xnl  Xn2 

1 V/c(n - 1) 0 
~, 1 0 ~ / c ( n -  1 ) )  

(ii) 
/ 

e l  

e2 

+ 
en 

enq-1 

\ en+2 

Obviously, this equation involves p observations more than the orig- 
inal regression equation. Thus, estimating regression parameters from 
this approach artificially inflates the sample size by p. This is one reason 
why significance tests for ridge regression from this approach must not be 
trusted. Another reason is that appending dummy observations leads to 
predictors and criteria with nonmeasured values. Including these values 
distorts estimates of the portion of variance accounted for. The estimates 
from this approach are automatically the ridge regression parameter es- 
timates. A ridge trace can be created by iterating through a series of 
constants, c (see Figure 11.4). 

The following sections illustrate this variant of ridge regression using 
the MGLH regression module in SYSTAT. We use the cognitive complex- 
ity data already employed for the example in Figure 11.4. The illustration 
involves three steps. In the first we append the dummy observations. In 
the second step we estimate regression slope parameters. In the third 
step we iterate using a series of constants, c. For the first step we issue 
the following commands. The sample size is n - 66. The value to be 
inserted in the main diagonal of the dummy observation predictor matrix 
is ( c ( 6 6 -  1)) 1/2. For c - 0.1 this value is 2.55; for c - 1, this value 
is 8.062. Since we have two predictors, we have to append two dummy 
observations. 
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Command Effect 

Use Memsort (CC1, CC2, 
REC) 

Click Window, Worksheet 

Click Editor, Standardize 

Highlight CC1, CC2, and 
REC; click Add each time 
a variable is highlighted 
Click Ok 

Type "CCRECS" 

Click Ok 

Back in the Worksheet, hit 
the END key 
Enter "0" for REC, "2.55" 
for CC1, and "0" for CC2 
Enter "0" for REC, "0" for 
CC1, and "2.55" for CC2 
Click File, Save 

Click File, Close 

Reads variables CC1, CC2, and 
REC from file "Memsort.sys"; 
SYSTAT presents list of variables 
on screen 
Raw data are pulled into a 
window on the screen 
Prepares standardization of 
variables 
Specifies variables to be 
standardized 

SYSTAT responds by asking for 
the name for a file where it saves 
the standardized variables 
Specifies file name; data will be 
saved in file "CCRECS.SYS" 
Standardizes and saves selected 
variables 
Carries us one field past the last 
data entry 
Specifies values for the first 
dummy observation 
Specifies values for the second 
dummy observation 
Saves data with appended dummy 
observations in file 
"CCRECS.SYS" 
Concludes data editing; carries us 
back to the SYSTAT command 
mode window 

After these operations we have a data file that is different than a con- 
ventional raw data file in two respects. First, the variables that we use 
in the ridge regression runs are standardized. Second, there are p -- 2 
appended dummy observations that are needed in order to obtain ridge 

regression parameter estimates from employing the standard OLS regres- 
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sion program. The dummy observations must not be part of the standard- 
ization. Therefore, standardization must be performed before appending 
dummy observations. 

Using this new data set we now can estimate a first set of ridge re- 
gression parameters. We do this with the following commands: 

Command Effect 

Use ccrecs Reads file "CCRECS.SYS" 
Click Stats, MGLH, 
Regression 

Highlight CC1 and CC2 
and assign them to 
Independent; highlight 
REC and assign it to 
Dependent 

Click Include Constant 

Click Ok 

Initiates the O LS regression 
module 

Specifies predictors and criterion 
for regression 

Results in Regression Model with 
no constant (disinvokes inclusion 
of constant which is default) 
Concludes model specification, 
performs estimation, and presents 
results on screen 

The following output displays the results for this run: 

SELECT (sex= 2) AND (age> 25) 
>MODEL REC = CCI+CC2 
>ESTIMATE 
Model contains no constant 

Dep Var: REC 
N: 67 
Multiple R: 0.127 

Squared multiple R: 0.016 

Adjusted squared multiple R: 0.001 
Standard error of estimate: 1.050 
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E f f e c t  C o e f f i c i e n t  Std E r r o r  t P(2 T a i l )  

CCl O. 062 O. 125 O. 490 O. 626 
CC2 O. 101 O. 120 O. 839 O. 405 

The output suggests that  the sample size is n - 67. We know that  

this is incorrect, because we had added two dummy observations. The 

correct sample size is 65. Therefore, with the exception of the slope 

parameter estimates, none of the statistical measures and tests provided 

in the output can be trusted. The regression equation is 

REC - 0.062 �9 CC1 + 0.101 �9 CC2 + Residual. 

In order to create information for the ridge trace, we repeat this run 

for a total of 10 times, with increasing c. Table 11.3 contains the values 

that  must be inserted as values for the dummy observations for 0 < c _ 1 

in increments of c - 0.1 and a sample size of n - 65. 

The ridge trace for this example appears in Figure 11.4. 

T h e  C o r r e l a t i o n  M a t r i x  M e t h o d  

The Correlation Matrix Method uses the correlation matrix given in Table 

11.2, that  is, the correlation matrix that  includes the biasing constant, c, 

as the summand for the diagonal elements of the predictor intercorrelation 

matrix (see Equation (11.2)). In analogy to the Dummy Observation 

Method, the Correlation Matrix Method performs the following two steps: 

1. Calculation of correlation matrix of all variables that  includes the 

predictor variables and the criterion variables (see below) 

2. Addition of ridge constant to each of the diagonal elements of R. 

Table 11.3- Values for Dummy Observations for n = 65 and 0 < c < 1 

c 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
(65c) 1/2 2.5 3.6 4.4 5.1 5.7 6.2 6.7 7.2 7.6 8.0 
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Unlike in the Dummy Observation Method, the ridge constant is added 

as is. No transformation is necessary. 

The following sections illustrate this variant of ridge regression using 

the CORRelation and the MGLH modules in SYSTAT. We use the same 
data as in the last section, that is, the data that relate two measures of 

cognitive complexity, CC1 and CC2, to prose recall, REC, in a sample of 

n = 65 adult females. The illustration involves the following steps: First, 
we estimate the predictor x predictor correlation matrix and the predictors 
x criterion intercorrelation vector. Second, we estimate parameters for 
OLS and ridge regression. 

First, we create and store the matrix of variable intercorrelations. 

We create the complete correlation matrix of the variables, CC1, CC2, 
and REC, because the last row of the lower triangular of this matrix 
contains the vector of predictor-criterion intercorrelations. The following 

commands yield the correlation matrix: 

Command Effect 

Use Memsort (CC1, CC2, 
REC) 

Click Stats, Correlation, 
Pearson 

Highlight all three 
variables, click Add 

Click the Save File square 
and Ok 

Type "CORRCC" 

Click Save 

Reads variables CC1, CC2, and 
REC from file "Memsort.sys"; 
SYSTAT presents list of variables 
on screen 
Selects the Pearson correlation 
from the correlation module 

Includes all three variables in 
computation of correlation matrix 

Indicates that correlation matrix 
is to be stored; SYSTAT requests 
name of file 

Specifies file name for correlation 
matrix 
Performs correlations; saves 
correlation matrix in file with 
double precision; presents 
correlation matrix on screen; and 
indicates that correlation matrix 

has been saved 
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The following output reproduces the result of these operations: 

PEARSON CCl CC2 REC 

Pearson correlation matrix 

CCl 

CC2 
REC 

CCl CC2 REC 
I. 000 

O. 132 I. 000 
O. 077 O. 120 1. 000 

Number of observations: 65 

To make sure the same results can be achieved from the correlation 
matrix as from the raw data, we issue the following commands: 

Command Effect 

Use Corrcc 

Click Stats, MGLH, and 
Regression 

Assign CC1 and CC2 to 
Independent and REC to 
Dependent 
Type "66" in number of 
cases rectangle 

Click Ok 

Reads triangular file "Corrcc.sys" 
which contains correlation matrix 
of variables CC1, CC2, and REC 
Opens window for specification of 
regression model 
Specifies which variables are 
independent and which is 
dependent 
Specifies number of cases 
(required when analyzing 
correlation matrices) 
Starts regression run and presents 
results on screen; notice that the 
program automatically calculates 
a model with no intercept when 
processing correlation matrices 

The following output reproduces the result of this regression run: 
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REGRESS 
>MODEL REC = CC1+CC2 /N=65 
>ESTIMATE 

Dep Var" REC 
N" 65 
Multiple R" O. 135 
Squared multiple R" 0.018 

Adjusted squared multiple R" 0.0 
Standard error of estimate" 0.999 

Effect Coefficient Std Error t P(2 Tail) 

CCl O. 062 O. 127 O. 488 O. 628 
CC2 O. 112 O. 127 O. 880 O. 382 

Analysis of Variance 

Source SS df MS F P 

Regression 1. 144 2 0.572 0.573 0.567 
Residual 61. 856 62 O. 998 

199 

For reasons of comparison we also present the ou tput  from a s tandard  

regression run, tha t  is, a run tha t  uses raw da ta  and includes an intercept 

term. 

Results from this run appear  in the following output .  

SELECT (SEX= 2) AND (age> 25) 
>MODEL REC = CONSTANT+CCI+CC2 
>ESTIMATE 

Dep Var" REC 
N- 65 
Multiple R" 0.135 
Squared multiple R" 0.018 

Adjusted squared multiple R" 0.0 
Standard error of estimate" 41.805 
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E f f e c t  C o e f f i c i e n t  Std E r r o r  t P(2 T a i l )  

CONSTANT 51.952 21.341 2.434 0.018 
CCl 0.431 0.885 0.488 0.628 
CC2 0.432 0.491 0.880 0.382 

Analysis of Variance 

Source SS df MS F P 

Regres s ion  2003. 206 2 1001. 603 0. 573 0. 567 
Res idua l  108355. 779 62 1747. 674 

The comparison of the results from the two runs suggests that  the 

approaches are equivalent. They result in the same R 2 = 0.016, the 

same standardized coefficients for the slope parameters, the same toler- 

ance values, the same t values for the two slope parameters, and the same 

tail probabilities. Only the unstandardized coefficients, their standard 

errors, and the standard error of estimate are different, and so are the 

sum-of-squares values. The ANOVA results themselves have the same 

degrees of freedom, F values, and tail probabilities. 

The next step involves inserting the ridge constant into the main diag- 

onal of the correlation matrix. This can be performed using the following 

commands: 
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Command Effect 

Use Corrcc 

Click Window, Worksheet 

Replace the first diagonal 
element, which currently is 
equal to 1, with 1.1; 
proceed until all diagonal 
elements are replaced 

Click File, Save 

Reads correlation matrix of 
variables CC1, CC2, and REC 
from file "Corrcc.sys" 
Correlation matrix is pulled into a 
window on the screen 
Substitutes correlations in 
diagonal of correlation matrix by 
1 + ridge constants (see Table 
11.2) 

Correlation matrix with altered 
entries in main diagonal is saved 
in file "CORRCC.SYS" 

Using the altered correlation matrix we now can estimate the first set 
of ridge regression parameters. The ridge constant is c = 0.1. Parameters 
are estimated using the following commands: 

Command Effect 

Use Corrcc 

Click Stats, MGLH, and 
Regression 
Assign CC1 and CC2 to 
Independent and REC to 
Dependent 
Type "66" in rectangle for 
number of cases 
Click Ok 

Reads correlation matrix of the 
variables CC1, CC2, and REC in 
which diagonal elements now 
contain ridge constant 

Selects regression module from 
MGLH 
Specifies which variables are 
independent and which is 
dependent 
Specifies sample size 

Starts estimation of ridge 
regression parameters (notice 
again that there is no provision 
for an intercept); results of 
regression run appear on screen 
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The following output displays the results of this regression run: 

MODEL REC = CCI+CC2 /N=65 
>ESTIMATE 
Dep Var" REC 
N- 65 
Multiple R" O. 123 
Squared multiple R" 0.015 

Adjusted squared multiple R" 0.0 
Standard error of estimate" 1.049 

Effect Coefficient Std Error t P 

CCl O. 057' O. 127 O. 452 O. 653 
CC2 O. 102 O. 127 O. 805 O. 424 

Analysis of Variance 

Source SS df MS F P 

Regre s s ion  1.049 2 0.525 0.477 0.623 
Res idua l  68.251 62 1.101 

This output gives the results of the estimation of ridge regression pa- 

rameters for a ridge constant of c - 0.1. These results are equivalent 

to the ones in the first output, for which we had used Afifi and Clark's 

Dummy Observation Method. Specifically, the coefficients are the same. 

All other results differ because, in order to obtain a correct parameter 

estimate from the Dummy Observation Method, we had to artificially 

increase the sample size. As a consequence, the R 2 and all significance 

tests, including the AN OVA, cannot be interpreted in the first output. It 

still needs to be determined whether they can be interpreted here. 
Using the correlation matrix method one can also create a series of 

estimates and chart a ridge trace. All that  needs to be done is to replace 

the diagonal elements in the correlation matrix. Readers are invited to 

perform these replacements using ridge constants 0.1 _ c _< 1 and to draw 

their own ridge trace for this example. 
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1 1 . 3 . 2  L e a s t  M e d i a n  o f  S q u a r e s  a n d  L e a s t  T r i m m e d  

Squares Regression 
To illustrate the use of LMS and LTS regression we use the software 
package S-Plus (Venables & Ripley, 1994). SYSTAT does not contain 
a module that would easily lead to solutions for these robust regression 
models. 

S-Plus is an object-oriented system that provides a wide array of mod- 
ules for robust estimation. Two ways of applying LMS and LTS regression 
using S-Plus will be illustrated. First, we show how to estimate and print 
regression parameters. Second, we show how to estimate regression pa- 
rameters and to simultaneously draw the figure displayed in 11.6. To 
estimate regression parameters we issue the following commands. Each 
command is typed at the ">"-prompt, and is followed by striking the EN- 
TER key. It is important to note that S-Plus does distinguish between 
upper and lower case characters. Therefore, we use capitals only when 
needed. 

Command Effect 

library(mass) 

attach(hills) 

fml < -  summary(lm(climb 
,-~ time)) 

fm2 < -  lmsreg(time, 
climb) 

Invokes library MASS which 
contains the data file HILLS that 
we are using 
Makes variables in HILLS 
available by name 
Estimates O LS regression of 
TIME on CLIMB; writes results 
to file FM1 
Estimates LMS regression 
parameters; writes results to file 
FM2. Notice difference in variable 
order: The LM module expects 
the predictor first and then the 
criterion, separated by a tilde. 
The LMS and the LTS modules 
expect the criterion first and then 
the predictor, separated by a 
comma 

continued on next page 
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fm3 <-l tsreg(t ime,  climb) 

fml 

Click File, Print (repeat as 
needed) 
fm2 

Click File, Print (repeat as 
needed) 
fm3 

Click File, Print (repeat as 
needed) 

Estimates LTS regression 
parameters; writes results to file 
FM3 
Sends contents of FM1 to screen; 
the screen is Windows' Notepad. 
Print commands have the same 
effect as "print screen" commands 
in DOS. 
Sends screen content to printer 
(page by page) 
Sends contents of file FM2 to 
screen 
Sends screen contents to printer 
(page by page) 
Sends contents of file FM3 to 
screen 
Sends screen contents to printer 
(page by page) 

The following output displays the content of "FMI": 

Call: im(formula = climb ~ time) 

Residuals: 

Min 1Q Median 3Q Max 

-3227 -438.9 -76.41 549.6 1863 

Coefficients: 
Value Std. Error 

(Intercept) 307.3712 253. 9620 
time 26. 0549 3.3398 

t value Pr(>Itl) 

1. 2103 O. 2348 
7.8012 0.0000 

Residual standard error: 974.5 on 33 degrees of freedom 

Multiple R-Squared: 0.6484 
F-statistic: 60.86 on 1 and 33 degrees of freedom, 

the p-value is 5.452e-009 

Correlation of Coefficients : 
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(Intercept) 
time -0.7611 
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The following output  displays parts of the content of "FM2": 

$coef :  
I n t e r c e p t  t ime  

650 -2 .458929e-015  

$resid: 
[1] 0 1850 250 150 2420 
[6] 2216 6850 150 150 0 

[11] 1450 1350 1550 -150 850 
[16] 2350 1550 -300 350 -50 
[21] -350 850 1550 250 -50 
[26] 1350 150 300 1100 -150 
[31] 3750 -50 4550 200 4350 

Swt : 

[i] 1 0 1 1 000 1 1 1 1 1 1 1 1 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0  

$ r s q u a r e d :  
[1] 0 .51 

The following output displays parts of the content of "FM3": 

$ c o e f f i c i e n t s "  
( I n t e r c e p t )  x 

841.0253 -4 .33677  

$ r e s i d u a l s :  
[1] -121 .28  1868.66 204.91 156.73 2499.01 2342.50 
[7] 7546.35 116.69 87.99 -18 .64  2094.53 1345.67 

[13] 1640.86 -149 .63  775.78 2472.31 1785.79 -149 .94  
[19] 234.51 -99 .79  -471 .85  779.97 1565.55 136.75 
[25] -160 .00  1272.67 108.30 232.86 1127.98 -250 .17  
[31] 3930.13 -100 .59  5097.31 130.84 4852.13 
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$ f i t t e d . v a l u e s :  

[1] 771 .28  631 .34  695.09  643.27  570.99 523.50  - 4 6 . 3 5  
[8] 683.31 712.01 668 .64  5 .47  654.33 559 .14  649 .63  

[15] 724 .22  527.69  414.21 499 .94  765.49  699 .79  771 .85  
[22] 720.03 634.45 763.25 760.00 727.33 691.70 717.14 
[29] 622.02 750.17 469.87 700.59 102.69 719.16 147.87 

The first of these three outputs (FMI) presents the OLS results that 
we created using the LM module. The protocol shows first an overview 
of the residual distribution. It gives the smallest and the largest resid- 
ual, and the three quartile points. In the center of the protocol there is 
the usual regression-ANOVA- type table. It shows parameter estimates, 
their standard errors, the t values (parameter estimates divided by their 
standard error), and the two-sided tail probabilities for the t values. This 
is followed by information on the residual standard error, the multiple 
R 2, and the F statistic for the ANOVA around the regression line. The 
last piece of information provided is the matrix of parameter intercorre' 
lations. In the present example, this matrix contains no more than one 
correlation, for there are only two parameter estimates. 

The second of these outputs (FM2) first presents information on the 
regression equation: It provides estimates of the intercept and the slope 
coefficients. What follows are the residuals for each of the races, presented 
in scale units of the dependent variable. 

Most interesting is the string of weights that is printed below the resid- 
uals. A "I" indicates that a case can be considered relatively problem-free. 
In contrast, a "0" suggests that a case may be an outlier. The present 
example seems to contain six outliers. 

In analogous fashion, the third output (FM3) first presents the pa- 

rameter estimates. These are, as we indicated before, very close to the 
estimates provided by LMS regression. Residuals follow, also in units of 
the dependent scale. Because the parameters are so similar, the residuals 
are very similar also. The next block of information contains the fitted 
values. 

The following example uses the same data and the same regression 
models. The goal is to show how to create a plot as displayed in Fig- 
ure 11.6 using S-Plus. For the following commands to work, a Windows 
system and printer are required. Note again that S-Plus does distinguish 
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between lower case and upper case letters. 
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Command Effect 

win.graph() Invokes Windows graphics 
devices; presents a graph window 

Click inside the command Carries you back to the command 
window window 
library(mass) 

attach(hills) 

plot(climb, time, main = 
"OLS, LMS, and LTS 
Regression Lines for Hill 
Race Data") 

abline(lm(time ,-~ climb), 
lwd = 1) 

abline(lmsreg(climb, time), 
lwd = 1) 
abline(ltsreg(climb, time), 
lwd = 1) 
Click inside the graph 
window 

Makes files in library MASS 
available; these files contain the 
data file HILLS that we are using 
Makes variables in data file 
HILLS available by name 
Creates a scatterplot with variable 
Climb on the abscissa and 
variable Time on the ordinate; the 
string in quotation marks after 
"main" is the title of the graph 
Creates a line whose parameters 
are provided by "lm", the OLS 
linear regression module; 
predictor is Climb, criterion is 
Time; lwd=l specifies that the 
line be as wide as default 
Same for LMS regression 

Same for LTS regression 

Displays graph on screen 

Click File, Print, Ok Prints figure 
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Chapter 12 

S Y M M E T R I C  

R E G R E S S I O N  

This chapter presents various approaches to symmetric regression. This 
variant of regression has been discussed since Pearson (1901a) described a 
first symmetric regression model in a paper entitled "On Lines and Planes 
of Closest Fit to Systems of Points in Space." Symmetric regression mod- 
els are beneficial for the following reasons: 

1. The problems with inverse regression listed in Section 12.1.1 do not 
exist. Specifically, inverse regression, that is, regression of X on Y 
that starts from a point estimated from regressing Y on X, yields 
the original starting point. The inverse regression problem is solved 
because there is only one regression line. 

2. Symmetric regression accounts for errors in the predictors. While 
there are many approaches to considering errors in predictors (the 
so-called errors-in-predictors models), none of these approaches also 
solve the inverse regression problem. 

Thus, symmetric regression is useful because it solves both of these 
problems simultaneously. In addition, symmetric regression allows re- 
searchers to both estimate and test when there is no natural classification 
of variables in predictors and criteria. 

209 
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This chapter first presents the Pearson (1901a) orthogonal regression 
solution. This is followed by two alternative solutions that have aroused 
interest particularly in biology and astrophysics, the bisector solution and 
the reduced major axis solution (see Isobe, Feigelson, Akritas, & Babu, 
1990). A general model for OLS regression is presented next (von Eye & 
Rovine, 1995). The fourth section in this chapter introduces robust sym- 
metrical regression (von Eye & Rovine, 1993). The last section discusses 
computational issues and presents computer applications. 

12.1 Pearson's Orthogonal Regression 

In many applications researchers are interested in describing the relation- 
ship between two variables, X and Y, by a regression line. In most of 
these applications there is a natural grouping of X and Y into predictor 
and criterion. For instance, when relating effort and outcome, effort is 
naturally the predictor and outcome is the criterion. However, in many 
other applications this grouping is either not plausible or researchers wish 
to be able to predict both Y from X and X from Y. Consider the rela- 
tionship between weight and height that is used in many textbooks as an 
example for regression (e.g., Welkowitz, Ewen, & Cohen, 1990). It can be 
meaningful to predict weight from height; but it can also be meaningful 
to predict height from weight. Other examples include the prediction of 
the price for a car from the number of worker-hours needed to produce a 
car. This is part of a manufacturer's cost calculation. It can be equally 
meaningful to estimate worker-hours needed for production from the price 
of a car. This is part of the calculations performed by the competition. 

The problems with inverse regression render these estimations prob- 
lematic. Predictors measured with error make these problems even worse. 

Therefore, the problem that is addressed in this chapter is different 
than the standard regression problem addressed in the first chapters of 
this book. Rather than estimating parameters for the functional relation- 
ship E(YIX),  we attempt to specify an intrinsic functional relationship 
between X and Y. As we pointed out before, this is important particu- 
larly when the choice between X and Y as predictor is unclear, arbitrary, 
or ambiguous, and when both variables are measured with error. 

Pearson (1901a) proposed to still use ordinary least squares methods 
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u 

~X 

Figure 12.1: Illustration of residuals expressed in units of Y (gray) and 
perpendicular to the regression line (black). 

for parameter estimation, but to employ an optimization criterion that is 
different than the standard sum of squared residuals. More specifically, 
Pearson proposed minimizing 

~p~, (12.1) 
i 

where pi is the ith case's perpendicular distance to the regression line, 
instead of the usual 

- ( 1 2 . 2 )  Z e i 
i i 

To illustrate the difference between (12.1) and (12.2) consider the four 
X - Y  coordinate pairs (=data points) presented in Figure 12.1. The figure 
displays the four coordinate pairs, an imaginary regression line, and the 
residuals, defined using (12.1) in black, and defined using (12.2) in gray. 

As is obvious from Figure 12.1, the black, perpendicular residuals are 
always shorter than the gray residuals parallel to the Y -axis. When 
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the regression slope is 0 < bl < ~ ,  there is no exception to this for 
residuals greater than zero. More important than this difference, however, 
is the difference in interpretation between the two definitions. In order to 
measure the magnitude of residuals, ei, that are defined in units of Y, one 
only needs Y. In contrast, when measuring the magnitude of residuals pi 

from orthogonal regression, one needs information about both X and Y. 

More specifically, residuals in standard, asymmetric regression are de- 
fined by (12.2). Residuals in Pearson's orthogonal regression are defined 
as the perpendicular distance of point (x, y) to the regression line (see 
Pearson, 1901a, 1901b; von Eye & Rovine, 1995), 

Pi = (Y - tan 0(x - 2) - ~)cos 0, 

where 0 is the angle of the regression line with the Y -axis. The sum of 
the squared distances that is to be minimized is 

E p2 = E ( y  _ tan ~(x  - 2) - ~)2 cos 2 ~9. 
i i 

(12.3) 

Setting the first partial derivative with respect to 0 equal to 0 yields the 
following solution for 0: 

2 e  - 2 - - ( 1 2 . 4 )  
- - 

This is identical to the Pearson (1901a) solution (see (12.5)). Section 
12.3 relates this solution to the standard, asymmetric OLS solution. As 
is obvious from intuition and Figure 12.1, the minimum of (12.3) gives 
the smallest total of all possible distance lines. 

Another way of arriving at the solution given in (12.4) was proposed 
by Pearson (1901a). Pearson starts from considering an ellipse of the 
contours of the correlation surface of a two-dimensional data cloud. Using 
the centroid of the ellipse as the origin, the ellipse can be described as 
follows: 

X 2 y 2  2 r x y x y  
= 1 .  a 2 a2y axay  

Pearson showed that the ellipse of the contours of the correlation surface 
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and the ellipse that  describes the cloud of residuals have main axes that  

are orthogonal to each other. From this relation Pearson concluded that  
the best fitting line in the sense of (12.3) coincides in direction with the 
major axis of the ellipse of the correlation surface. The tangent of the 
angle, 20, of this axis is given by 

tan 20 -- 2rxyaxay (12.5) 

This is identical to (12.4). The mean squared of the residuals, Pi, is 

X2y  2 
MSE 2 = 

cot 2 0 

The following data  example (von Eye & Rovine, 1995) relates psycho- 
metric intelligence and performance in school to each other. In a sam- 
ple of n = 7 children, the following IQ scores were observed: IQ = 

(90, 92, 93, 95, 97, 98,100). The performance scores are, in the same order, 
P = (39, 42, 36, 45, 39, 45, 42). The Pearson correlation between these two 
variables is r = 0.421. Regressing Performance on IQ yields the following 

OLS solution using (12.2) as the criterion to be minimized: 

Performance - 3.642 + 0.395 �9 IQ + Residual. 

Substituting predictor for criterion and criterion for predictor yields 

IQ = 76.538 + 0.449.  Performance + Residual. 

The data  points and these two regression lines appear in Figure 12.2, 
where the regression for Performance on IQ is depicted by the thicker 
line, and the regression of IQ on Performance is depicted by the thinner 
line. 

The following paragraphs illustrate problems with inverse regression 
that  are typical of standard, asymmetric regression where one estimates 

parameters for two regression lines. 
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Figure 12.2: Regression lines for Performance on IQ (thicker line) and IQ 
on Performance (thinner line). 

12.1.1 Symmetry  and Inverse Predict ion 

One of the most striking and counterintuitive results from employing two 
asymmetric regression lines for prediction and inverse prediction is that 
back-prediction does not carry one back to the point where the predictions 
originated. This result is illustrated using the data in Figure 12.2. 

Consider the following sequence of predictions and inverse predictions: 

(1) xi  --+ ~)i , and 
(2) ~ ~ xi. 

This sequence describes s y m m e t r i c  prediction if 

xi - xi .  (12.6) 

This applies accordingly if predictions start from some value yi. If, 
however, 

xi ~ xi .  (12.7) 

this sequence describes asymmet r i c  prediction. Table 12.1 presents point 
predictions and inverse point predictions from the above regression equa- 
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Table 12.1: Point Predictions and Inverse Point Predictions Using Asymmetric 
OLS Regression 

Predictor Value Estimate Back Estimate 

IQ Performance IQ Difference 
70 31.29 90.59 20.59 
80 35.24 92.36 12.36 
90 39.12 94.14 4.14 

100 43.12 95.90 -4.1 
110 47.09 97.68 -12.32 
120 51.04 99.46 -20.54 
130 54.99 101.23 -28.77 

Performance IQ Performance Difference 
24 87.31 38.13 14.13 
30 90.01 39.20 9.2 
36 92.70 40.26 4.26 
42 95.39 41.32 -0.68 
48 98.09 42.39 -5.61 
54 100.78 43.45 -10.55 
60 103.48 44.52 -15.48 

tions. 
The top panel in Table 12.1 displays estimates of Performance (second 

column) as predicted from IQ (first column) using the above regression 
equation. The third column of this panel contains the back estimates of 
IQ. These estimates were calculated using the regression equation (12.6), 
with the estimates of Per/ormance as starting values. The fourth column 
displays the differences between back estimates and starting values. The 
bottom panel of Table 12.1 displays results for the prediction of IQ from 
Per/ormance (Columns 1 and 2). Column 3 of the bottom panel displays 
the back-estimated Performance scores, where the IQ estimates served 
as predictor scores. The last column contains the differences between 
back-estimated and original Performance scores. 

The results in Table 12.1 and other considerations suggest that 

1. The differences between starting values and back-estimated starting 
values increase with the distance from the predictor mean; 
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2. Differences increase as the correlation between predictor and crite- 

rion decreases; and 

3. Differences increase as regression slopes become flatter. 

When researchers only wish to predict Y values, this asymmetry may 

not matter. However, there are many applications in which this charac- 

teristic can become a problem. Consider the following example. A teacher 

has established the number of learning trials needed for a student to reach 

a criterion. A new student moves to town. This student performs below 

criterion. Using inverse regression the teacher estimates the number of 

make-up sessions needed for this student to reach the criterion. Depend- 

ing on the strength of the relationship, the inverse prediction may not only 

be far away from the number of sessions the new student may actually 

need to reach the criterion. The estimate of lessons needed may indicate 
a number of sessions that is impossible to implement and, thus, makes it 

very hard for the student to be considered an adequate performer. 

On another note, it should be noticed that the above example includes 

discrepancies that are so large that, in other contexts, they would qualify 

as statistically significant. 

1 2 . 1 . 2  T h e  O r t h o g o n a l  R e g r e s s i o n  Solut ion 

Inserting into (12.4) creates an estimate for the slope parameter of Pear- 

son's orthogonal regression. More specifically, we estimate the tangent of 
two times the angle 0 of the orthogonal regression line as 

2 �9 0.421 �9 3.559 �9 3.338 
tan 2~ - = 6.54. 

3.5592 - 3.3382 

From this value we calculate 2 ,  ~ = 81.31 ~ and ~ = 40.65 ~ Thus, 

the angle of the symmetrical regression line is 40.65 ~ . As in standard, 

asymmetric OLS regression, the symmetric regression line goes through 
the centroid (center of gravity, the mean) of the data cloud. The centroid 

has for coordinates the arithmetic means of predictor and criterion. In 
the present example, we obtain for the centroid 

c (9500) 
41.13 
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Straight lines can be sufficiently described by a point and the angle 
of the slope. Thus, we have a complete solution. This solution has the 
following characteristics: 

1. It is an OLS solution in that it minimizes the sum of the squared 
perpendicular distances of data points from the regression line. 

2. It is symmetric in the sense specified in Equations (12.6) and (12.7). 

3. As a result of 2, a prediction of Y from X, followed by an inverse 
prediction that originates from the predicted y value, carries one 
back to the original X value. This applies accordingly when the 
prediction starts from Y. 

4. This method is applicable in particular when both predictor and 
criterion are measured with error. 

5. This method is applicable in particular when there is no natural 
grouping of variables into predictors and criteria. 

6. The Pearson orthogonal symmetrical regression and the OLS asym- 
metric regression lines coincide when Ir[ - 1.0. 

7. The Pearson orthogonal symmetrical regression line is identical to 
the first principal component in principal component analysis (see, 
e.g., Pearson, 1901a, 1901b; Morrison, 1990). The second principal 
component has the same orientation as the main axis of the ellipse 
for the residuals, pi, in orthogonal regression, and so forth. 

Figure 12.3 displays the scatterplot of the IQ-Performance data, the 
two asymmetric regression lines, and the symmetric regression line (thick 
gray). Note that the symmetric regression line does not half the angle 
between the two asymmetric regression lines. 

1 2 . 1 . 3  I n f e r e n c e s  i n  O r t h o g o n a l  R e g r e s s i o n  

Based on the assumption that predictor and criterion are jointly normally 
distributed, Jolicoeur (1973) and Jolicoeur and Mosiman (1968) proposed 
an approximate method for estimating a confidence interval around the 
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Figure 12.3: Three regression lines for Performance- IQ data. 

slope coefficient of orthogonal regression. Let ~ be the slope parameter 
and 

kl _<a_<k2 

the confidence interval. Then, the limits, kl and k2, are 

k l  - -  

2 2 / s y - s . +  2+4s y-4Q 

and 

2 2 r  s ~ - s ~ -  (s~-s~):+4s~-4Q, 
k l  

where 

2 Q _ Fl_~;~;~_2(s~s~ - s~u), 

n - 2  

where sx and sy are the variable standard deviations and sx~ is the co- 
variance of X and Y. 

This approximation is reasonably close to the nominal a even if the 
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correlation is as low as p - 0.4 and the sample size is as small as n = 10. 
Notice, however, that the values of kl and k2 can be imaginary if the 
expression under the square root in the numerator becomes negative. This 
is most likely when the correlation between X and Y is small. Notice in 
addition that, as is usual with confidence intervals, the values of kl and 
k2 are always real and assume the same sign as the correlation if the 
correlation is statistically significant. 

1 2 . 1 . 4  P r o b l e m s  w i t h  O r t h o g o n a l  R e g r e s s i o n  

The following two problems are apparent for orthogonal regression: 

1. Lack of invariance against specific types of linear transformation. 
When X and Y are subjected to linear transformations with differ- 
ent parameters, the parameter estimates for orthogonal regression 
change. This is the case if, for example, X is replaced by bxX and 
Y is replaced by byY, with bx r by. This is not the case in standard, 
asymmetric regression. 

2. Dependence of estimates on variance and mean. Parameter esti- 
mates of orthogonal regression tend to be determined to a large ex- 
tent by the variable with the larger variance and the greater mean. 

Logarithmic transformation and standardization have been proposed 
as solutions for both problems (Jolicoeur, 1991) (see the reduced major 
axis solution in the following section). 

12.2 O t h e r  S o l u t i o n s  

Fleury (1991) distinguishes between two forms of regression: Model I and 
Model II. Model I Regression of Y on X is asymmetric and minimizes 
(12.2), that is, the sum of the squared vertical differences between data 
points and the regression line. If X is regressed on Y, Model I Regres- 
sion minimizes the sum of the squared horizontal differences between data 
points and the regression line (see Figure 12.4, below). Model II Regres- 
sion is what we term symmetric regression. It has a number of variants, 
three of which are presented in this volume (for additional least squares 
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Y 

SYMMETRIC REGRESSION 

r X  

Figure 12.4: Illustration of goal functions of orthogonal regression and 
reduced major axis regression. 

solutions see Isobe et al., 1990). The first is Pearson's orthogonal regres- 
sion, also called major axis regression (see Section 12.1). The second is 
reduced major axis regression (Kermak & Haldane, 1950), also called im- 
partial regression, (see StrSmberg, 1940). The third is bisector regression 
(Rubin, Burstein, & Thonnerd, 1980), also called double regression, see 
Pierce and Tulley (1988). The second and the third solutions are reviewed 
in this section. 

As was illustrated in Figure 12.1, Pearson's major axis solution min- 
imizes the sum of the squared perpendicular distances between the data 
points and the regression line. In contrast, the reduced major axis re- 
gression minimizes the sum of the areas of the right triangles created by 
the data points and the regression line. The two approaches of major 
and reduced major regression are illustrated in Figure 12.4. Standard, 
asymmetric regressions of Y on X and X on Y are also illustrated in the 
figure. 

The black arrows in Figure 12.4 illustrate the standard residual def- 
inition for the regression of Y on X. The estimated y value (regression 
line) is subtracted from the observed y value (squares) (see (12.2)). The 
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sum of these squared differences is minimized. In an analogous fashion, 
the light gray arrows illustrate the regression of X on Y, where residuals 
are expressed in units of X. 

Pearson's orthogonal regression minimizes the sum of the squared dark 
gray differences in Figure 12.4. The dark gray arrows are perpendicular to 
the regression line. Thus, they represent the shortest possible connection 
between an observed data point and the regression line. 

The two asymmetric regression lines and the symmetric orthogonal 
regression line share in common that they minimize lines that connect 
data points and the regression line. The reduced major axis solution 
reduces an area. Specifically, it reduces the area of the right triangle 
spanned by the black, vertical arrow; the light gray, horizontal arrow; 
and the regression line. This triangle is a right triangle because the angle 
between the vertical and the horizontal arrow is a right angle. 

The equation for the reduced major axis regression is 

Yi - fl + sgn(r) 8y(Xi -- X), 
8x 

where sgn(r) is the sign of the correlation between X and Y. (A definition 
of the area of the triangle is given in Section 12.5.1 on computational 
issues.) The slope parameter for the reduced major axis solution is 

bl - 8 g ~ t ( S x y ) ~ l ~ 2 ,  (12.s) 

where ~1 and ~2 are the estimates of the coefficients for the regression of 
Y on X and X on Y, respectively. 

The approximate limits of the confidence interval for the slope coeffi- 
cient in (12.8) are 

- + 1 -  

8x 

and 

k2 - sgn(r)SY(v/B + 1 + v ~ )  
8x 
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where 

B 
F 1 - ~ ; 1 ; . - 2 ( 1  - r 2) 

n - 2  

The main advantage of the reduced major axis solution over the ma- 
jor axis solution is that it is scale-independent. Nevertheless, there are 
recommendations to use this method only if 

1. the sample size is n > 20 

2. the correlation between X and Y is assumed to be strong p >_ 0.6 

3. the joint distribution of X and Y is bivariate normal (Jolicoeur, 

1991). 

Isobe et al. (1990) urge similar cautions. These cautions, however, are 
not proposed specifically for the reduced major axis solution, but in gen- 
eral, for all regression solutions, including all asymmetric and symmetric 
solutions included in this volume. 

The last method for symmetric regression to be mentioned here is 
called the bisector solution. The bisector solution proceeds in two steps. 
First, it estimates the parameters for the two asymmetric regressions of 
Y on X and X on Y. Second, it halves the angle between these two 
regression lines; that is, it halves the area between the regression lines. 
The slope coefficient for the bisector solution is 

/~1/~ 2 - -  1 + v/(i +/~12)(1 +/~) ,  
bl 

31 + 

where, as in (12.8), the/~ are the estimates of the standard OLS asym- 
metric regression slope parameters. 

12.2.1 Choice of Method for Symmetric  Regression 

Isobe et al. (1990) performed simulation runs to investigate the behavior of 
the two asymmetric regression solutions, the bisector solution, the reduced 
major axis solution, and the major axis solution. They conclude that the 

bisector solution can be recommended because its standard deviations 
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are the smallest. The Pearson orthogonal regression solution displays, 
on average, the largest discrepancies between theoretical and estimated 
values. 

When applying regression, one goal is to create an optimal solution. 
Minimal residuals and minimal standard deviations are examples of crite- 
ria for optimal solutions. In addition, significance testing and confidence 
intervals are of importance. There are solutions for significance testing for 
the Pearson orthogonal regression and the reduced major axis solution. 
These solutions were described earlier in this chapter. Therefore, the fol- 
lowing recommendations can be given as to the selection of methods for 
symmetric regression: 

When estimation of scores is of interest rather than statistical signif- 
icance of parameters, the bisector solution may be the best, because 
it creates solutions with the smallest standard deviations. Exam- 
ples of applications in which predominantly estimation is important 
include the estimation of time, amount of work needed to reach a 
criterion, and distance. All this applies in particular when there is 
no obvious classification of variables in predictors and criteria, and 
when both predictors and criteria are measured with error. 

When estimation of confidence intervals and significance testing are 
important, the pragmatic selection is either Pearson's orthogonal 
regression or the reduced major axis solution. Either solution can 
be calculated using standard statistical software. Section 12.5 il- 
lustrates this using the statistical software package SYSTAT. These 
solutions may not produce the smallest standard deviations. How- 
ever, they do not require time-consuming bootstrapping or other 
procedures that yield estimates for standard errors of parameter es- 
timates. Thus, whenever researchers have available software pack- 
ages that allow them to perform steps of the type illustrated in 
Section 12.5, they can create a complete solution that (1) differs 
from the solution with the smallest standard deviation only min- 
imally, (2) allows for significance testing and estimation, and (3) 
carries all the benefits of symmetric regression. 

The following data example uses data from Finkelstein et al. (1994). 
A sample of n -- 70 adolescent boys and girls answered a questionnaire 
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Figure 12.5: Five regression solutions for aggression data. 

that included, among others, the scales Aggressive Impulses, A/, and 
Aggression Inhibition, AIR. An Aggressive Impulse is defined as the urge 
to commit an aggressive act against another person. Aggression Inhibition 
is defined as a mental block that prevents one from committing aggressive 
acts. We analyze these two scales using the five regression models 

1. AIR on A I  

2. A I  on AIR 

3. major axis (orthogonal) 

4. reduced major axis 

5. bisector 

Figure 12.5 displays the data and the five regression lines. 
The correlation 1 between Aggressive Impulses and Aggression Inhibi- 

tion is r = 0.205. The figure suggests accordingly that the angle between 
the regression line of AIR on AI  and the regression line of A I  on AIR 

1 T h i s  c o r r e l a t i o n  is s t a t i s t i c a l l y  n o t  s i g n i f i c a n t  ( t  - -  1 . 7 2 7 ; p  - -  0 .089) .  T h u s ,  a p -  

p l i c a t i o n  of  s y m m e t r i c  r e g r e s s i o n  is c o u n t e r  t h e  r e c o m m e n d a t i o n s  g i v e n  b y  s e v e r a l  

a u t h o r s .  H o w e v e r ,  o n e  of  t h e  m a i n  p u r p o s e s  of  t h e  p r e s e n t  e x a m p l e  is t o  d r a m a t i z e  

t h e  d i f f e r e n c e s  b e t w e e n  a s y m m e t r i c  a n d  s y m m e t r i c  r e g r e s s i o n .  T h e r e  is no  i n t e n t i o n  

t o  m a k e  a s u b s t a n t i v e  s t a t e m e n t  c o n c e r n i n g  t h e  r e l a t i o n s h i p  b e t w e e n  A I  a n d  A I R .  
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is wide. These are the most extreme regression lines in the figure, that 
is, the lines with the steepest and the flattest slopes. As a result, inverse 
regression that starts from a predicted value can carry us far away from 
where the predictions originated. 

All symmetric regression solutions provide regression lines between the 
two asymmetric lines. The differences between the symmetric lines are 
small. Each of the differences is smaller than any of the standard errors 
(for more technical detail see Isobe et al. (1990); for an application to 
astronomy data see Feigelson and Babu (1992) and von Eye and Rovine 
(1993)). The slopes of the five solutions are as follows: 

1. 0.276 
2. 6.579 
3. 0.307 
4. 0.742 

5. 0.889 

All of these regression lines go through the center of gravity (centroid) 
of the bivariate distribution. Thus, the centroid and the slopes give a 
complete description of the regression lines. 

12.3 A General  Model  for OLS Regress ion 

This section presents a general model for OLS regression (Jolicoeur, 1991; 
von Eye & Rovine, 1995). This model unifies the approaches presented in 
the previous sections and in Figure 12.4. The two asymmetric approaches 
and the major axis approach will be identified as special cases of this 
unified model. The nature of this section differs from the others in that 
it does not present a method and its applications. Rather, it presents 
and explains this unified model. The benefit from reading this section 
is, therefore, that readers gain a deeper understanding of the methods of 
symmetric regression. There is no immediate benefit in the sense that 
calculations become easier, faster, or possible. 

The General Model is presented using means of planimetry, that is, 
two-dimensional geometry. Figure 12.6 gives a representation of the com- 
ponents of the model. 

Figure 12.6 provides a more general representation of the problem 
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Figure 12.6: Illustration of a general model for OLS regression. 

already represented in Figure 12.4. The three solutions depicted in the 
figure share in common that they determine parameters of a regression line 
by minimizing the distances, d, of the residuals from this regression line. 
Figures 12.4 and 12.6 show three examples of such distances. There is first 
the light gray, horizontal arrows that depict distances defined in units of 
the X-axis. This distance or residual definition is used when regressing X 
on Y. Second, there are black, vertical arrows. This distance or residual 
definition is used when regressing Y on X. Both of these approaches are 
asymmetric. Third, there are the dark gray arrows that are perpendicular 
to the regression line. This approach is used in Pearson's orthogonal 
regression solution. 

From the unified model perspective, one can state a more general 
regression problem as follows (von Eye & Rovine, 1995): what is the 
regression line obtained by minimizing the sum of the squared distances 
between observed data points (x, y) and an arbitrary data point (x', y') at 
some angle c~ from the perpendicular intersection of the regression line? 
In Figure 12.6 a regression line is drawn that forms an angle, ~, with the 
X-axis. This regression line goes through the centroid of the bivariate 
distribution of X and Y. The angle c~ represents the deviation from the 
perpendicular of the distance to be minimized. The figure also shows 
data point (x, y) and an arbitrary data point (x', y'). It shows the angles 
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and ~ and three sample definitions of the distance between (x, y) and 

the regression line: d for the perpendicular distance (dark gray arrow), 

dhorizontal  for the horizontal distance (light gray arrow), and dvertical for 
the vertical distance (black arrow). Distance a is an arbitrary distance. 

It lies within the triangle minimized by the reduced major axis solution. 

However, it does not coincide with any of the distances minimized for the 

two asymmetric and the major axis solutions. 

Now, to answer the above question consider, as in Section 12.1.2, the 

regression line that,  at angle ~, goes through the centroid, 

Yi - Y - tan O(xi  - ~ ) .  

The distance to be minimized is denoted by the black solid line labeled 

a in Figure 12.6. When minimizing this distance consider the triangle 

formed by the three lines a, w, and l, where 1 is a part of dhorizontal  with 

1 ~__ dhorizontal .  The distance a can be expressed as 

a -  ~ w  2 ~-l 2. 

The vertical distance from the point (x, y) to the regression line is 

di,verticat - (y  - tan O(xi - ~)) - ~. 

The perpendicular distance (dark gray line) of (x, y) to the regression line 

is 

di - (y  - tan O(xi  - ~)  - ~ ) c o s O .  

Setting 2 

a - dsec ~, 

and 

1 - a c o s ( 9 0 - a - O )  

w - a s i n ( 9 0 - a - O )  

2In the equation "sec" is short for secant. In a right triangle a secant can be defined 
as the ratio of the hypotenuse to the side adjacent to a given angle. 
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we can describe the coordinates of point (x ~, y~) as 

x '  - x - 1  

y '  - y + w .  

Using these terms, we can give a more explicit specification of the 

distance to be minimized. It is 

ai  - (y  - tan  0 ( x i  - ~ - ~)2 (cos2 ~ sec 2 c~)) 

�9 (cos 2 (90 - a - 0) + s i n  2 (90 - a - 0)). 

O LS minimizes the sum of the squared distances, tha t  is, 

E ( y i  - t a n  O(xi  - 2 )  - / ~ ) 2  c o s  2 ~9 s e c  2 a .  

i 

(12.9) 

In the following paragraphs we show that  the two asymmetr ic  re- 

gression solutions and Pearson's orthogonal solution are special cases of 

Equat ion (12.9). First, we consider the regression of Y onto X.  For this 

case, a = t? and the function to be minimized is 

E ( y i  - tan 0 ( x i  - 2 )  - y)2 
i 

Taking the first partial  derivative with respect to ~ and sett ing tha t  

to 0 yields the solution for ~ in the form of 

t an0  - E i ( Y i  - f l ) ( x i  - 2 )  
E i ( x i  - 2 )2  

This is identical to the solution for the regression of Y onto X.  

Second, we consider the orthogonal, symmetrical  solution, tha t  is, the 

major  axis solution. Here, a - 0, and the equation to be minimized is 

E ( y i  - tan 0(xi - 2) - ~)2 cos 2 ~. 
i 

The first part ial  derivative of this expression with respect to ~, set to 0, 
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is 

tan 2~ = 
2 ~-~i(Yi- ~)(xi - ~) 

~ i ( Y i  - -  ~)2 __ ~ i ( X  i __ ~ ) 2 "  

This is Pearson's solution. 

Third, we consider the regression of X onto Y. For this asymmetric 

regression a = 90 ~ - 0 ,  and the equation to be minimized is 

~ ( Y i  - tan O ( x i  - "2) - ~)2 cot 2 0. 
i 

The first partial derivative of this expression with respect to 0, set to 
0, is 

co t  ~ - ~ i ( Y i  - ~ ) (x i  - ~) 
~ ( ~ / _  ~)2 

The derivations for these three results are given in von Eye and Rovine 

(1995). 

12.3 .1  D i s c u s s i o n  

From a data  analyst 's  perspective, the three solutions presented here can 

be viewed as different hypotheses about the nature of residuals. The 

solutions discussed here cover all regression lines between a = ~ and 

- 9 0 -  ~. As the regression line sweeps from one extreme to the other, 

the degree to which X and Y contribute to the slope of the line changes. 

l moves from dhorizontal to 0, and w moves from 0 to dvertical (see Figure 
12.6). 

The concept of multiple symmetrical regression, also introduced by 
Pearson (1901a), is analogous to the concept of simple symmetrical re- 
gression. Consider the three variables A, B, and C. The data cloud, 
that is, the joint distribution of these variables, can be described by a 
three-dimensional ellipsoid. This ellipsoid has three axes. As in simple, 
that is, bivariate regression, the solution for three-dimensional symmetri- 
cal regression is a single regression line. In three-dimensional asymmetric 
regression the solution is no longer a line, it is a (hyper)plane. The best 
fitting symmetrical regression line goes through the centroid and has the 
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same orientation, that is, slope, as the main axis of the ellipsoid. This 
applies accordingly to more than three dimensions (see Rollett, 1996). 

12.4 Robust Symmetrical  Regression 

Outliers tend to bias parameter estimates. This applies in particular 
to estimates from O LS. The above symmetric regression methods use 
OLS methods. Therefore, they are as sensitive to outliers as standard 
asymmetric regression methods that also use O LS methods. To create 
a regression solution that is both symmetric and robust, von Eye and 
Rovine (1993, 1995) proposed combining Pearson's orthogonal regression 
method with Rousseeouw's LMS regression. This method proceeds as 
follows 

1. Select a subsample of size nj _ n and calculate the slope of the 
orthogonal regression line and the median of the squared residu- 
als where residuals are defined as in Pearson's solution; save the 
parameter estimates and median. 

2. Repeat Step 1 until the smallest median has been found. 

The method thus described, robust symmetric orthogonal regression, 
shares all the virtues of both orthogonal and LMS regression. It also 
shares the shortcomings of both (see Section 12.1.4). 

12.5 Computational  Issues 

In spite of its obvious benefits and its recently increased use in biology 
and astrophysics, symmetric regression is not part of standard statistical 
software packages. However, for some of the solutions discussed in this 
chapter there either are special programs available or solutions can be 
easily implemented using commercial software. For instance, Isobe and 
Feigelson (Isobe et al., 1990) make available copies of a FORTRAN 77 
program that calculates the five regression models discussed in their 1990 
paper. The present section illustrates the calculation of the major axis 
and the reduced major axis solutions using SYSTAT (Fleury, 1991). 
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As in Section 12.5 we assume the reader is familiar with standard data  

and file manipulation routines in SYSTAT. Therefore, we focus on the 
methods of symmetric regression, using a data file already in existence as a 
SYSTAT system file. Specifically, we use file AGGR.SYS, which contains 
the data  for the aggression data example (see Figure 12.5). First, we 
show how to create a major axis solution. Then, we show how to create 
a reduced major axis solution (Section 12.2.1). Both SYSTAT solutions 
are based on Fleury (1991). 

1 2 . 5 . 1  C o m p u t i n g  a M a j o r  A x i s  R e g r e s s i o n  

The NONLIN module in SYSTAT allows one to estimate parameters in 

nonlinear estimation problems. It is important  for the present context 
that  this module allows one to specify both the functions to be minimized 
(loss function) and the minimization criterion. The default criterion is 
least squares. Therefore, we only need to specify the loss function. For 
the major axis solution the loss function is 

LOSS - (y - (b0 + 51x))2 
l + b l  2 �9 

Parameter  estimates for b0 and bl can be obtained as follows. 

Command Effect 

Use Aggr (AI, AIR) 

Click Stats, Nonlin 

Click Loss Function 

Type into the field for the 
Loss function the 
expression 
"(AI87 - (B0 +BI, 
AIR87) ) "2/(1 + B1"2)" 

Reads variables AIR and AI from 
file "Aggr.sys;" SYSTAT presents 
list of variables on screen 
Invokes NONLIN module in 
SYSTAT 
Opens the window in which one 
can specify Loss Function 
Specifies loss function for major 
axis solution; parameters to be 
estimated are b0 (intercept) and 
bl  (slope) 

continued on next  page 
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Click OK, Stats, NONLIN, 
Model 

Type in the field for the 
regression model 
"AI87 = B0 + Bl,AIR87" 
Click OK 

Invokes the NONLIN module 
again; opens the window in which 
we specify the regression model 
Specifies the regression model and 
its parameters 

Starts iterations; SYSTAT 
presents overview of iteration 
process on screen, followed by the 
parameter estimates; carries us 
back to the SYSTAT command 
mode window 

After these operations we have the iteration protocol and the result 
of the iterations on screen. Highlighting all this and invoking the Print 

command of the pull-down File menu gives us the following printout: 

LOSS = (ai87-(bO+bl*air87)) ^2/(I+b1^2) 

>ESTIMATE 

Iteration 
No. Loss BO BI 

0 .177607D+04 .I11633D+02 .152146D+00 

1 .173618D+04 .642059D+01 .300026D+00 
2 .173611D+04 .620045D+01 .306890D+00 

3 .173611D+04 .619920D+01 .306929D+00 
4 .173611D+04 .619920D+01 .306929D+00 

Dependent variable is AI87 

Final value of loss function is 1736.106 
Zero weights, missing data or estimates reduced 
degrees of freedom 

Wald Conf. Interval 

Parameter Estimate A.S.E. Param/ASE Lower < 95~,> Upper 
BO 6. 199 4. 152 I. 493 -2. 085 14.484 

B1 O. 307 O. 128 2. 399 O. 052 O. 562 
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The first line in this output contains the specification of the loss func- 
tion. The second line shows the command "estimate." What follows 
is an overview of results from the iteration process. The program lists 
the number of iterations, the value assumed by the loss function, and 
the parameter values calculated at each iteration step. The values given 
for Iteration 0 are starting values for the iteration process. It should be 
noticed that numerical accuracy of the program goes beyond the six dec- 

imals printed. This can be concluded from the last three iteration steps. 
Although the first six decimals of the loss function do not change, the 
parameter values do change from the third to the fourth iteration step. 

After this protocol the program names the dependent variable (which, 
in some applications of symmetrical regression, may be a misnomer) and 
the final value of the loss function. This value is comparable to the resid- 
ual sum of squares. The following line indicates that cases had been 
eliminated due to missing data. The final element of the output is the 
listing of the parameter estimates. The slope parameter estimate is the 

same as the one listed at the end of Section 12.2.1. 

12.5.2 Computing Reduced Major Axis Solution 

The major axis and the reduced major axis OLS solutions differ only in 
their loss function. The loss function for the reduced major axis solution 

LOSS - (y  - (bo * b l x ) )  2 
Lb l 

The following commands yield parameter estimates for the reduced 

major axis solution. 

Command Effect 

Use Aggr (AI, AIR) 

Click Stats, Nonlin 

Reads variables AIR and AI from 
file "Aggr.sys". SYSTAT presents 
list of variables on screen 
Invokes NONLIN module in 
SYSTAT 

cont inued  on n e x t  page  



234 CHAPTER 12. SYMMETRIC  REGRESSION 

Click Loss Function 

Type into the field for the 
Loss function the 
expression 
"(AI87 - (B0 + B1, 
AIR87) ) ̂ 2/abs (BI)" 

Click OK, Stats, NONLIN, 
Model 

Type in the field for the 
regression model 
"AI87 = B0 + B1,AIRS7" 
Click OK 

Opens the window in which one 
can specify Loss Function 
Specifies Loss Function for 
Reduced Major Axis Solution; 
parameters to be estimated are b0 
(intercept) and bl  (slope) 

Invokes the NONLIN module 
again; opens the window in which 
we specify the regression model 
Specifies the regression model and 
its parameters 

Starts iterations; SYSTAT 
presents overview of iteration 
process on screen, followed by the 
parameter estimates; carries us 
back to the SYSTAT command 
mode window 

The following output presents the protocol created from these com- 
mands: 

LOSS = (ai87-(bO+bl,air87))^2/abs(b1) 

>ESTIMATE 

Iteration 

No. Loss BO B1 
0 .618924D+04 .619920D+01 .306929D+00 

I .481618D+04 .211888D+01 .434155D+00 
2 .422637D+O4-.246146D+OI .576972D+00 
3 .407632D+O4-.612368D+OI .691162D+00 
4 .406342D+O4-.759789D+OI .737128D+00 
5 .406330D+O4-.776169D+OI .742235D+00 
6 .406330D+O4-.776341D+OI .742289D+00 
7 .406330D+O4-.776341D+OI .742289D+00 

Dependent variable is AI87 
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Final value of loss function is 4063.300 
Zero weights, missing data or estimates reduced 
degrees of freedom 

Wald Conf. Interval 
Parameter Estimate A.S.E. Param/ASE Lower < 95~,> Upper 
BO -7. 763 3. 726 -2. 083 -15. 199 -0. 328 
B1 0.742 0.114 6.540 0.516 0.969 

This protocol has the same form as the one for the major axis so- 

lution. One obvious difference is that the iteration took longer to find 

the minimum of the loss function than that for the major axis solution. 

Parameter estimates are b0 = -7.763 and bl - 0.742. These values are 

identical to the ones reported at the end of Section 12.2.1. It should be no- 

ticed that whereas the value assumed by the loss function is not invariant 

against linear transformations, the parameter estimates are. This can be 

illustrated by dividing the above loss function by 2 (Fleury, 1991). This 

transformation yields a final value of the loss function that is half that in 

the above output. The parameter estimates, however, remain unchanged. 

To enable readers to compare the symmetric regression solutions with 

the asymmetric ones we include the protocols from the two asymmetric 

regression runs in the following output: 

>MODEL AI8Z = CONSTANT+AIR8Z 
>ESTIMATE 
44 case(s) deleted due to missing data. 

Dep Var: AI87 
N: 70 

Multiple R: 0.205 
Squared multiple R" 0.042 

Adjusted squared multiple R" 0.028 
Standard error of estimate: 5.169 

Effect Coefficient Std Error t P(2 Tail) 

CONSTANT 1 i. 163 2. 892 3. 860 O. 000 
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AIR87 O. 152 O. 088 i. 727 O. 089 

Dep Var: AIR87 
N: 70 
Multiple R" 0.205 
Squared multiple R" 0.042 

Adjusted squared multiple R" 0.028 
Standard error of estimate: 6.964 

Effect Coefficient Std Error t P(2 Tail) 

CONSTANT 27. 641 2. 697 i0. 249 O. 000 
AI87 O. 276 O. 160 i. 727 O. 089 



Chapter 13 

VARIABLE SELECTION 
TECHNIQUES 

In this chapter we deal with the question of how to select from a pool 
of independent variables a subset which explains or predicts the depen- 
dent variable well enough so that the contribution of the variables not 

selected can be neglected or perhaps considered pure error. This topic is 
also known as "subset selection techniques". The two aims, explanation 

and prediction, are distinct in that an obtained regression equation which 
gives a good prediction might, from a theoretical viewpoint be not very 
plausible. As the techniques used for variable selection and prediction are 

the same, we will not further consider this distinction. The terms predic- 
tor and explanatory variable are therefore used interchangeably. However, 

the following remark should be kept in mind: If prediction is the focus, 
one can base variable selection predominantly on statistical arguments. 
In contrast, if explanation is the focus, theoretical arguments guide the 
variable selection process. The reason for this is that the so-called F-to- 

enter statistic, testing whether a particular regression coefficient is zero, 
does not have an F distribution if the entered variable is selected accord- 
ing to some optimality criterion (Draper, Guttman, & Kanemasu, 1971; 
Pope 85 Webster, 1972). 

That  variable selection poses problems is obvious if the regression 

model is used for explanatory purposes, as predictors are virtually always 

237 
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intercorrelated. Therefore, values of parameter estimates change when 

including or eliminating predictors. As a consequence, the interpretation 
of the regression model can change. Yet, there is another argument for not 
fitting a regression model with more variables than are actually needed. 
To see this, we first have to establish notation. Let 

E(y) =/30 + 131xl + . . .  + ~axa + " "  + 13a+bXa+b 

be the regression equation for a single observation where the set of a + b 
predictors is divided into two non-overlapping subsets, A and B, which 
contain the indices from 1 to a and from a + 1 to a + b, respectively. The 
O LS estimate for the/3  vector is given in matrix notation by 

-- (X 'X)  - i x ' y ,  

where X is the design matrix of all the A + B predictors including a 
vector for the intercept, and y now denotes the vector of observations of 
the dependent variable. The reason for subdividing the predictors into 
two sets is that  we can now write the design matrix as X - (XA, XB) and 
can express the O LS estimate of the regression coefficients after selecting 
a subset of predictors for the regression as 

f~A - - ( X k X A ) - - I X A Y ,  

tacitly assuming, of course, that  the selected variables are reordered so 
that  they are contained in A. 

With this notation the argument for not fitting a regression model 
with too many variables is validated sin it can be shown that  the following 

inequality holds (for a proof see Miller, 1990): 

> 

In words, this inequality states, that  if we base our prediction on a 
subset of all available predictors the variability of the predicted value, 
:gA - X~A~A, is generally reduced compared to the variability of a pre- 

^ 

diction from the complete set, ~ = x~/3. Hence, the precision of our 
prediction is increased. In particular, the variance of each regression co- 

efficient in A is increased. This can be illustrated by choosing x as a 



239 

vector of zeros with a one in the pth place, p _ a, and XA identical to x 

except that  the last b elements in x are eliminated. Such a vector merely 
selects the pth element of f~ as well as ~A. However, including too few 

predictors results in what is known as omission bias. Suppose now that  

at least one predictor in set B is nonredundant. Having only selected the 

predictors in set A we could calculate E(~A) as 

E(~A) - ~A + ( X k X A ) - l X k X s ~ B ,  

which results in biased prediction. The second term in the above equation 

gives the amount of shift between the true value of ~A and the expected 

value of its estimator. The bias, that is, the difference between the true 

value and the expected value of our prediction, is 

bias(~A) -- b i a s ( x ~ A )  -- x k -- x k ( X ~ X A ) - I X ~ X B ~ B  �9 

A derivation of these results can be found in Miller (1990). A bias in an 
estimator is not a problem as long as it is not 'too' large. For example, the 
usual estimate of the standard error s where, s 2 - n I n - -  - 1  E i - - - - l  ( X i  - -  ~)2, 
is biased as well. For an unbiased estimator of the standard deviation 
see, for example, (Arnold, 1990, p. 266). (However, s 2 is an unbiased 

estimator for the population variance.) There are techniques available for 

detecting and reducing the omission bias (Miller, 1990). 

The crucial point here is to see that the aim of variable selection lies in 

selecting just enough variables so that the omission bias is small and, at 

the same time, increasing the variance of the prediction or, equivalently, 

of the regression coefficients not more than necessary. In Miller's words, 

"we are trading off reduced bias against increased variance" (1990, p. 6). 

A few words about the variables that enter into the regression equa- 

tion are in order. Of course, the dependent variable should, perhaps after 
a suitably chosen transformation, be approximately normally distributed. 

If there is evidence that  the relation between the dependent and an inde- 
pendent variable is curved, quadratic or even higher order terms should 

be included in the set of all predictors. The same holds true for any in- 

teraction terms, like XpXq, between any predictors. Note also that it is 
usually not meaningful to include, for example a quadratic term, say x 2 p~ 
in the equation without Xp or an interaction term without at least one 
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of the variables contained in the interaction. All of the techniques from 

regression diagnostics can be used to make sure that  the usual regres- 

sion assumptions are at least approximately satisfied. It should be noted 

that  this examination is, although recommended, incomplete, because 
the final, and hopefully adequate, regression model is not yet determined. 

Model checking is very useful after a final model has been selected. 

Further, it should be noted that a regression model can only be fit to 

data if there are at least as many observations as there are predictors. If 

we have more predictors than observations some of the variable selection 

techniques discussed in the following will not work, for instance, back- 

ward elimination. Often researchers wish to include a variable merely 

on theoretical, rather than statistical, grounds. Or, it may make sense 

to include or exclude an entire set of variables, as is often the case with 

dummy variables used for coding a factor. These options should be kept 
in mind when interpreting results of a variable selection technique. 

Variable selection techniques can be divided into "cheap" ones and 

others. The first group enters or removes variables only one at a time. 

Therefore they can be performed with large numbers of independent vari- 

ables. However, they often miss good subsets of predictors. On the other 

hand, the other techniques virtually guarantee to find the "best" subsets 

for each number of predictors but can be performed only if the number of 

predictors is not too large. We discuss both groups in different sections, 

starting with the best subset regression technique. But first, we present 

an example in order to be able to illustrate the formulas given below. 

13.1 A Data Example 

The data are taken from a study by yon Eye et al. (1996) which in- 

vestigated the dependence of recall on a number of cognitive as well as 
demographic variables. We use a subset of the data. This subset contains 

183 observations, 10 predictors, and the dependent variable. The data are 
given in Appendix E.1. Each subject in the study was required to read 

two texts. Recall performance for each text was measured as the num- 

ber of correctly recalled text propositions. The two recall measures were 
added to yield a single performance measure. There were two types of 

text in the experiment, concrete texts and abstract texts. The texts had 
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Table 13.1: 
niques 

List of Variables Used to Illustrate Best Subset Selection Tech- 

1. AGE 
2. EG1 
3. SEX 
4. HEALTH 
5. READ 
6. EDUC 

7. CC1 
8. CC2 
9. OVC 

10. TG 
11. REC 

subject age in years 
dummy variable for experimental group 
dummy variable for sex 
4-level rating scale from very good to poor 
reading habits in hours per week 
7-level rating scale indicating highest degree of 
formal schooling completed 
measure of cognitive complexity: breadth of concepts 
measure of cognitive complexity: depth of concepts 
measure of cognitive overlap of concepts 
dummy variable for type of text: abstract vs concrete 
dependent variable recall performance 

been created to tap cohort-specific memories. For instance, it is assumed 
that cohorts have good memories of music fashionable when cohort mem- 
bers were in their teens. Later, many cohort members spend less time 
listening to music. Therefore, the music of their teens stays prominently 
with them as cohort-specific memory content. The same applies to such 
abstract concepts as heros and educational goals, and to such concrete 

concepts as clothing styles. Consider the following example. 

Individuals that were middle-aged around 1985 grew up listening to 
Elvis Presley music. Individuals twenty years older grew up listening 
to Frank Sinatra music, and individuals twenty years younger grew up 
listening to Bruce Springsteen music. The texts had been constructed to 
be identical in grammatical structure and length, but differed in the name 
of musician mentioned. This was done in an analogous fashion for the 
other topics. The hypothesis for this part of the experiment was that at 
least a part of the ubiquitous age differences in memory performance can 
be explained when differential, cohort-specific familiarity with contents is 
considered. 

The 10 explanatory variables and the dependent variable R E C  are 
given in Table 13.1. 

First of all, we draw a histogram of the dependent variable which 
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Figure 13,1: Histogram of Recall, REC, in cohort memory experiment. 

is shown in Figure 13.1. This plot shows clearly some skewness in the 
distribution of the variable REC. 

The normal probability plot, Figure 13.2, shows a clear departure from 
normality. 

Therefore, a transformation of REC may be worthwhile. As this vari- 
able is a number of counts and counts often follow a Poisson distribution 
a square root transformation is recommended to stabilize the variance 
and to obtain an approximately normally distributed variable. Let Y be 
defined as 

Y = ~/REC. 

After this transformation, the normal probability plot for Y now shows 
no systematic departures of Y from normality (see Figure 13.3). For the 
following analyses we use Y as the dependent variable. 

All scatterplots of each potential explanatory variable against Y (not 
shown here) show wide scatters with no curvature that would require 
higher order terms of the explanatory variables. No correlation between 
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Figure 13.2" Normal probability plot of raw frequencies of Recall. 
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Figure 13.3" Normal probability plot of Recall rates after square root 
transformation. 
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Y and one of the continuous predictors is higher in absolute value than 

r - 0.25. For the three dummy variables in the data set the means of 
Y are calculated for the two groups belonging to each dummy variable, 
showing a considerable shift in the mean for TG (8.04 vs. 6.36) and EG1 
(8.68 vs. 6.84) but only a small difference for SEX (7.24 vs. 7.12). From 
this information we should probably select TG and EG1 as predictors 
but it is not clear which of the continuous predictors to select in order to 
improve the model fit. Now we will show how variable selection techniques 
can be used as a guide to answer this question. 

13.2 Best Subset Regression 

In principle, best subset regression is straightforward. One "merely" has 
to compute the regression equation for each possible subset of the, say 
k, available predictors and then use some goodness-of-fit criterion, for 
instance, R 2, to decide which set of predictors yields a good or possibly 
best fit. Before discussing how "best" could be defined we should note how 
many possible subsets can be produced from k predictors. The answer 

is 2 k as there are (k0) -- 1 possible ways to select no predictor (fitting 
only the intercept term), (k) _ k possible ways to select one predictor, 

(k2) -- k ( k -  1)/2 ways to select two predictors, and so on. If one sums all 
the possibilities, that  is, 

k 

i--0 

the result is 2 k. With 10 predictors there are 1024 possible regression 

models and we could easily spend a whole day fitting all the models, and 
with 20 predictors fitting all models will take (at least) a whole lifetime, 
1,048,576 regression runs. Thus, speedy algorithms are needed to reduce 
the amount of work. 

There are two types of algorithms; the first type calculates all possible 
regressions (see Schatzoff, Tsao, &: Fienberg, 1968) whereas the second 
type only gives a few of the best subsets for each number of independent 
variables (see Furnival & Wilson, 1974). There has been considerable 
work in this area and today some of these algorithms are implemented in 
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standard computer packages, for example, SAS and S-Plus. (See reference 
manuals for details.) How these algorithms work need not concern us here. 
We next explain how to judge the fit of a regression model. 

There are several criteria in use for deciding how well a regression 
model fits the data. Therefore, when speaking of a "best" subset of pre- 
dictors this always refers to the optimality criterion chosen. We discuss 
the following criteria: R 2, adjusted R 2, and Mallow's Cp. 

1 3 . 2 . 1  S q u a r e d  M u l t i p l e  C o r r e l a t i o n ,  R 2 

First recall the definition of R 2, the square of the multiple correlation 
coefficient, 

R2 = SSReg 
SSRm 

This is just the sum of squares that can be explained by the regression 
model, SSReg, divided by the sum of squares that can be explained when 
only the intercept is fitted, SSRm; that is, no sample information is used 
to explain the dependent variable. (SSRm is also known as the total sum 
of squares corrected for the mean.) As SSRm is a constant for given data, 
R 2 and SSReg as well as SSRes = SSRm - SSReg are entirely equivalent 
ways of expressing model fit. Maximizing R 2 corresponds to minimizing 

SSRes, the residual sum of squares. All the following explanations are 
given in terms of R 2. 

It could be argued that the higher R 2, the better the fit of the model. 
But this argument leads directly to selecting the model with all the pre- 
dictors included, as R 2 could never decrease with the addition of a further 
predictor. Formally, this is 

R 2 (Model I) < R 2 (Model II) 

if Model II contains all the predictors of Model I plus one additional 
predictor. For this reason, we do not concentrate on the highest R 2 value 
but on large size changes in R 2 between models with different numbers of 
predictors. A program for best subset selection will print out the model 
or perhaps a few models with the highest R 2 values for each number of 
independent variables if the R 2 measure is selected as the goodness-of- 
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fit criterion. From this output it can be seen when further addition of 

predictors will not increase R 2 considerably. If one is after explanation 

rather than prediction one should always request (if possible) a few of 

the best models for each number of predictors, as there are usually some 

models with nearly identical fit, in particular if the number of predictors 

is high. 

To save space, Table 13.2 gives only the three best subsets of one to 

six predictors (taken from Table 13.1) in the equation according to the 
R 2 criterion for the present sample data. If we enter all 10 predictors 

in the equation we have R 2 -- 45.16%, that is, we can explain about 

half of the variation of Y by our explanatory variables. It is hard to 

say whether this indicates that some important variables have not been 

recorded since a relatively low R 2 does not imply a poor model fit. The low 

R 2 was expected anyway as the correlations found between the continuous 

predictors and Y are very low. One can see from the table the outstanding 

role of the variables TG (10) and EG1 (2). TG accounts for 21% and 

EG1 for 16% of the variation in Y, and both variances add together to 

37% if the model is fitted with both variables in the equation. 

When there are three or more variables in the equation, all models in 

the table contain TG as well as EG1. First, this shows that  the experi- 

mental condition applied had a considerable effect. Also as expected, text 

group (abstract vs. concrete) has a high influence on recall. 

Looking at the models with three predictors we see that the cognitive 

measures enter the model next but the increase in R 2 is relatively low 

and the model fits are very similar. The correlations of OVC with CC1 
and CC2 are -0.78 and -0.54, respectively, indicating that  there is some 

overlap between these measures. The correlation between CC1 and CC2 
is, although significant at the 5% level, virtually zero, r = 0.15. As 

the difference between the best model with three variables and the best 

model with five or six variables in the equation is only about 3 0  VC is a 

reasonable choice, although prediction could be slightly improved when 
more variables are added. Note also that from three variables in the 

equation onward there are no big differences between the model fits. Thus, 
theoretical considerations may have to guide researchers when selecting 

one of the other models. 
In some sense the other two measures, the adjusted R 2 and Mallow's 

Cp, penalize the addition of further variables to the model, that  is, with 



13.2. B E S T  S U B S E T  R E G R E S S I O N  247 

Table 13.2: Best Three Subsets for One to Six Predictors According to the R 2, 
Adj R 2, and Cp criteria. R 2 and Adj R 2 are given in percent. The first column 
gives the number of predictors in the equation in addition to the intercept. 

No. of Var. in the 
Var. Equation" 

1 (10) 
(2) 
(9) 

2 (2,10) 
(5,10) 
(9,10) 

3 (2,9,10) 
(2,s,10) 
(2,7,10) 

4 (1,2,9,10) 
(2,5,9,10) 
(2,8,9,10) 

5 (1,2,5,9,10) 
(1,2,6,9,10) 
(1,2,7,8,10) 

6 (1,2,5,8,9,10) 
(1,2,5,6,9,10) 
(1,2,5,7,8,10) 

R 2 Adj  R 2 C v 

20.99 20.55 68.83 
15.92 15.46 84.72 
5.45 4.93 117.56 

37.01 36.31 20.58 
25.08 24.25 57.98 
24.20 23.36 60.76 
41.26 40.27 9.25 
40.35 39.35 12.11 
39.14 38.12 15.91 
42.71 41.42 6.69 
42.35 41.05 7.83 
41.97 40.66 9.03 
44.19 42.61 4.05 
43.64 42.05 5.78 
43.33 41.72 6.76 
44.59 42.70 4.80 
44.56 42.67 4.90 
44.51 42.62 5.06 

aFrom Table 13.1 

these criteria the model fit can decrease when adding variables to the 
model. 

13.2.2 Adjusted Squared Multiple Correlation 

The adjusted R 2 is defined as 

Adj  R 2 - 1 -  
MSRes 

where sy2 is just the sample variance of the dependent variable. As this is a 
constant, for a given set of data, Adj R 2 and MSRes are again equivalent 
ways for expressing this criterion. Note that Adj R 2 accounts for the 
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number of predictors through MSRes, as this is just S S R e s / ( n - p ) ,  where 

n is the number of observations and p the number of predictors in the 

equation, including the intercept. If a predictor is added that  explains 

nothing, it could not decrease SSRes, but the calculation of MSRes has 

lost one degree of freedom, that is, the denominator of MSRes is reduced 

by one. Thus, MSRes increases. The model with the highest Adj R 2 
should therefore be judged as the best model regardless of the number of 

predictors in the model. But this statement should be taken with a grain 

of salt, as it can be shown that the Adj R 2 criterion used in this strict 

sense has the tendency to include too many variables. 

The strategy in model selection should therefore be the same as with 
the R 2 criterion. Using a computer program obtain a few of the best sub- 

sets for each distinct number of predictors and select a model considering 
(1) the relative increase of Adj R 2 as more variables are entered into the 

model and (2) theoretical arguments. 

The second to last column of Table 13.2 shows the best three subsets 
of one to six variables in the model using the Adj R 2 criterion. Indeed, 

it is no accident that the best three subsets for a given value of p are the 

same whether the R 2 or the Adj R 2 criterion is used. This also generalizes 

to the Cp criterion, to be discussed below, as it can be shown that,  for 
a given value of p, the R 2, Adj R 2, and Cp criteria all induce the same 

ranking of the models. Formally this is 

Rp 2 (Model I) _< Rp 2 (Model II) 
Adj R2p(Model I) _ Adj R 2(Model II) 

Cp(Model I) _ Cp(Model II), 

where Model I and Model II both contain a subset of p variables but the 

two subsets are different. By looking at Table 13.2 we come to the same 

conclusions as before. It is of interest that  whereas the Adj R 2 criterion 

penalizes the addition of further variables, Adj R 2 is slightly increased 

when adding a fourth and a fifth variable to the model. But recall that  
the Adj R 2 criterion has the tendency to include more variables into the 

model than actually needed. 
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1 3 . 2 . 3  M a l l o w ' s  Cp 

The derivation of Mallow's Cp can be found, for example, in Christensen 
(1996) or Neter et al. (1996). It is assumed that  the model with all 
predictors is the correct model and thus we can estimate the true residual 
variance (~2 by 

SSRes(k) 

n - k  

Recall that  k is the number of available predictors and n denotes the 

number of observations. SSRes(k) is the residual sum of squares with all 
the predictors in the model and by assumption the true model as well. Let 
SSRes(p) be the residual sum of squares with only p of the k predictors 

in the model. Mallow's Cp is then given as 

C p  -~ 
SSRes(p) 

52 
- - 2 p ) .  

To better understand Mallow's Cp consider that,  from a statistical 
viewpoint, it is desirable to minimize the expression 

1 
a---~E(S'(p) - tt)'(:~(p) - tt), 

where a 2, the residual variance, is just a scale parameter,  :~(p) denotes 

the prediction using only p predictors, and tt denotes the true but un- 
known mean response. Thus we evaluate the fit of a regression model 
by looking at the expected squared distance between the true value and 
the prediction given from some model. The formula is an expected value 
of a quadratic form involving population parameters and thus it is typi- 
cally unknown to us. Mallow's Cp is an estimator of this expression. If 
p predictors are sufficient to provide a good description of our data, then 
Mallow's Cp is as small as the distance between S'(P) and tt is small. For 
this reason we are interested in finding regression models with small Cp 
values. If a subset of p predictors can explain the dependent variable very 

well, the expected value of Cp can be shown to be 

E(Cp) - p 
2(k -p) 

n - k - 2  
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If the sample is large relative to the number of predictors needed for a 

good description of the data, that is, n >> k and p, the second term in the 

above equation will be small, as n is in the denominator, and E(Cp) ~ p. 
Hence, a good model yields a small Cp value that is near p. 

The Cp values for our example are again given in Table 13.2 for the 

three best subsets from one to six predictors. First note that the differ- 

ences in Cp within each subset of predictors are larger than the differences 

of the other criteria. If one is willing to select a model with only three 

predictors in it, Cp suggests using the O VC variable instead of the other 

two cognitive measures, CC1 and CC2. With Cp, we should select models 

for which Cp ~ p, so a model with only three variables in the equation 

may not be good enough. After five variables are entered, that is, p = 6 
(remember the intercept), Cp is close to six, so each of the models given in 

the table may be a reasonable choice. These models contain at least one 
of the three cognitive complexity variables. With six variables entered 

into the equation, Cp increases slightly compared to the best model with 

only five variables in the equation and the value of Cp is slightly too low. 

Thus, according to Cp, we select one of the five-variable models. 

So, what we have obtained from best subset regression is not "the" 

best model, but we have identified a few good models, which leaves it to 
us to decide on theoretical grounds which model we finally select. We 

should now investigate with regression diagnostic techniques whether the 

variance of the residuals is approximately constant, whether the residuals 

are normally distributed, whether there are influential observations, and 

SO o n .  

For illustrative purposes we select the third best model with five pre- 

dictors plus the intercept. For this model we calculate Cp = 6.76. This 

is a relatively parsimonious model because apart from the indicators for 

text group and experimental condition it contains CC1 and CC2, the two 

nearly uncorrelated measures of Depth and Breadth of Cognitive Com- 
plexity, and Age, which is reasonable as the experimental conditions varied 

the cohort-specific content of the texts. From the plot of the standard- 
ized residuals against the fitted values in Figure 13.4 the variance looks 
reasonably stable. While the bulk of the observations lie in the interval 

between -2 and 2, there is at least one extreme residual with a value of 

about 4. With this observation something unusual has happened. The 

model had predicted a low value for Recall but the observation has a high 
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Figure 13.4" Plot of fitted values against standardized residuals in cohort 
memory experiment. 

positive residual, indicating that this person performed much better than 
expected from his or her predictor values. 

The normal probability plot given in Figure 13.5 shows that the stan- 
dardized residuals are approximately normally distributed, but the tails 
of the distribution are heavier than those of a normal distribution. 

While best subset regression can be easily determined if the number 
of predictors is not too large, say, less than 40, other methods are needed 
that are computationally less intensive if the number of predictors is con- 
siderably higher. For this reason, these are usually referred to as the 
"cheap" methods. 

13.3 Stepwise Regression 

There are three different methods that enter or delete variables to or 
from the model one at a time. These are forward selection, backward 
elimination, and the Efroymson algorithm. Often the name "stepwise 
regression" is used for the algorithm proposed by Efroymson (1960). 
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Figure 13.5: Normal probability plot in cohort memory experiment. 

1 3 . 3 . 1  F o r w a r d  S e l e c t i o n  

The idea behind forward selection is quite simple. Having k predictors we 
calculate k simple linear regression models, one for each predictor. The 
model with the highest F value should be a reasonable choice for selecting 
a variable at this stage of the variable selection process. Recall that the 
F value for a simple linear regression is defined as 

MSReg(X~) SSReg(X~)/1 
FI(Xr) - MSRes(Xr) = MSRes(Xr) ' 

where the subscript 1 on F means that this is the F value for decid- 
ing upon the first variable, and MSRes(Xr) is the residual mean square 
with only the rth predictor (and of course the intercept) in the equa- 
tion, MSReg(Xr) denotes the sum of squares accounted for by the r th 
variable divided by its degree of freedom. Since the numerator df --- 
1, MSRes(Xr) = SSReg(X~). The variable with the highest F1 value is 
the variable selected by this procedure. Now, this procedure is repeated 
where the variables selected at earlier stages are always part of the model, 
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that  is, once a variable is selected by forward selection it remains in the 

equation until the procedure stops. To repeat the procedure means each 
of the k -  1 remaining variables, for instance, Xs, is selected and en- 
tered into the equation and the increase in SSReg is observed, that is, 

SSReg(Xr, Xs)  - SSReg(X~), and related to MSRes(Xr, X~). This means 
that  for each of the remaining variables F2 is now calculated as 

F:(x Ix ) = 
SSReg(X~, Xs) - SSReg(Xr) 

MSRes(X~, Xs) 

The variable with the highest F2 value is selected by the procedure. 
Again, this variable stays in the model until the variable selection process 

terminates. Having selected two variables we select the third out of the 

remaining k -  2 by finding that variable, say, Xt ,  with the largest F3, 
where 

= 
SSReg(Xr, X~, Xt )  - SSReg(X~, X~) 

MSRes(Xr, X~, X t  ) 

Of course, the procedure needs a stopping rule that terminates the 
variable selection process if none of the remaining variables can improve 
the model fit considerably. Typically, the highest F value is compared 
to a predetermined value which can usually be specified as an option in 
computer programs. This is known as the F-to-enter test. As long as 
the maximal F value calculated at any stage is higher than the critical 
value, a variable is selected. If no variable can fulfill this condition the 

procedure stops. 

There are a few equivalent criteria for terminating forward selection. 
These include the highest partial correlation, the highest increase in R 2, 
or the highest t statistics for the coefficients instead of the highest F 
values deciding upon which variable, if any, should be entered next. These 
procedures all yield the same resu l t s -  assuming the termination criteria 
are accordingly modified. 

Before applying the forward selection method to our sample data we 
have to specify a critical F value. As we have 183 observations, the F value 
for a regular F test at the 5% level would be about F(0.05, 1,183) = 3.9. 
Thus, for ease of presentation we take a critical value of Fc = 4.0 to 
decide whether a variable should be entered or not. Table 13.3 gives all 
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Table 13.3: Results .from the Forward Selection Procedure 

Step Var. Entered 

1 TG 
2 EG1 
3 OVC 
4 AGE 
5 READ 

SSReg MSRes F 

128.67 2.67 48.08 
226.89 2.14 45.89 
252.94 2.01 12.96 
261.84 1.97 4.52 
270.91 1.93 4.70 

the relevant information. 

Having entered these five variables, the next highest obtainable F 

value is 1.26, for variable CC2. The F values in the table can easily be 

recalculated. For instance, for variable O VC we have F = (252 .94 -  

226.89)/2.01 - 12.96. The result of this variable selection corresponds 

to the best subsets containing one to five variables, as can be seen from 

Table 13.3. The model selected is one of the most promising obtained by 

best subset selection. Indeed this is the model with the lowest Cp value. 

But it should also be noted that  because the procedure ends with one final 

model we get no information that there are other models with virtually 

the same fit. This is also true for the other two stepwise procedures which 

are discussed below. 

13.3.2 Backward  E l i m i n a t i o n  

Backward elimination is the opposite of forward selection. It starts with 
the full model, that  is, all variables are entered in the equation (assuming 

that  there are more observations than variables). A reason for a variable, 

say Xr, to be eliminated is that there is only a small loss in model fit after 

that  variable is removed. Hence, the Fk value, that  is, the test whether 
X~ should be removed if there are all k variables in the model, is small if 
X~ adds close to nothing to the model. For each of the variables in the 

full model Fk is calculated and the variable with the smallest Fk value is 

removed from the model. Formally, Fk is 

Fk(Xr) = SSReg(Xl , . . .  , Xk) -- SSReg(Xl , . . .  , X r - l ,  X r - } - l ,  . . . , X k )  

MSRes(X1, . . .  , Xk) 
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The procedure is repeated after elimination of the first variable. Once 

a variable is removed from the model this variable is not reevaluated to see 

whether it could possibly at a later stage improve the model fit. Having 

deleted, say, Xr,  we check whether in the reduced model other variables 

should be deleted by calculating Fk-1, 

SSReg(X1, . . .  , Xr-1,  Xr+l ,  �9 �9 �9 , Xk)  
F~-I (X~IX~) - MSRes(X~ , . . . ,  X~_~, X~+I,. �9 �9 Xk) 

SSReg(X1, . . .  ,X~_I ,X~+I , . . .  , X s - 1 , X s + I , . . .  ,Xk )  

MSRes(X1, . . .  , Xr_ 1, X r + l , . . .  , Xk)  

While the notation gets rapidly messy, the idea behind it is quite sim- 

ple. Again, we need a stopping rule and, as before, a critical F value is 

chosen and the minimal empirical F value at any stage is compared to the 

critical one. This comparison is known as the F-to-delete or F-to-remove 

test. As long as we can find variables satisfying this condition the proce- 

dure continues to eliminate variables and stops otherwise. The critical F 

value can usually be specified by the user of a computer program. 

Now we apply the backward elimination procedure to our data. Again, 

we use 4.0 as our critical F value, meaning that  we remove variables from 

the full model as long as we can find a variable with a smaller F value 

than 4.0. The results are given in Table 13.4. 

The F values are again easily obtained. For example, in step four we 

calculate F = (275 .50-  273.35)/1.92 = 1.120. For the first F value we 

calculate F = (276 .88-  276.59)/1.95 = 0.149. After these five variables 

have been removed from the full model a further removal of any variable 

Table 13.4: Results of the Backward Elimination Procedure. In the full model 
SSReg = 276.88, MSRes = 1.95 

Step Var. Removed 

1 CC1 
2 SEX 
3 HEALTH 
4 EDUC 
5 CC2 

SSReg MSRes F 

276.59 1.94 0.149 
276.06 1.94 0.273 
275.50 1.92 0.289 
273.35 1.93 1.120 
270.91 1.93 1.264 
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F-to-delete test are of heuristic value only and should not be interpreted 

in a probabilistic manner. Typically computer programs provide default 
values for the critical F values, for example, 2.0 for the F-to-enter value. 

The idea behind this value is that the sum of squares accounted for by 

a variable should be at least twice as large as the corresponding mean 

squared error. Another option is to select critical F values guided by the 

F distribution. If, for instance, 50 observations are available, a critical F 

value of 4 might be appropriate since F(0.95;1;50) = 4.03. The F value 

for the F-to-delete test should always be less than the value for the F- 

to-enter test. Otherwise, Efroymson's procedure might not come to an 

end. 

13.4 D i s c u s s i o n  

Variable selection techniques should be considered as tools of exploratory 

data analysis (EDA) (Tukey, 1977) since hypothesis tests and confidence 

intervals obtained from the same data on which the variable selection 

process was based are invalidated because of the bias in the estimates. 

Typically the models fit the data better than they fit in the population. 

This can be explained as follows. If one imagines a replication study, the 

parameter estimates for the same model as selected from the first data set 

will almost certainly be smaller for the replication data. If there are many 

observations available it is possible to overcome this problem by dividing 

all observations into two different sets. The first set is then used for model 

selection, and parameter estimates are obtained from the second set. 

Because stepwise regression techniques end up with a final model, it 
is tempting to think of the final model as "the" best model, which could 

be far from being true. As can be seen from best subset regression there 

is usually a number of models with a nearly identical fit. As long as the 
amount of data permits one to use best subset regression techniques it 

should be done. This is the case if there are not considerably more than 40 

variables available. With more than 40 variables the stepwise procedures 

must be used. 

Another problem with variable selection has to do with influential 

observations. Recall that  observations might appear to be influential be- 

cause one or a few important variables have been omitted from the model. 
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If these variables are added the observations are possibly no longer influ- 

ential. Selecting a smaller model and deleting the influential observations 
can alter the model fit considerably because the deleted observations are 
by  definition influential. 

As long as the problems of variable selection techniques are kept in 
mind and they are seen as tools for doing EDA, they can give insights into 
the subject at hand, especially if no alternative data analysis procedure 
can be recommended. 



Chapter 14 

R E G R E S S I O N  F O R  

L O N G I T U D I N A L  D A T A  

There are situations where we have not only one measurement of a per- 

sonal characteristic, but we have repeatedly observed a sample of individ- 

uals over time. Thus, we have several measurements for each individual. 

While it is usually reasonable to assume that  measurements made on dif- 

ferent individuals are independent and hence uncorrelated, this assump- 

tion is generally not accepted if an individual is measured on the same 

characteristic several times. The measurements within an individual are 

usually positively correlated over time. Often one observes that  the corre- 

lation decreases as the time interval between measurements increases; that  

is, measurements made close together in time are more related to each 

other than measurements farther apart. But there are situations where it 

would be more sensible to think of the correlations between measurements 

within a person as constant. We will deal with this topic later. While 

measurements within a person are usually correlated, those between in- 

dividuals are thought of as being independent. Note that  in this book we 

are discussing models for normally distributed data so the assumption of 

correlation between observations is equivalent to the assumption of de- 

pendent measurements. When we are interested in relating observations 

to other (independent or explanatory) variables, the familiar regression 

approach can be used. 

259 
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Thus, in longitudinal data  analysis the goal of analysis is the same as 

throughout the whole book, that  is, to identify those explanatory variables 

that  can explain the dependent variable and to estimate the magnitude 

of the effect each independent variable has. The analysis is complicated 

by the correlated observations within a person. This characteristic of 

repeated measures regression can be seen in contrast to two other well- 

known techniques for data  analysis. In time series analysis we usually 

have only one or possibly a few long series of observations and the focus 

is on describing the relatedness of the observations to each other over 

time. In multivariate statistics there is a sample of individuals and for 

each individual we measure several variables. These observations per 

individual are typically not thought of as being related over time but cover 

various aspects of the individuals, e.g., miscellaneous mental abilities. The 

interdependence of the data  for each individual is, therefore, not as highly 

structured as in longitudinal data analysis. 

Approaches to the analysis of longitudinal data differ from each other, 

among other aspects, in the allowable time pattern with which data  are 

collected. If the repeated observations are made for each individual at 

the same point in time or the intervals between repeated observations are 

the same for all individuals, analysis is considerably simplified. In the 

following we describe how to analyze longitudinal data  when the mea- 

surements are made at the same points in time for each individual but 

for the intervals between measurements are not necssarily equal. For an 

overview of approaches to analyzing longitudinal data, see Ware (1985). 

14.1 Within  Subject  Correlation 

Let us first consider the measurements made on one individual. Let yij 
be the observation on the ith individual, i - 1 , . . . ,  m, made at the j t h  
point in time, j - 1 , . . .  ,n. Note that  this notation implies that  the 

pat tern of observation points in time is the same for every individual. 

Associated with each yij is a (p x 1) vector of explanatory variables x[j = 

( X i j l , X i j 2 , . . .  ,Xijp) I and we assume that  Yij could be written as a linear 

model, 
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correlations within a subject is well known from the analysis of variance. 

Suppose that  subjects are measured repeatedly over time in a designed 
experiment. In a designed experiment the values of the covariates are the 

same for each observation in a t reatment  group. For example, the produc- 

tivity of workers is observed under three different illumination conditions. 

Such an experiment is usually referred to a repeated measurement design. 

Of course, this can also be seen as a mixed model, treating the illumi- 

nating conditions as a fixed factor and the workers as the random factor. 

The model used in the analysis of variance is usually 

Yij - # j  + Ti + ~ij, 

where #j  represents the effect of the illumination conditions on y. si j  are 

the residual error terms which are supposed to be independently normally 
2 distributed with constant variance, that  is, Cij "~ N ( O ,  a e ) ,  and the Ti are 

also independent random variables, normally distributed, Ti ~" N(O,  a2).  

The Ti index the workers. Both random terms are assumed to be mutually 

independent. Note that  ~ij = Ti + ~ij, where ~ij are the correlated errors 

in the linear model formula from above. In the example, the random term 

for workers means that  some workers are more productive than others, 

varying with Ti, and that  this is independent of errors under the different 

illuminating conditions. Generally speaking, there are high scorers and 

low scorers. We now derive the variance of a single observation under the 

above model and given assumptions. V a r ( y i j )  = V a r ( # j  + T i -~-5 i j )  = 

2 2 For this derivation it is essential that  y ~ r ( ~ )  + y ~ ( ~ )  - ~ + ~ .  

the two random terms be independent of each other. Next we look at 

the covariance of two observations within a subject, i.e., C o v ( y i j ,  y i j , )  for 
j ~ j ' ,  

Cov (y i j  , yij' ) - E ( y i j  - # j ) (Yi j ,  - # j ' )  

= E( t j  + ~ ) ( r ~  + ~j , )  

= E(T 2 -Jr- Tis  -~- Tis  -~- s 1 6 3  ' ) 

= E(~:) + E ( ~ ) +  E ( ~ , ) +  E(~j~j,) 
- E ( ~ )  

2 
O.r" 
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We see that  under this model all within subject correlations are equal. 

This is an essential assumption for the above analysis of variance models. 

The covariance matr ix of the repeated observations of a single subject E 

has therefore the following form: 

2 2 2 2 
6re -J- Orr 0rr " ' '  Orr 

2 2 2 2 
f i r  ore + (Tr " " " {7r 

�9 . �9 �9 

�9 ~ 

2 2 2 2 
orr orr " ' "  ore q-  orr 

The correlation matrix, 1~, is obtained from E8 by dividing each 
2 2 2 element b y a  v - a  e + a  r .  

1 p . . .  p 

p 1 . . .  p 

p p .-.  1 

It follows that  observations on different subjects have zero covariance 

so tha t  the correlation matrix of all observations is of block diagonal 

form with uniform correlations as off-diagonal elements in each block. 

The uniform correlation model supposes that  the correlation between ob- 

servations does not decay with time. This situation is quite different for 

another prominent way of building correlation into repeated observations. 

This way is known as the first-order autoregressive process, which is also 

known as the first-order Markov process. Here the correlations decay with 

time. This model is only appealing for equidistant observations. The ob- 

servation of individual i at time point j, yij, is thought of as having a 

fixed part  #ij which is usually a linear form in the predictors X i j k ,  that  

is, #ij = ~lXijl Jr " '"  Jr ~ p X i j p ,  and an additive error sij. In particular, 

when the process is started we have ell ~ N(0, a2). Now, at the second 

point in time the error ~i2 - -  PCil + el2 depends on the error eil through 
a given weight p and a new error component s  which is independent of 

2 ail and normally distributed, that  is, ei2 ~ N(O, ae). As the notation 

suggests, p is the correlation between ai land ei2. This will be the result 

of the following arguments. Note that  the variance of ei2 is different from 
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2 If the variance of Cil. Now the variance of ~i2 is given as p2a2 + a~. 
2 should be one can assume constant variance of repeated observations, a~ 

(1 - p2)a2. We assume therefore ei2 "~ N(0, (1 - p2)a2). After having 

defined repeated observations in this way, we can calculate the correlation 

between sil and ~i2, 

C o v ( c i l  , Ci2 ) - E ( ~ ( p ~  + ~ 2 ) )  

= E(p~21) + E(cil  c,2) 

= flr 2. 

Now the correlation is obtained by simply dividing COV(Cil,Ci2) by 
the respective standard deviations (which are of course equal) and we 

get Cor(~i1,r = p. We can see that  the weight by which the error 

at time two is influenced by the error at time one is just the correlation 

between the two error terms, assuming, of course, constant variance of 

the observations. 

We can generalize this idea to an arbitrary number of repeated ob- 

servations. Let the error at time j be Cij = PCij-1 + gij and the s 
independently N(0, ( 1 -  p2)a2) distributed. Notice that  this distribution 

does not depend on time point j .  The correlation between time j and 

time j - k is then given by repeatedly using the arguments from above as 

p j - k , k  -- 1 , . . .  , j -  1. In matrix notation the correlations between the 

observations of the ith individual can therefore be written as 

1% 

1 p p2 . . .  pn 

_ p 1 p . . .  pn-1 

�9 . o . O o  ~ 

pn pn-1 p,~- 2 . . .  1 

It is interesting to note that  in both models for building correlation 

into the within subject observations the whole correlation matr ix is deter- 

mined by only one parameter,  p. There are many other models to explain 
this kind of correlation. For instance, one can build more sophisticated 

models by using more than one parameter,  or one can build a mixture of 

both models explained above. Having parsimonious parameterized mod- 

els, one can hope to get good parameter estimates. But this, of course, is 

only true if the correlational structure is correctly specified. In practice 
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this structure is rarely known. If one is not willing to assume a certain 

model it is possible to estimate the whole covariance structure. It is then 

necessary to estimate all elements of the covariance matrix and not only 

one or possibly a few parameters according to the model for the covari- 

ance structure used. This technique is only practical when there are only 

a few repeated or correlated observations, because then the number of 

distinct elements in the covariance structure is small. If there are n re- 

peated observations it is necessary to estimate n(n + 1)/2 distinct entries 

in the matrix because the covariance matrix is symmetric. As this number 

increases quadratically with n this approach is only feasible when n is not 

too large. What  "too large" exactly means is somewhat unclear as the 
amount of information in the data to estimate all n(n + 1)/2 covariances 

depends on the number of replications as, by assumption, the covariance 

structure is the same for each replication. In brief, the estimation ap- 

proach is useful when there are only few repeated observations relative to 
the total number of replications. 

The nature of the problem can be further illustrated by considering a 

simple example from Dunlop (1994) where inferences based on ordinary 

least squares estimation can lead to incorrect conclusions if the correla- 

tion between observations is ignored. Suppose we have a sample of m 
individuals, half male and half female. Each individual is observed twice. 

Yij represents the observation of individual i at time j ,  j = 0, 1. If we are 

interested in a possible group effect between males and females we could 

write down a linear model as 

yij = ~0 +/31 xi + eij, 

where xi is a dummy variable taking the value 0 for males and 1 for 

females. Interest lies in whether ~1 is significantly different from zero. 

eij "~ N(#i,  a2R), where #i =/30 +/3xxi, and the correlation matrix Rs 
for the ith individual has the simple form 

The covariance matrix E8 is therefore given by •2Rs. Note that the 

variance of the two observations is assumed to be constant. As before, 
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and R without subscripts refer to the covariance and correlation matrices 

of all observations, respectively, and have block diagonal form. Knowing 
the true 2], weighted least squares would result in the BLUE, that is, best 
linear unbiased estimate, of ~ = (/~0,/31). Suppose for the moment the 
true covariance matrix 2] is known. Although the ordinary least squares 
estimate is not the best estimate we can possibly get, it is well known 
that it is unbiased regardless of the true correlation structure. This is not 
the case for the variance estimate of/31. Because the OLS estimate is 

- ( X ' X ) - l X ' y  

the variance can be calculated by linear means as 

Var( ) - - ( X ' X ) - l X ' V a r ( y ) X ( X ' X )  -1 

__-- 0 .2 (XlX) -1X'RX(X'X) - 1  , 

which would only be identical with the covariance matrix of/~ using OLS 
if R = I, with I being the identity matrix. Exploiting the simple structure 
of X, one obtains var(~l)  explicitly as var(~l)  - 2a2(1 + p) /m.  Ignoring 
the correlation between the two repeated measures is equivalent to setting 
p = 0. The estimated variance would then incorrectly be estimated as 
var(~l)  - 2a2/m.  With a positive correlation (p > 0), which is typical 
for longitudinal data, the variance estimate of the interesting parameter fll 
will therefore be too small, resulting in progressive decisions concerning 
the group effect; that is, the null hypothesis of no group effect will be 
rejected too often. A similar example which models yij dependent on 
time leads to false variance estimates of the parameters as well, as was 
pointed out by Dunlop (1994). 

This example further clears the point that the covariance structure of 
the observations has to be taken into account in order to perform a correct 
statistical analysis concerning inferences about the parameter vector/3. 

1 4 . 2  R o b u s t  M o d e l i n g  o f  L o n g i t u d i n a l  D a t a  

This approach was developed by Diggle, Liang, and Zeger (1994). Before 
describing this approach, let us first recall some facts about weighted least 



14.2. ROB UST MODELING OF LONGITUDINAL DATA 267 

squares estimation. The WLS estimator, fl, is defined as the value for 
which minimizes the quadratic form 

( y -  

and the solution is given as 

- - ( X ' W X ) - l X ' W y .  

The expected value of/~ is easily calculated using E(y) - Xfl  to give 

E ( / ~ ) - -  E ( ( X ' W X ) - I X ' W y )  

= ( X ' W X ) - l X ' W E ( y )  

= (x'wx)- x'wx  

= ~; 

that is, the WLS estimator of ~ is unbiased for fl whatever the choice for 
the weight matrix W will be. The variance of/~ is given as 

var(f l )-  ( X ' W X ) - l X ' W ] E W X ( X ' W X )  -1, 

where E = var(y) is the covariance matrix. The best linear unbiased 
estimator of/~ (which is also the maximum likelihood estimator), that is, 
the estimator with the smallest variance, is obtained by using E -1 = W. 
The formulas for calculating the estimator of D and its variance are then 
given by 

/ j -  ( X , E - I x ) - I X , E - l y  

and 

Var(fl) = ( X ' E - l x )  -1. 

It is conceptually important for the following procedure to distinguish 
the weight matrix W from the covariance matrix 2]. Because the true 
covariance matrix E is usually unknown in practice, the question arises 
whether using a suboptimal weight matrix would dramatically change the 
variance estimates of/~. This is often not the case. This can be seen using 
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the above example from Dunlop (1994). Although E is usually unknown, 

for the following argument we keep E in the formula, replacing only the 
weight matrix W.  This is done to investigate the change in the variance 

^ 

for 3 if the optimal weight matrix is not used. We could interpret the 
Dunlop example as having used the identity matrix as the weight matrix in 
the formula that gives the variance of the OLS estimator. It could be asked 
as to how much the variance would change if we used the optimal weight 
matrix E -1  instead of the identity matrix. Interestingly, the variance 
for /~1 does not change at all. Therefore, we say that there is no loss in 
efficiency if we use a "false" weight matrix. This, unfortunately, is not 
always the case, especially when the used weight matrix totally misses 
the structure of the optimal weight matrix E -1.  

The main idea for the robust estimation approach is given in the fol- 
lowing paragraph. By using a weight matrix which is not optimal but 
reasonably close to the true E -1 our inferences about the/3  vector are 
valid. In fact it can be shown that as long as we substitute a consistent es- 

timate for the covariance matrix E the validity of our conclusions about 3 
does not depend on the weight matrix W.  Choosing a suboptimal weight 
matrix affects only the efficiency of our inferences about/3;  that is, hy- 
pothesis tests and confidence intervals for the regression coefficient will 

be asymptotically correct. A consistent estimate of the true covariance 
matrix E means that as the number of observations increases, that is, the 
amount of information from the sample about the unknown parameters 
increases, the probability that the sample estimates of the elements of E 
are close to the true but unknown values approaches one. In brief, having 
a consistent estimate for E and a reasonable weight matrix W,  one is 

doing a WLS analysis and proceeds as if 3 ~ N(/3, Vw), where 

I~r W - - (X 'WX)- - lx tw~ ' ]WX(X 'WX)  -1, 

which is just the formula from above for var(/~) with N replaced by the 
consistent estimate ~. Subscript w indicates that the estimate is depen- 
dent on the specific choice of the weight matrix. 

Now having come so far, the question that remains to be dealt with is 
how a consistent estimate for ~ can be obtained. Generally, this is referred 
to as variance component estimation. Two prominent methods for doing 

this are maximum likelihood (ML) and restricted maximum likelihood 
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(REML), estimation. The derivation of equations for these methods are 

beyond the scope of this book. A derivation of the equations that need 

to be solved for calculating the ML or the REML estimate of E can be 

found in Diggle et al. (1994). Normally these equations can only be solved 

numerically, but for the case of a designed experiment the computation 

simplifies considerably. Recall that  in a designed experiment the values 

of the covariates are the same for each observation in a treatment group. 

This is typically not the case for observational data where there is no 

control over these values. Accounting for the various treatment groups, 

the notation is as follows. There are g treatment groups. In each group 

there are rnh individuals, each of which was repeatedly observed at n 

points in time. The complete set of measurements can be represented by 
g 

Yhij, where h -  1 , . . .  ,g; i -  1 , . . .  , m h ; j  -- 1 , . . .  ,n; and m -  ~i=1 mi. 

The consistent REML estimate of E can then be obtained by first 
calculating the means over the observations within each of the g treat- 

- ~ ~":~'~=hl Yhij, j -- ment group for each observation point, that  is, Y h j  - -  mh 

1 , . . . ,  n. Let Y'h- - -  ( Y l h l ,  YDh2 , . . .  , YDhn ) be the mean response vector for 
group h and Yhi the response vector for the ith individual in treatment 

group h. ~]8 is then obtained by calculating (Yh i -  Yh)(Yhi-  Y h ) '  for 
each individual i. Note that this outer vector product results in a matrix. 

Summing all these matrices together and dividing the sum by m - g  gives 

~]~. Formally this is 

g m h  

~8 ---- 1 Z ~ (Yhi - Yh)(Yhi -- Y'h)'. 
/ r t  --  g h--1 i--1 

~8 can be obtained, for instance, by matrix calculations using S-Plus 

or the matrix language of the standard statistical packages, for exam- 

ple, SAS-IML. This matrix can also be obtained by standard statistical 

packages as the error covariance matrix from a multivariate analysis of 

variance, treating the repeated observations from each individual as a 

multivariate response. To calculate ~8 this way the observations Yhij 
have to be arranged as a matrix and not as a vector as described above. 

Note also that  (Yhi -- .Vh) is just the vector of residuals for the repeated 

observations of individual i from group h. 

Having obtained the consistent estimate of E, a weight matrix W 

must be determined for weighted least squares analysis. Recall that  E is 



270 CHAPTER 14. REGRESSION FOR LONGITUDINAL DATA 

just a block diagonal matrix with ~8 as the blocks. This is demonstrated 

by the following data example. We use a simulated data set. We are then 
able to evaluate the efficiency of our estimates obtained from the robust 
approach. 

14.3 A Data  Example  

The data should be thought of as being obtained from 100 individuals 

at five different points in time. The sample is divided into two groups. 

The first 50 cases are females and the other 50 males. The time inter- 

val between repeated observations is the same. The correlation for the 

multivariate normal distribution of every individual follows a first-order 

Markov process with p - 0.9, that is, the error of observation separated 
by one, two, three and four time intervals is 0.9,0.92 - 0.81,0.93 = 

0.729 , and 0.94 - 0.656, respectively. The correlation is high but de- 

creases with time. The mean response profiles which are added to the 

error are increasing functions of time with the difference between the 

groups getting smaller. Finally, the data are rounded to the nearest in- 

teger. The data set is presented in Appendix E.2 to allow the reader to 
reproduce the results. 

Such data are fairly typical for social science data. An example would 
be that  students fill out the same questionnaire in weekly intervals start- 
ing five weeks before an important examination to measure state anxiety. 

The research interest would then be (1) whether there are gender differ- 

ences in state anxiety and (2) whether these differences change over time 
in different ways for the two groups; that  is, whether there is an interac- 

tion between time and gender. First of all we can plot each individuals 

response profile (see Figure 14.1). 

This plot is too busy to be useful. A useful plot presents the mean 

response profiles (see Figure 14.2). We see that state anxiety is steadily 

increasing and that the scores are higher for females than for males but 
that  the difference decreases with time. 

Now we first estimate ~ ,  because looking at this matrix could give 

us an idea what a reasonable choice for the weight matrix W would be. 
Remember that  the optimal weight matrix is W - E - l ,  so that  if we 

look at the estimate of E we could possibly infer what a likely covariance 
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Figure 14.1" Development of state anxiety in females and males in the 
five weeks before an examination. 

structure will be and then invert it to get W.  Recall also that one useful 
characteristic of this procedure is that only the efficiency of the inferences 
of fl is decreased, but the validity of the inferences is not affected by a 
misspecification of W.  Perhaps the easiest way to calculate ~8 by matrix 
operations is to reorganize the y vector into a Y matrix with individuals 
as rows and repeated observations as columns. In the present example 
this results in a 100 x 5 matrix. We then have to build a design matrix 
X according to a linear model including the group effect. (If the groups 
were defined by some factorial design the design matrix should contain all 
main effects and interactions in the corresponding analysis of variance.) 
For this example the design matrix is 

X 

f l  0'~ 
1 0 
1 0 

1 1 
1 1 

\ 1  l j  
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Figure 14.2: Average development of state anxiety in the two gender 
groups. 

where the first column is the usual intercept and the second column 
dummy codes the two groups. It consists of 50 zeros for the 50 males 
and 50 ones for the 50 females. 

The estimated covariance matrix is then given by the following matrix 
expression: 

~d  m 

m - g  
~ Y ' ( I -  X(X 'X)-~X' )Y.  

For these data one obtains (because the matrix is symmetric, only the 
diagonal and the lower diagonal elements will be given) 

25.191 
22.515 25.606 

~ -  20.673 22.817 25.224 
19.194 21.029 23.051 25.367 
16.127 17.668 20.072 22.608 25.850 
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This reflects quite well the true covariance matrix, which is known to be 

25.000 

22.500 25.000 

20.250 22.500 25.000 

18.225 20.250 22.500 25.000 

16.402 18.225 20.250 22.500 25.000 

since the data were simulated. Hence the optimal weight matrix can be 

determined as the inverse of the true covariance matrix E. The form 

of W is quite interesting. It is well known that a first-order Markov 

process, according to which the data were simulated, has the property that  

given the present, the past and future are independent. This conditional 

independence relationship between observations, that  are more than one 
time point apart, is reflected by the zero elements in the inverse of the 

covariance matrix; for details see Whittaker (1990). 

The next step is to model the mean response profiles for the two 

groups. This can be done by polynomial regression. As can be seen from 

the plot, although there is some curvature in the response profile for the 

male group, a linear regression describes the mean responses over time 

quite well. If there are more time points, polynomial regression can be 

used. Now we set up the models for the males and females. They are 

E(YMj  ) -- ~o + ~l tj 
E(yFj )  -- ~o + ~l t j  + T + 7tj .  

Of course, the model can be rewritten as 

E(yFj )  -- ~0 -[- ~1 t j  -[- T + "),tj 

= + + +  )tj 

-- ~0 -[- ~1 t j ,  

which shows that  we are actually fitting two separate regression lines, one 

for each of the two groups. (The values of t j  w e r e  assumed for simplicity 

to have the values 1 , . . .  , 5.) The design matrix X for doing the regression 
has 500 rows and 5 columns. It has the following form, where the first 4 

rows correspond to the five repeated observations of the first male. The 
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second complete block of rows which are rows 251-255 in the complete 

matrix, correspond to the five repeated observations of the first female. 

These two blocks of five repeated observations are repeated 50 times for 

the male and 50 times for the female group, respectively, and one obtains 

X m 

1 1  1 1 1 ~  

1 2 1 2 

1 3 1 3 

1 4 1 4 

1 5 1 5 

1 1 0 0 

1 2 0 0 

1 3 0 0 

1 4 0 0 

1 5 0 0 
. . . .  

\ . . . .  j 

W and ~ are both block diagonal matrices and have 500 rows and 500 

columns. If we use the optimal weights and the consistent estimate of 

to fit the model and calculate standard errors by weighted least squares, 

the estimated regression coefficients (with standard errors in parenthe- 

ses) are ~o -- 5.362(0.788), ~1 - 4.340(0.153), ~ - -  12.635(1.114),andS,- 
-1.928(0.217). The p values for the four hypotheses are often of interest. 

Tests for the hypotheses Ho : ~o - 0; H0 :/~1 - 0; Ho : T -- 0; and Ho : 

V - 0 can be derived from the assumption that /~ ~ N(f~, V'w). In the ex- 

ample the ~ vector is given by ~ = (/~o,/~1, T, V)- As the true covariance 

matrix is typically unknown, tests derived from the above assumption will 

only be asymptotically correct. If, for instance, Ho :/~o - 0 is true, then 

~o/&(~o) will be approximately standard normally distributed. The same 
holds for the other three hypothesis tests. For hypothesis tests involving 

two or more parameters simultaneously see Diggle et al. (1994, p. 71). We 

calculate the observed z values, which should be compared to the standard 

normal distribution as z(/~0) - 5 .362/0 .788-  6.80, z(/~l) - 4 . 34 /0 .153 -  

28.37, Z(T) = 12.635/1.114 = 11.34, and z ( v ) = - 1 . 9 2 8 / 0 . 2 1 7  = - 8 . 8 8 .  
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All observed z values lie in the extreme tails of the standard normal dis- 

tribution so that  all calculated p values for one- or two-sided tests are 

virtually zero. The conclusions reached by this analysis are that, as can 

be seen from the plot, anxiety increases as the examination comes nearer 

(~1 > 0) and the anxiety level for females is generally higher than that  for 

males (~- > 0). But there is also an interaction with time (V < 0) showing 
that  the difference between males and females decreases with time. The 

effect of T should only be interpreted with great caution as one has to 

take the differential effect of time 7 into account. 
One benefit from using simulated data with known characteristics is 

that  one can compare results with the OLS analysis of the data, that  is, 

W - I, keeping the estimate of E in the formula to estimate the standard 

errors. This analysis yields the following values: /~0 = 7.142(0.803),/~1 = 

3.918(0.153), T = 11.089(1.135), ands/= -1.626(0.216). While the coeffi- 

cients are slightly different, the obtained standard errors are nearly the 

same. Hypothesis tests follow as before with the result that  all four pa- 
rameter estimates are highly significant. If we look at the two plots in 

Figures 14.3 and 14.4 for the mean response profiles including the esti- 

mated regression lines for the optimal and the OLS analyses we can see 

that  both analysis yield very similar results. 

The conclusions of the analysis would surely not change. We see that  

the estimated standard errors are quite robust against a misspecification 

of W .  As the estimated covariance matrix is quite close to the true one, 
we would not expect the results to change for W ~ ]E -1  as much as for 

W = I. But this cannot be recommended generally. Normally we use a 

guess for W,  which we hope captures the important characteristics. This 
is done by looking at the estimated covariance matrix and investigating 

how the covariances change with time. For the estimated covariance ma- 
trix it is seen that  the ratio of two consecutive points in time is about 

0.9. From this we could build a covariance matrix (which is, in this in- 

stance, the true correlation matrix) and invert it to obtain our guess for 

W.  Note that  the results of the analysis do not change if we multiply W 

by an arbitrary constant. Thus it is only necessary to obtain a guess for 
the true covariance matrix up to an arbitrary constant for the guess of 

W as the inverse of the guess for E. 
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Figure  14.3: Mean  response  profiles and  regression lines for b o t h  groups  

ca lcu la ted  us ing the  op t ima l  weight  mat r ix .  
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Figure  14.4: M e a n  response  profiles and  regression lines for b o t h  groups  
us ing the  iden t i ty  m a t r i x  as the  weight  mat r ix .  



Chapter 15 

P I E C E W I S E  

R E G R E S S I O N  

Thus far, we have assumed that the regression line or regression hyper- 
plane is uniformly valid across the entire range of observed or admissible 
values. In many instances, however, this assumption may be hard to 
justify. For instance, one often reads in the newspapers that cigarettes 
damage organisms only if consumption goes beyond a certain minimum. 
A regression analysis testing this hypothesis would have to consider two 
slopes: one for the number of cigarettes smoked without damaging the or- 
ganism, and one for the higher number of cigarettes capable of damaging 
the organism. 

Figure 15.1 displays an example of a regression analysis with two slopes 
that meet at some cutoff point on X. The left-hand slope is horizontal; 
the right-hand slope is positive. 

This chapter presents two cases of piecewise regression (Neter et al., 
1996; Wilkinson, Blank, & Gruber, 1996). The first is piecewise regression 
where regression lines meet at the cutoff (Continuous Piecewise Regres- 
sion; see Figure 15.1). The second is piecewise regression with a gap 
between the regression lines at the cutoff (Discontinuous Piecewise Re- 
gression). 

These two cases share in common that the cutoff point is defined on 
the predictor, X. Cutoff points on Y would lead to two or more regression 

277 
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Figure 15.1: Continuous piecewise regression with one cutoff point. 

lines that each cover the entire range of X values. The examples given in 
the following sections also share in common that there is only one cutoff 
point. The methods introduced for parameter estimation can be applied 
in an analogous fashion for estimation of parameters for problems with 
multiple cutoff points. 

15.1 Continuous Piecewise Regression 

We first consider the case where 

1. piecewise regression is continuous, and 

2. the cutoff point is known. 

Let Xc be the cutoff point on X. Then, the model of Simple Continuous 

Piecewise Regression can be described as 

Y - bo + b l X  4- b2(X - xc)Xe + Residual, (15.1) 
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where X is the regular predictor variable, and X2 is a coding variable 
that assumes the following two values: 

1 i f X > x c ,  
X 2 -  0 otherwise. 

The effect of the second coding variable is that when b2 is estimated, 
only values greater than Xc are considered. 

The design matrix for this type of piecewise regression contains three 
vectors, specifically, the constant vector, the vector of predictor values, xi, 

and a vector that results from multiplying X2 with the difference ( X - x c ) .  

The following design matrix presents an example. The matrix contains 
data for six cases, the second, the third, and the fourth of which have 
values greater than Xc. For each case, there is a constant, a value for X, 
and the value that results from X 2 ( X  - Xc). 

X __ 

1 XI,II O 

I Xl,21 (Xl,21 - Xc)X2,21 
I xi,31 (xi,31 -Xc)X2,31 
1 Xl,41 O 

1 Xl,51 (Xl,51 --  Xc)X2,51 
1 xl,41 0 

(15.2) 

The zeros in the last column of X result from multiplying (xl,ij - Xc) 

with x2,ij = 0, where i indexes subjects and j indexes variables. 

The following data example analyzes data from the von Eye et al. 
(1996) study. Specifically, we regress the cognitive complexity variables, 
Breadth (CC1), and Overlap (OVC), for n = 29 young adults of the 
experimental group. Figure 
reffi:piecew2 displays the Breadth by Overlap scatterplot and the OLS 
regression line. The regression function estimated for these data is 

OVC = 0.90 - 0.03 �9 CC1 + Residual. 

This equation explains R 2 - 0.60 of the criterion variance and has a 
significant slope parameter (t = -6.40,p < 0.01). Yet, the figure shows 
that there is no sector of the predictor, CC1, where this regression line 
provides a particularly good approximation of the data. 
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Figure 15.2" Regression of Overlap of Cognitive Complexity, OVC, on 
Breadth of Cognitive Complexity, CC1. 

Therefore, we test the hypothesis that  the steep slope of the regression 

of O VC on CC1 that  characterizes the relationship for values CC1 <_ 15 

is followed by a much flatter slope for values CC1 > 15. To test this 

hypothesis we perform the following steps: 

1. Create the variable X2 with values as follows: 

1 i fCC1_<15,  
X2 - 0 otherwise. 

2. Create the product (CC1 - 15) �9 X2. 

3. Est imate parameters for the regression equation 

OVC - b0 + bl * CC1 + b2 * (CC1 - 15) �9 X2 + Residual. 

The following parameter  estimates result: 

OVC - 1.130 + 0.056 �9 CC1 + 0.002 �9 (CC1 - 15) �9 X2 + Residual. 
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Figure 15.3: Piecewise regression of Overlap on Breadth with known cutoff 
point. 

All of the parameters are significant, with the following three t values 
for b0, bl, and b2, respectively" 14.98, 4.35, and-8.40. A portion of R 2 = 
0.769 of the criterion variance is explained. 

Figure 15.3 displays the CC1 �9 OVC scatterplot with the piecewise 
regression line. 

There can be no doubt that the data are much better represented by 
the piecewise regression than by the straight line regression in Figure 15.2. 

1 5 . 2  D i s c o n t i n u o u s  P i e c e w i s e  R e g r e s s i o n  

In this section we 

1. illustrate discontinuous piecewise regression and 

2. show how curvilinear regression can be applied in piecewise regres- 
sion. 

While we show this using one example, curvilinear and discontinuous 
piecewise regression do not necessarily go hand in hand. There are many 



282 CHAPTER 15. PIECEWISEREGRESSION 

examples of curvilinear continuous piecewise regression (Wilkinson, Hill, 
Welna, & Birkenbeuel, 1992, Ch. 9.6), and there are approaches to linear 
piecewise regression that are discontinuous (Neter et al., 1996, Chap. 11). 

Formula (15.1) presents a regression equation with two linear, additive 
components that can differ in slope. Specifically, these components are 
blX and b 2 ( X -  xc)X2. This section illustrates how one (or both) of 
these linear components can be replaced by a curvilinear component. The 
regression model used in this section has the form 

Y - bo + E bj~j + Residual, (15.3) 
J 

where ~j are regression functions that can be linear or curvilinear. For- 
mula (15.1) is a special case of (15.3) in that the sum goes over two linear 
regression functions. 

The following example uses the data from Figure 15.3 again. The fig- 
ure suggests that there are segments of the predictor, Breadth, that are 
not particularly well covered. For example, there are four cases with val- 
ues of Breadth < 7 and Overlap > 0.8 that are poorly represented by the 
left-hand part of the regression line. Because changing parameters of the 
linear, continuous piecewise regression line would lead to poor represen- 
tations in other segments of the predictor, we select nonlinear regression 
lines. In addition, we allow these lines to be discontinuous, that is, be 
unconnected at the cutoff. 

To optimize the fit for the regression of Overlap on Breadth of Cogni- 
tive Complexity we chose the function 

Ove r l ap -  b0 + bl (exp b2(-Breadth)) + b3(Breadth 2) + Residual, 
(15.4) 

where the cutoff between the two components of the piecewise regression 
is, as before, at Breadth - 15. The first component of the curvilinear 
piecewise regression is an exponential function of Breadth. The second 
component is a quadratic function of Breadth. 

Technically, the function given in (15.4) can be estimated using com- 
puter programs that perform nonlinear OLS regression, for instance, SPSS, 
SAS, BMDP, and SYSTAT. The following steps are required: 
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1. Create indicator variable, X2, that discriminates between predictor 
values before and after cutoff 

2. Multiply indicator variable, X2, with Breadth squared (see (15.4)); 

3. Estimate parameters for (15.4). 

In many instances, even standard computer programs for OLS regres- 
sion can be used, when all terms can be transformed such that a linear 
regression model can be estimated where all exponents of parameters 
equal 1 and parameters do not appear in exponents. 

For the present example we estimate the parameters 

Overlap - 0.29 + 2.22(exp 0.23(-Breadth)) 

+ 0.00015(Breadth 2) § Residual, 

where the second part of the regression model, that is, the part with 
Breadth 2, applies to all cases with values of Breadth _> 15. The scatterplot 
of Brea th .  Overlap of Cognitive Complexity appears in Figure 15.4, along 
with the curvilinear, discontinuous piecewise regression line. 

The portion of variance accounted for by this model is R 2 - 0.918, 
clearly higher than the R 2 - 0.769 explained by the model that only used 
linear regression lines. The figure shows that the two regression lines do 
not meet at the cutoff. When linear regression lines are pieced together, 
as was illustrated in the first data example (see Figure 15.3), one needs a 
separate parameter that determines the magnitude of the leap from one 
regression line to the other. In the present example with curvilinear lines, 
the curves do not meet at the cutoff and, thus, create a leap. 

Extensions. Piecewise regression can be extended in various ways, two 
of which will be mentioned in this section. One first and obvious extension 
concerns the number of cutoffs. Consider a researcher that investigates the 
Weber-Fechner Law. This law proposes that differences in such physical 
characteristics of objects as weight or brightness can be perceived only if 
they are greater than a minimum proportion. This proportion is assumed 
to be constant: 

AR 

R 
= constant. 
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Figure 15.4: Curvilinear, discontinuous piecewise regression of Overlap 
on Breadth of Cognitive Complexity. 

It is well known that this law is valid only in the middle of scales, 

not at the extremes. Therefore, a researcher investigating this law may 

consider two cut-offs rather than one. The first cutoff separates the lower 

extreme end of the scale from the rest. The second cutoff separates the 

upper extreme end from the rest. 

The second extension concerns the use of repeated observations. Con- 

sider a researcher interested in the stability of effects of psychotherapy. 

This researcher may wish to model the observations made during the ther- 

apy using a first type of function, for example, a negatively decelerated 

curve as in the left-hand side of Figure 15.4. For the time after completion 

of therapy, this researcher may wish to use some other model. 

Caveat. It is tempting and fun to improve fit using more and more 
refined piecewise regression models. There are not too many data sets that 

a data analyst that masters the art of nonlinear and piecewise estimation 

will not be able to depict very well. "Nonlinear estimation is an art... 

is rococo" (Wilkinson et al., 1992, p. 428). However, the artist needs 

guidance from theory. If there is no such guidance, models may provide 
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impressive fit. However, that fit often reflects sample specificities rather 
than results that can be replicated or generalized. 
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Chapter 16 

D I C H O T O M O U S  

C R I T E R I O N  

V A R I A B  LES 

This chapter presents a simple solution for the case where both the predic- 
tor and the criterion are dichotomous, that is, only have two categories. 
Throughout this chapter, we assume that the predictor can be scaled at 
the nominal level. Alternatively, the predictor can be scaled at any higher 
level, but was categorized to reduce the number of levels. 

As far as the criterion is concerned, scaling determines the sign and its 
interpretation of the slope parameter. If both the predictor variable and 
the criterion variable are scaled at least to the ordinal level, a sign can be 
meaningfully interpreted. For nominal level predictors or criteria, signs of 
regression slopes are arbitrary. It should be noted that, in many contexts, 
the distinction between scale levels does not have any consequences when 
variables are dichotomous. In the present context, scaling does make a 

difference. 

More specifically, when the criterion variable is scaled at the ordinal 
level (or higher), the sign can be interpreted as follows 

1. A positive sign suggests that the "low" predictor category allows 
one to predict the "low" criterion category and the "high" predictor 
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Table 16.1" Scheme of a 2 x 2 Table 

Predictor 
Categories 

Criterion Values 
1 2 
a b 
c d 

category allows one to predict the "high" criterion category. 

2. A negative sign suggests that  the " low-  high" and the "h igh -  low" 
categories go hand-in-hand. 

The theoretical background for the method presented here is the well- 
known result that  the r coefficient of association between categorical vari- 
ables can be shown to be a special case of Pearson's correlation coefficient, 
r. As is also well known, the relationship between r and the slope coeffi- 
cient, bl, is 

8x 
bl ~ - r m ~  

8y 

where sx is the standard deviation of X, and s~ is the standard deviation 
of Y. Thus, one can ask what the regression of one categorical onto 
another is. In this chapter we focus on dichotomous variables. Consider 
Table 16.1. 

The cells of this 2 x 2 table, denoted by a, b, c, and d, contain the 
numbers of cases that  display a certain pattern. For instance, cell a 
contains all those cases that  display predictor category 1 and criterion 

value 1. From this table, the regression slope coefficients can be estimated 

as follows: 

a d -  bc 
bl = (a + b)(c + d)" (16.1) 

The intercept can be estimated using (16.1) as follows: 

a + c  a + b  
b0 = bl ~ .  (16.2) 

n n 



Table 16.2- Handedness and Victory Pattern in Tennis Players 

Handedness 

r 

1 

Victories 
1 2 

41 38 
4 17 
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In the following numerical example we predict number of victories 

in professional tennis, V, from handedness, H.  We assign the following 

values: V - 1 for a below average number of victories and V - 2 for an 

above average number  of victories, and H - l for left-handers and H - r 

for r ight-handers.  A total  of n = 100 tennis players is involved in the 

study. The frequency table appears in Table 16.2. 

Inserting into (16.1) yields 

4 1 , 1 7 - 4 , 3 8  
bl = (41 + 38)(4 + 17) = 0.329. 

Insert ing into (16.2) yields 

41 + 4 41 + 38 
b0 = 0 . 3 2 9 ~  = 0.45 - 0.26 - 0.19. 

100 100 

Taken together,  we obtain the following regression equation: 

Victories - 0.19 + 0.329 �9 Handedness + Residual. 

The interpretat ion of regression parameters  from 2 x 2 tables differs in 

some respects from the interpretat ion of s tandard regression parameters .  

We il lustrate this by inserting into the last equation. For H - r - 1 we 

obtain 

y - 0.19 + 0.329 �9 1 - 0.458, 

and for H - 1 - 0 (notice tha t  one predictor category must  be given 

the numerical value 0, and the other must be given the value 1; this is a 
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variant of dummy coding) we obtain 

y = 0.19 + 0.329 �9 0 = 0.19. 

Obviously, these values are not frequencies. Nor are they values tha t  

the criterion can assume. In general, interpretat ion of regression param- 

eters and est imated values in 2 x 2 regression is as follows: 

1. The regression parameter/~0 reflects the conditional probabili ty tha t  

the first criterion category is observed, given the predictor category 

with the value 0 or, in more technical terms, 

~o = prob(Y = I lX  = 0). 

2. The regression slope parameter  ~1 suggests how much the proba- 

bility tha t  Y = 1, given X = 1, differs from the probabili ty tha t  

Y = 1, given X = 0. 

Using these concepts we can interpret the results of our da ta  example 

as follows: 

�9 The intercept parameter  estimate,  b0 = 0.19, suggests tha t  the prob- 

ability tha t  left-handers score a below average numbers of victories 

is p = 0.19. 

�9 The slope parameter  estimate,  bl -- 0.329, indicates tha t  the proba- 

bility tha t  right-handers score a below average numbers of victories 

is p = 0.329 higher than the probability for left-handers. 



Chapter 17 

C 0 M P  U T A T I  0 N A L  

I S S U E S  

This chapter illustrates application of regression analysis using statistics 

software packages for PCs. The package used for illustration is SYSTAT 
for Windows, Releases 5.02 and 7.0. Rather than giving sample runs 
for each case of regression analysis covered in this volume, this chapter 
exemplifies a number of typical cases. One sample set of data is used 
throughout this chapter. The file contains six cases and three variables. 
This chapter first covers data input. Later sections give illustrations of 
regression runs. 

17.1 Creating a SYSTAT System File 

SYSTAT can be used to input data. However, the more typical case is 
that  the data analystreceives data on a file in, for instance, ASCII code. 
In this chapter we illustrate how to create a SYSTAT system file using 
an existing ASCII code data file. The file used appears below: 

1 3 1 
2 5 3 
3 9 2 
4 11 4 
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5 9 3 

6 11 5 

One of the main characteristics of this file is that  data  are separated by 

spaces. This way, SYSTAT can read the data  without format statements.  

The first of the columns contains the values for Predictorl ,  the second 

column contains the values for Criterion, and the third column contains 

the values for Predictor2. For the following purposes we assume that  the 

raw data  are in the file "Raw.dat." SYSTAT expects an ASCII raw data  

file to have the suffix "dat." 

To create a SYSTAT system file from this raw data ASCII file, one 
issues the following commands: 

Command Effect 

Data  Invokes SYSTAT's Data  module 

Save Compdat  

Input Predictor1, 

Criterion, Predictor2 

Get Raw 

Run 

Tells SYSTAT to save data  in file; 

"Compdat.sys," where the suffix 

"sys" indicates that  this is a 

system file (recent versions of 

SYSTAT use the suffix "syd." 

Conveys variable names to 

program 

Reads raw data from file 

"Raw.dat" 

Saves raw data  in system file 

"Compdat.sys"; the system file 

also contains variable names 

After these operations there exists a SYSTAT system file. This file is 

located in the directory that  the user has specified for Save commands. 

For the following illustrations we assume that  all files that  we create and 

use are located in the default directory, that  is C-\SYSTATW5\. 

Before analyzing these data  we create a graphical representation of 

the data, and we also calculate a correlation matrix. Both allow us to get 

a first image of the data and their characteristics. Figure 17.1 displays 

the response surface of the data  in file "Compdat.sys." 
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Figure 17.1" Response surface for sample data. 

This response surface can be created by issuing the following com- 
mands" 

Command Effect 

Use Compdat Reads file "Compdat.sys" 
click Graph, Options, Provides print options for 
Global graphics 
click Thickness - 3, 
Decimals to Print - 1, and 
select from the font pull 
down the British font 

Specifies output characteristics 

OK Concludes selection of output 
characteristics 

click Graph, 3'D, 3-D Opens the menu for 3-D graphs 
continued on next page 
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assign Predictor1 to X, 
Predictor2 to Y, and 
Criterion to Z 
click Axes and insert in 
Label Fields for X, 
Predictor1; for Y, 
Predictor2; and for Z, 
Criterion; OK 
click Surface and select the 
Kernel Smoother, OK 
OK 
click File in Graph 
Window and select Print 
increase Enlarge to 150%; 
OK 

select from the following 
window OK 

Assigns variables to axes in 3-D 
representation 

Labels axes 

Specifies method for creating 
surface 
Starts creation of graph on screen 
Initiates printing process 

increases print output to 150% 
(results in output 6 inches in 
height; width depends on length 
of title) 
Starts printing 

Table 17.1 gives the variable intercorrelations and the Bonferroni- 
significance tests for these intercorrelations. 

Table 17.1: Matrix of Intercorrelations (Upper Triangle) and Bonferroni- 
Significance Values (Lower Triangle)for Predictor1, Criterion, and Predictor2 

Predictor1 
Criterion 
Predictor2 

Predictor1 Criterion Predictor2 

0.064 
0.121 0.211 

0.878 0.832 
0.775 
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The correlation table can be created by issuing the following com- 
mands: 

Command Effect 

Use Compdat Reads file "Compdat.sys" 
click Stats, Corr, Pearson 

click Bonferroni 

OK 

highlight desired print 
output 
click File, Print, OK 

Selects method for statistical 
analysis 
Specifies that Bonferroni 
significance tests be performed; 
variable selection is not necessary 
if all variables are involved in 
correlation matrix 
Initiates computation and sends 
results to screen 

Sends highlighted selection to 
printer 

Both the response surface and the correlation table suggest that pre- 
dictors and criteria are strongly intercorrelated. After Bonferroni adjust- 
ment, the correlations fail to reach significance. However, the portions of 
variance shared in common are high for all three variable pairs. 

The following chapters illustrate application of regression analysis us- 
ing SYSTAT when regressing the variable Criterion onto Predictor l, Pre- 
dictor2, or both. 

17.2 Simple Regression 

This section illustrates application of simple linear regression. We regress 
Criterion onto Predictorl. To do this, we issue the following commands: 
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Command Effect 

Use Compdat Reads file "Compdat.sys" 
click Stats, MGLH Initiates statistical analysis; 

selects the MGLH (Multivariate 
General Linear Hypotheses) 
module 

click Regression Selects regression module 

assign Predictor1 to 
Independent; assign 
Criterion to Dependent 
OK 

Specifies predictors and criteria in 
regression 

Starts calculations; sends results 
to screen 

To print results we proceed as before. The following output results for 
the present example: 

USE ' A : \COMPDAT. SYS ' 
SYSTAT Rectangular file A: \COMPDAT. SYS, 
created Mon Nov 17, 1997 at 19:26:32, contains variables: 
P1 C P2 

>EDIT 
>REGRESS 

>MODEL C = C0NSTANT+PI 
>ESTIMATE 

Dep Var: C 
N" 6 

Multiple R: 0.878 
Squared multiple R: O. 771 

Adjusted squared multiple R: 0.714 
Standard error of estimate: 1.757 

Effect Coefficient Std Error Tol. t P(2 Tail) 

CONSTANT 2. 600 1. 635 . 1. 590 O. 187 
P1 1. 543 O. 420 1. 000 3. 674 O. 021 
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Reading from the top, the output can be interpreted as follows: 

�9 The top four lines tell us what file was opened, give the date and 
time, and name the variables in the file. 

The result display begins with (1) the dependent variable, (C)riterion, 
and gives (2) the sample size, 6, (3) the multiple R, and (4) the 
multiple R 2. When there is only one predictor, as in the present ex- 
ample, the multiple R and the Pearson correlation, r, are identical 
(see Table 17.1); 

�9 The 13th line gives the adjusted multiple R 2, which is calculated as 

( m - 1 ) ( 1 - R  2) 

n m m  

where m is the number of predictors, and N is the sample size. 
R 2 describes the portion of variance accounted for in a new sample 
from the same population. At the end of the 13th line we find the 
standard error of the estimate, defined as the square root of the 

residual mean square. 

�9 After a table header we find the parameters and their standard 
errors, the standardized coefficients ("betas" in SPSS); the tolerance 
value (see the section on multiple regression); the t value; and the 
two-sided tail probability for the t's; 

To depict the relationship between Predictor1 and Criterion we create 
a graph with the following commands: 

Command Effect 

Use Compdat Reads file "Compdat.sys" 
click Graph, Options, Provides print options for 
Global graphics 
click Thickness = 3, 
Decimals to Print - 1, and 
select from the font pull 
down the British font 

Specifies output characteristics 

continued on next page 
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OK 

click Graph, Plot, Plot 
assign Predictor1 to X and 
Criterion to Y 
click Axes and insert in 
Label Fields: for X: 
Predictor1 and for Y: 
Criterion, OK 
click Smooth and OK 

click Symbol, select symbol 
to represent data points 
(we take the star), and 
select size for data points 
(we take size 2) 
OK 
click File in Graph 
Window and select Print 
increase Enlarge to 150%; 
OK 

Concludes selection of output 
characteristics 
Opens the menu for 2-D plots 
Assigns variables to axes 

Labels axes 

Specifies type of regression line to 
be inserted in the graph; in the 
present example there is no need 
to make a decision, because a 
linear regression line is the default 
Specifies print options 

Starts creation of graph on screen 
Initiates printing process 

Increases print output to 150% 
(results in output that is 6 inches 
in height; width depends on 
length of title) 

The resulting graph appears in Figure 17.2. Readers are invited to 
create the same regression output and the same figure using Criterion 
and Predictor2. 

17.3 Curvilinear Regression 

For the following runs suppose the researchers analyzing the data in file 
"Compdat.sys" derive from theory that a curvilinear regression slope may 
validly describe the the slope of Criterion. Specifically, the researchers 
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Figure 17.2: Simple linear regression of Criterion on Predictor1 of sample 
data. 

assume that  there may be a quadratic slope. To test this assumption the 
researchers perform the following two steps: 

1. Create a variable that reflects a quadratic slope for six observation 

points. 

2. Predict Criterion from this variable. 

Let us call the variable that gives the quadratic slope Quad. Then, 
one performs the following steps in SYSTAT to test the assumption of a 
quadratic fit. 

Step 1 is to create a coding variable for a quadratic slope: 

Command Effect 

Use Compdat Reads data file "Compdat.sys" 
click Window, Worksheet Opens a worksheet window that 

displays the data 
continued on next page 
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move cursor in top line, 
that is, the line that 
contains variable names, 
and move to the right, one 
cell past the last existing 
name 

Opens array (column) for new 
entries 

type "Quad" Creates variable Quad 
move cursor one step down, 
type "5," move cursor one 
step down, type "-1" 
repeat until last value for 
variable Quad is inserted 

click File, select Save 

click File, select Close 

Insert values for variable Quad 
(values are taken from Kirk 
(1995, Table El0)) 
Insert all polynomial coefficients; 
the last four coefficients are-4 , -4 ,  
-1, 5 
Saves new file under same name, 
that is, under "Compdat.sys" 
Closes worksheet; reads new data; 
readies data for analysis 

We now have a new data file. It contains the original variables, Predic- 
torl,  Predictor2, and Criterion, and the new variable, Quad, which carries 
the coefficients of a quadratic polynomial for six observation points. In 
Step 2, we predict Criterion from Quad. 

Step 2 consists of testing the assumption that Criterion has a quadratic 
slope: 

Command 

Use Compdat 

click Stats, MGLH, and 
Regression 

assign Criterion to Y and 
Quad to X 
click OK 

Effect 

Reads data file "Compdat.sys" 
Specifies that OLS regression will 
be employed for data analysis 
Defines predictor and criterion 

Starts analysis and send results to 
screen 

These steps yield the results displayed in the following output: 
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MODEL C = CONSTANT+QUAD 
>ESTIMATE 

Dep Var" C 
N- 6 
Multiple R" 0.356 
Squared multiple R" O. 127 

Adjusted squared multiple R" 0.0 
Standard error of estimate" 3.433 

Effect Coefficient Std Error t P(2 Tail) 

CONSTANT 8. 000 1.402 5. 708 O. 005 
OUAD -0. 286 O. 375 -0. 763 O. 488 
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Reading from the top of the regression table, we find the same struc- 
ture of output as before. Substantively, we notice that the quadratic 
variable gives a poorer representation of the data than Predictor l. The 
variable explains no more than R 2 = 0.127 of the criterion variance. Pre- 

dictorl was able to explain R 2 = 0.771 of the criterion variance. 
Asking why this is the case, we create a graph that displays the ob- 

served values and the values estimated by the regression model. To create 
this graph, we need the estimates created by the regression model with 
the quadratic predictor. The following commands yield a file with these 

estimates. 

Command 

Use Compdat 
click Stats, MGLH, and 
Regression 
assign Criterion to Y and 
Quad to X 
select Save Residuals 

Effect 

Reads data file "Compdat.sys" 
Selects regression analysis 

Specifies regression predictor and 
criterion 
Initiates saving of residuals in 
new file 

continued on next page 
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OK 

type file name for residuals 
(we type "Quadres"), click 
OK 

OK 

Asks for file name and 
specification of type of 
information to save 
Specifies file name, readies 
module for calculations; there is 
no need for further selections 
because the default choice saves 
the information we need 
Starts calculations, sends 
residuals and diagnostic values to 
file "Quadres.sys"; sends 
regression results to screen 

type "Data" Invokes SYSTAT's Data module 
type "Use Compdat 
Quadres" 

type "Save Quadres2" 

type "Run" 

Reads files "Compdat.sys" and 
"Quadres.sys" simultaneously; 
makes all variables in both files 
simultaneously available 
Creates file "Quadres2.sys" in 
which we save information from 
both files 
Merges files "Compdat.sys" and 
"Quadres.sys" and saves all 
information in file "Quadres2.sys" 

After issuing these commands, we have a file that contains the orig- 
inal variables, Predictor l, Predictor2, and Criterion; the variable Quad; 
and the estimates, residuals, and various residual diagnostic values (see 
Chapter 6). This is the information we need to create the graph that plots 
observed versus estimated criterion values. The following commands yield 
this graph: 

Command Effect 

Use Quadres2 Reads file "Quadres2.sys" 
click Graph, Options, Provides print options for 
Global graphics 

continued on next page 



17.3. CURVILINEAR REGRESSION 303 

click Thickness = 3, 
Decimals to Print = 1, and 
select from the font pull 
down the British font 
OK 

Specifies output characteristics 

Concludes selection of output 
characteristics 

click Graph, Plot, Plot Opens the menu for 2D plots 
assign Predictor1 to X, 
Criterion to Y, and 
Estimate also to Y 
click Axes and insert in 
Label Fields; for X, 
Predictor1, and for Y, 
Criterion; OK 
click Symbol, select symbol 
to represent data points 
(we take the star), and 
select size for data points 
(we take size 2) 
OK 
click File in Graph 
Window and select Print 
increase Enlarge to 150%; 
OK 

Assigns variables to axes 

Labels axes 

Specifies print options 

Starts creation of graph on screen 
Initiates printing process 

Increases print output to 150% 
(results in output that is 6 inches 
in height; width depends on 
length of title) 

The resulting graph appears in Figure 17.3. The figure indicates why 
the fit provided by the quadratic polynomial is so poor. When comparing 
the stars (observed data points) and the circles (expected data points) 
above the markers on the Predictorl axis, we find that, with the excep- 
tions of the third and the fifth data points, not one is well represented by 
the quadratic curve. Major discrepancies are apparent for data points 1, 
2, and 7. What onewould need for an improved fit is a quadratic curve 
tilted toward the upper right corner of the graph. The next section, on 
multiple regression, addresses this issue. 
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Figure 17.3: Observed data points (stars) and expected data points (cir- 
cles) in quadratic regression. 

17.4 Multiple Regression 

The curvilinear analysis performed in Section 17.3 suggested a poor fit. 
The main reason identified for this result was that  the quadratic curve 

needed a positive linear trend that  would lift its right-hand side. To 
create a regression line that  has this characteristic we now fit a complete 

quadratic orthogonal polynomial, that  is, a polynomial that  involves both 
a linear term and the quadratic term used in Section 17.3. 

To create a coding variable that  carries the coefficients of the linear 
orthogonal polynomial we proceed as in Section 17.3, where we created a 
coding variable that  carried the coefficients for the quadratic polynomial. 
Readers are invited to do this with their own computers. Let the name 
of the new coding variable be Lin. It has values -5, -3, -1, 1, 3, and 5. We 
store the data set, now enriched by one variable, in file "Quadres2.sys." 

Using the linear and the quadratic orthogonal polynomials we can 
(1) calculate a multiple regression and (2) create a graph that  allows us 
to compare the results from the last chapter with the results from this 
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chapter. The following commands yield a multiple regression: 
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Command 

Use Quadres2 
click Stats, MGLH 

Effect 

Reads file "Quadres2.sys" 
Initiates statistical analysis; se- 
lects the MGLH (Multivariate 
General Linear Hypotheses) mod- 
ule 

click Regression Selects Regression module 
assign Lin and Quad to In- 
dependent; assign Criterion 
to Dependent 
OK 

Specifies predictors and criteria in 
regression 

Starts calculations; sends results 
to screen 

The resulting printout appears below. 

MODEL C = CONSTANT+LIN+QUAD 

>ESTIMATE 

Dep Var : C 
N" 6 
Multiple R" 0.948 
Squared multiple R: 0.898 

Adjusted squared multiple R" 0.831 
Standard error of estimate: 1.352 

Effect Coefficient Std Error 

CONSTANT 8. 000 O. 552 
LIN 0.771 0.162 
QUAD -0. 286 O. 148 

Tol. 

1.00 
1.00 

14.491 
4.773 

-1.936 

P(2 Tail) 

0.001 
0.017 
O. 148 
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Analysis of Variance 

Source SS df MS F P 

R e g r e s s i o n  48.514 2 24.257 13.266 0.032 
R e s i d u a l  5.486 3 1. 829 

The output  for multiple regression follows the same scheme as for 

simple regression. Yet, there are two characteristics of the results that  

are worth mentioning. The first is the Tolerance value. Tolerance is 

an indicator of the magnitude of predictor intercorrelations (see the VIF 

measure in Section 8.1). It is defined as 

Tolerancej - 1 - R 2, over all i # j ,  

or, in words, the Tolerance of Predictor i is the multiple correlation be- 

tween this predictor and all other predictors. It should be noticed that  

the criterion is not part of these calculations. Tolerance values can be 

calculated for each predictor in the equation. When predictors are com- 

pletely independent, as in an orthogonal design or when using orthogonal 

polynomials, the Tolerance assumes a value of Tolerance = 1 - 0 = 1. 

This is the case in the present example. Tolerance values decrease with 

predictor intercorrelation. 

The second characteristic that  is new in this printout is that  the 

ANOVA table is no longer redundant. ANOVA results indicate whether 

the regression model, as a whole, makes a significant contribution to ex- 

plaining the criterion. This can be the case even when none of the single 

predictors make a significant contribution. The F ratio shown is no longer 

the square of any of the t values in the regression table. 

Substantively, we note that  the regression model with the complete 

quadratic polynomial explains R 2 = 0.898 of the criterion variance. This 

is much more than the quadratic polynomial alone was able to explain. 

The linear polynomial makes a significant contribution, and so does the 

entire regression model. 

To compare results from the last chapter with these results we want to 

draw a figure that  displays two curves, that  from using only the quadratic 

term and that  from using the complete quadratic polynomial. We issue 
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the following commands: 
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Command 

Use Quadres2 
click Graph, Options, 
Global 
click Thickness = 3, 
Decimals to Print = 1, and 
select from the font pull 
down the British font (or 
whatever font pleases you) 
OK 

click Graph, Plot, Plot 
assign Estimate and 
Predictor1 to X, and 
Criterion to Y 
click Axes and insert in 
Label Fields, for X, 
Predictor1, and for Y, 
Criterion; OK 
click Symbol, select symbol 
to represent data points 
(we take the diamond and 
the star, that is, numbers 1 
and 18), and select size for 
data points (we take size 2) 
click Smooth, select 
Quadratic 
OK, OK 
click File in Graph 
Window and select Print 
increase Enlarge to 150%; 
OK 

Effect 

Reads file "Quadres2.sys" 
Provides print options for 
graphics 
Specifies output characteristics 

Concludes selection of output 
characteristics 
Opens the menu for 2D plots 
Assigns variables to axes 

Labels axes 

Specifies print options 

Specifies type of regression line 

Starts drawing on screen 
Initiates printing process 

Increases size of print output and 
starts the printing 

Figure 17.4 displays the resulting graph. 
The steeper curve in the figure represents the regression line for the 
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Figure 17.4: Comparing two quadratic regression lines. 

complete quadratic polynomial. The curve that connects the circles rep- 
resents the regression line from the last section. Quite obviously, the 
new regression line gives a much closer representation of the original data 
points than the earlier regression line. Adding the linear component to the 
polynomial has provided a substantial increase in fit over the quadratic 
component alone. 

17.5 Regression Interaction 

This section illustrates how to estimate regression interaction models. 
We use file "Compdat.sys" with the variables Predictorl, Predictor2, and 
Criterion. The sample model analyzed here proposes that the slope of the 
line that regresses Criterion on Predictorl depends on Predictor2. More 
specifically, we investigate the model 

Cr i t e r ion -  Constant + Predictor1 + Predictorl �9 Predictor2 

(see Chapter 10). 
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In order to be able to include the multiplicative term in a model that 
can be analyzed using SYSTAT's Regression module, one must create a 
new variable. This variable results from element-wise multiplying Pre- 
dictorl with Predictor2. However, there is a simpler option. It involves 
using the more general MGLH General Linear Model module. This model 
allows one to have the program create the multiplicative variable. The 
following commands need to be issued: 

Command Effect 

Use Compdat Reads data file "Compdat.sys" _ 

click Stats, MGLti, and Selects GLM module 
General linear model 
assign Criterion to 
Dependent and Predictor1 
to Independent 
highlight both Predictor1 
and Predictor2 and click 
Cross under the 
Independent variable box 

click OK 

Specifies criterion and predictor of 
regression 

The multiplicative term 
Predictor1 �9 Predictor2 will 
appear as new independent 
variable, thus completing the 
specification of the regression 
model 
Starts data analysis; sends output 
to screen 

The following output results from these commands: 

MODEL C = CONSTANT+PI+P2+pI*p2 

>ESTIMATE 

Dep Var: C 
N" 6 
Multiple E: 0.904 
Squared multiple R: 0.817 

Adjusted squared multiple R" 0.542 
Standard error of estimate: 2.224 
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E f f e c t  C o e f f i c i e n t  Std E r r o r  Tol .  t P(2 T a i l )  

CONSTANT O. 048 4. 190 . O. 011 O. 992 
P1 2. 125 1.544 O. 119 1.376 0.303 
P2 1. 256 1. 897 O. 137 O. 662 O. 576 
PI*P2 -0 .264  0.404 0.056 -0 .653  0.581 

The output  shows that  including the multiplicative term adds only 
6/1000 of explained variance to the model that  includes only Predictorl .  

In addition, due to the high correlation between Predictorl  and the multi- 
plicative term and because of the low statistical power, neither parameter  
for the two predictor terms is statistically significant. The same applies 

to the entire model. The Tolerance values are particularly low, indicating 
high variable intercorrelations. 

17.6 Regression with Categorical Predictors 

Regression with categorical predictors is a frequently addressed issue in 
the area of applied statistics (Nichols, 1995a, 1995b). Chapter 4 focused 
on interpretation of slope parameters from categorical predictors. The 
present section focuses on creating categorical predictors and estimating 
parameters using SYSTAT. 

To illustrate both, we use the data  in file "Compstat.sys." First, we 
illustrate the creation of categorical (also termed subinterval) predictors 
from continuous predictors. Consider variable Predictorl  in the data  file 
(for the raw data see Section 17.1). For the present purposes we assume 
that  Predictor l operates at the interval level. To categorize this variable, 
we specify, for example, two cutoff points. Let the first cutoff point be 
at Predictorl  = 2.5 and the second at Predictorl  = 4.5. From the two 

cutoff points we obtain a three-category variable. This variable must be 
transformed such that  pairs of categories result that  can be compared 
using standard OLS regression. 

Using SYSTAT, there are several options for performing this transfor- 
mation. The easiest for very small numbers of cases is to punch in values 
of one or two new variables. The following routine is more useful when 
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samples assume more realistic sizes. More specifically, we use the Recode 

option in SYSTAT's worksheet to create new variables that  reflect the 

contrasts we are interested in. For example, we create the following two 

contrasts: 

�9 cl = ( - 0 . 5 , - 0 . 5 ,  1). This contrast compares the combined first two 

categories with the third. 

�9 c2 -- ( - 1 ,  1, 0). This contrast compares the first two categories with 

each other. 

Command 

Use Compdat  
click Window, Worksheet 

click any variable name 
and move cursor to the 
right to the first free field 
for variable names 
type variable name, e.g., 
"Cat2" 
move one field to the right, 
type "Cat3" 
to assign values to Cat2 so 
tha t  they reflect the first 
contrast, fill the variable 
and operation boxes as 
follows: 
If Predictor1 < 4.5 Then 
Let Cat2 =-0 .5 ;  If 
Predictor l  > 4.5 Then Let 
Cat2 - 1; OK 

to assign values to Cat3 so 
that  they reflect the second 
contrast, fill the variable 
and operation boxes under 
Recode as follows: 

Effect 
. 

Reads data  file "Compdat.sys" 
Presents data  in form of a 
worksheet 
Starts a new variable 

Labels first categorical variable 
Cat2 
Initiates new variable; labels it 
Cat3 

Notice that  the value 4.5 does not 
appear for variable Predictor1; 
had it appeared, this operation 
would have been equivalent to 
setting values 4.5 equal to 1 

continued on next page 
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If Predictor1 < 2.5 Then 
Let Cat3 = -1; If 
Predictor1 > 2.5 Then Let 
Cat3 = 1; If Predictorl > 
4.5 Then Let Cat3 = 0; 
OK 
click File, Save Saves data in file "Compdat.sys" 
click Close Closes worksheet window and 

readies file "Compdat.sys" for 
analysis 

After these operations, file "Compdat.sys" contains two additional 
variables, Cat2 and Cat3, which reflect the two contrasts specified above. 
These variables can be used as predictors in regular multiple regression. 
The following commands are needed to perform the regression of Criterion 
on Cat2 and Cat3: 

Command Effect 

Read Compdat Reads data file "Compdat.sys" 
click Stats, MGLH, and Selects regression for data analysis 
Regression 
assign Criterion to 
Dependent and Cat2 and 
Cat3 to Independent 
click OK 

Specifies predictors and criterion 
for multiple regression 

Starts data analysis; sends results 
to screen 

The results from this multiple regression appear in the following out- 
put: 

USE ' A : \COMPDAT. SYS ' 

SYSTAT Rectangular file A : \COMPDAT. SYS, 

created Mon Nov 17, 1997 at 18:20:40, contains variables: 

PI C P2 QUAD LIN CAT2 CAT3 

>MODEL C = CONSTANT+CAT2+CAT3 
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>ESTIMATE 

Dep Var: C 
N" 6 
Multiple R" 0.943 
Squared multiple R: 0.889 

Adjusted squared multiple R" 0.815 
Standard error of estimate: 1.414 

E f f e c t  C o e f f i c i e n t  Std E r r o r  Tol .  t P(2 T a i l )  

CONSTANT 8. 000 O. 577 . 13. 856 O. 001 
CAT2 2. 000 O. 816 1.0 2. 449 O. 092 
CAT3 3. 000 O. 707 1.0 4. 243 O. 024 
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The output  suggests that  the two categorical variables allow one to 

explain R 2 = 0.89 of the criterion variance. In addition, the Tolerance 

values show that  the two categorical variables were specified to be or- 

thogonal. They do not share any variance in common and, thus, cover 

independent portions of the criterion variance. 

The following output  illustrates this last result. The output displays 

the results from two simple regression runs, each performed using only 

one of the categorical predictors. 

>MODEL C = CONSTANT+CAT2 
>ESTIMATE 

Dep Var: C 
N: 6 
Multiple R" 0.471 
Squared multiple R: 0.922 

Adjusted squared multiple R: 0.09.8 
Standard error of estimate: 3. 240 
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Coefficient Std Error Tol. t P(2 Tail) 

CONSTANT 
CAT2 

8. 000 1. 323 . 6. 047 O. 004 
2.000 1.871 1.00 1.069 0 .345 

>MODEL C = CONSTANT+CAT3 
>ESTIMATE 

Dep Var: C 
N- 6 
Multiple R: 0.816 
Squared multiple R: 0.667 

Adjusted squared multiple R" 0.583 
Standard error of estimate" 9. 121 

Effect Coefficient Std Error Tol. t P(2 Tail) 

CONSTANT 8 . 0 0 0  0. 866 . 9 .  238 0.001 
CAT3 3.000 1.061 1.00 2. 828 0.047 

This output indicates that  parameter  estimates from the two simple 

regression runs are the same as those from the multiple regression run. 

In addition, the two R 2 add up to the value obtained from the multiple 

regression. Independence of results occurs systematically only for orthog- 

onal predictors. 

The examples given in this chapter thus far illustrate regression using 

categorized continuous predictors. When predictors are naturally cate- 

gorical as, for instance, for the variables gender, make of car, or type of 

event, the same methods can be applied as illustrated. When the number 

of categories is two, predictors can be used for regression analysis as they 

are. When there are three or more categories, one must create contrast 

variables that  compare two sets of variable categories each. 
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17.7 The Partial Interaction Strategy 
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Using the means from Chapter 10 (Regression Interaction) and Section 

17.6 (Categorizing Variables) we now can analyze hypotheses concerning 
partial interactions. To evaluate a hypothesis concerning a partial inter- 

action one selects a joint segment of two (or more) variables and tests 

whether, across this segment, criterion values are higher (or lower) than 

estimated using the predictor variables' main effects. For each hypothe- 

sis of this type there is one parameter. For each parameter there is one 

coding vector in the design matrix X of the General Linear Model, 

y = X b + e .  

The coding vectors in X are created as was illustrated in Section 17.6. 
Consider the following example. A researcher assumes that criterion val- 

ues yi are smaller than expected from the main effects of two predictors, 

A and B, if the predictors assume values a l < a <_ a2 and bl < b <__ b2. To 

test this hypothesis, we create a coding vector that assumes the following 

values: 

- 1  i f a l < a _ a 2  andb l  <b<_b2 
c - 1 else. 

To illustrate this procedure we use our sample data file "Compdat" 

and first create a categorical variable of the type described in 17.6. Let 
this variable be named Cat l. We define this variable as follows: 

�9 Cat l = - l i f  

1. Predictor1 is less than 2.5 and Predictor2 is either 1 or 3 

2. Predictor1 is greater than 4.5 and Predictor2 is either 3 or 5 

�9 Cat1 = 1 else 

Creating a variable according to these specifications proceeds as fol- 

lows: 
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Command Effect 

Use Compdat Reads data file "Compdat.sys" 

click Window, Worksheet Presents data in worksheet form 

move cursor to the top line 
that contains variable 
names, move to the right 
in the first free field, type 
"Catl" 
move cursor one field 
down, key "- 1," move 
down, key "-1," move 
down, key "1," until all 
values are keyed in 

click File, Save 

click File, Close 

Creates variable Cat l 

Specifies values for variable Cat l; 
the values are-1 , -1 ,  1, 1 , -1 , -1  

Saves new and original data in file 
"Compdat.sys" 

Closes Worksheet window and 
reads file "Compdat.sys" 

These commands create the data set displayed in the following output: 

P1 C P2 

1 3 1 
2 5 3 
3 9 2 
4 11 4 

5 9 3 

6 11 5 
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Issuing the following commands, we calculate a regression analysis 

with partial interaction" 

Command Effect 

Use Compdat  Reads data  file "Compdat.sys" 

click Stats, MGLH, Selects regression analysis 

Regression 

assign Criterion to 

Dependent and Predictorl ,  

Predictor2, and Ca t l  to 

Independent 

click OK 

Specifies predictors and criterion 

for multiple regression 

Starts calculations and sends 

results to screen 

The results from this multiple regression with partial interaction ap- 

pear in the following output: 

MODEL C = CONSTANT+PI+P2+CATI 

>ESTIMATE 

Dep Var: C 

N: 6 
Multiple R: 1.000 

Squared multiple R: 1.000 

Adjusted squared multiple R: 1.000 

Standard error of estimate: 0.0 

Effect Coefficient Std Error Tol. t P(2 Tail) 

CONSTANT 2.833 O. 0 . . �9 
P1 1.333 0 .0  0 .309 . . 
P2 O. 333 O. 0 O. 309 . . 
CAT1 1.500 0.0 1.000 . . 

To be able to assess the effects of including the partial interaction 

variable Ca t l ,  we also calculate a multiple regression that  involves only 



318 C H A P T E R  17. C O M P U T A T I O N A L  I S S U E S  

the two main effects of Predictor l and Predictor2. The results from this 

analysis appear in the following output: 

MODEL C = CONSTANT+PI+P2 

>ESTIMATE 

Dep Var: C 
N" 6 

Multiple R: 0.882 
Squared multiple R: O.YY8 

Adjusted squared multiple R" 0.630 
Standard error of estimate: 2.000 

Effect Coefficient Std Error Tolerance t P(2 Tail) 

CONSTANT 2. 333 2. 073 . 1. 126 O. 342 
Pi 1.333 0.861 0.309 1.549 0.219 
P2 O. 333 l .  139 O. 309 O. 293 O. 789 

These two outputs indicate that the portion of criterion variance ac- 

counted for by the partial interaction multiple regression model increased 
from R 2 - 0.78 to R 2 - 1.00. Thus, the partial interaction variable 

allowed us to explain all of the variance that the two main effect vari- 

ables were unable to explain. Notice the degree to which Predictorl  and 
Predictor2 are dependent upon each other (low Tolerance values). 

The first output does not include any statistical significance tests. The 

reason for this is that whenever there is no residual variance left, there 

is nothing to test against. The F tests (and t tests) test the portion of 

variance accounted for against the portion of variance unaccounted for by 

the model. If there is nothing left unaccounted for, there is no test. 

It is important to note that, in the present example, lack of degrees of 

freedom is n o t  the reason why there is no statistical test. Including the 
partial interaction variable Cat l implies spending one degree of freedom. 

The last output suggests that there are three degrees of freedom to the 

residual term and two to the model. Spending one of the residual degrees 

of freedom results in a model with three degrees of freedom and in a 

residual term with two degrees of freedom. Such a model is testable. 
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However, a necessary condition is that there is residual variance left. 
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17.8 Residual Analysis 

Analysis of residuals from regression analysis requires the following three 
steps: 

1. Performing regression analysis; 

2. Calculating and saving of residuals and estimates of regression di- 
agnostics; 

3. Interpretation of estimates of regression diagnostics. 

In this section, we use the results from the analysis performed in Sec- 
tion 17.2, where we regressed the variable Criterion onto Predictor l. Re- 
sults of this regression appeared in the first output, in Section 17.2. The 
following commands result in this output, and also make the program 
save estimates, residuals, and indicators for regression diagnostics in a 
new file: 

Command Effect 

Use Compdat Reads file "Compdat.sys" 
click Stats, MGLH Initiates statistical analysis; 

selects the MGLH module 
click Regression Selects Regression module 
assign Predictor1 to 
Independent; assign 
Criterion to Dependent 
click Save Residuals 

Specifies predictor and criterion 
in regression 

Initiates saving of residuals in 
user-specified file; program 
responds by prompting name for 
file 

continued on next page 
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type "Compres" 

click OK 

We name the residual file 
"Compres" (any other name that 
meets DOS name specifications 
would have done); notice that the 
suffix does not need to be typed; 
SYSTAT automatically appends 
".sys" 
Starts calculations; sends results 
to screen and saves 

The output that results from these commands contains the same in- 
formation as the earlier output. Therefore, it will not be copied here 
again. The file "Compres.sys" contains the estimated values, the residu- 
als, and the estimates for regression diagnostics. To be able to compare 
estimates and residuals with predictor values, we need to merge the files 
"Compdat.sys" and "Compres.sys." To do this we issue the following 
commands (to be able to perform the following commands, we need to 
invoke SYSTAT's command prompt): 

Command Effect 

Data 

New 

Save Compres2 

Use Compdat Compres 

Run 

This command carries us into the 

data module 

Clears workspace for new data 

set(s) 
Specifies name for file that will 

contain merged files, 
"Compdat.sys" and 
"Compres.sys" 
Reads the files to be merged; 
program responds by listing all 
variables available in the two files 

Saves merged data in file 
"Compres2.sys"; program 
responds by giving the numbers of 
cases and variables processed and 
the name of the merge file 
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This completes the second step of regression residual analysis, that 
is, the calculation and saving of residuals, estimates, and regression diag- 
nostics. When interpreting these results, we first inspect the predictor x 
residual and estimate x residual plots. Second, we check whether any of 
the regression diagnostics suggest that leverage or distance outliers exist. 

To create the plots we first specify output characteristics for the graphs. 
We issue the following commands: 

Command Effect 

Use Compres2 Reads merged file 'Compres2.sys' 
click Graph, Options, Opens window for design 
Global specifications 
click Thickness=3, 
Decimals to Print = 1, and 
select from the Graph Font 
pull down British (or any 
other font you please); OK 
click Graph, Plot, Plot 

assign Predictor1 to X and 
Criterion to Y 

click Symbol and select 2x 
for size of data points to 
print, and the asterisk (or 
any other symbol you 
please) 
click Smooth and OK 

Specifies that lines be printed 
thick, that one decimal be printed 
in the axes labels, and that the 
British type face be used 

Initiates the two-dimensional 
scatterplot module 
Predictorl will be on the X-Axis 
and Criterion will be on the 
Y-Axis 
Specifies size and form of data 
points in print 

Creates a linear regression line 
that coincides with the X-axis 

click OK Sends graph to screen 

The graph that results from these commands appears in the left panel 
of Figure 17.5. Issuing analogous commands we create the right panel of 
Figure 17.5, which displays the Estimate �9 Residual Plot. 

As is obvious from comparing the two panels of Figure 17.5, the Es- 
timate �9 Residual plot is very similar to the Predictor �9 Residual plot. 
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Figure 17.5: Predictorl �9 Residual, and Estimate �9 Residual plots for 
sample data. 

The pattern of data points in the graphs is almost exactly the same. 
The reason for this great similarity is that the patterns emphasized in 
both graphs are those that were left unexplained by the regression model. 
(Figure 17.2 displays the regression of Criterion onto Predictorl. This 
relationship is statistically significant and allows one to explain 77% of 
the criterion variance.) 

The reason why researchers create Estimate * Residual plots or Pre- 
dictor �9 residual plots is that these plots allow one to perform visual 
searches for systematic patterns of residuals that are associated with the 
predictor (in simple regression) or the estimates (in simple or multiple 
regression). While in small samples such patterns may be hard to detect, 
in the present example it seems that relatively large positive residuals 
are associated with medium predictor values and with medium estimates. 
Relatively small negative residuals are associated with the extremes of 
the predictor and estimate scales. 

The following printout displays the file "Compres.sys" that SYSTAT 
created for the regression of Criterion onto Predictorl" 

ESTIMATE RESIDUAL LEVERAGE COOK STUDENT SEPRED 
4.14 -i. 14 0.52 0.48 -0.92 1.27 
5 . 6 8  - 0 . 6 8  O. 29 O. 04 - 0 . 4 1  O. 95 

7.22 1.77 0.18 0.13 1.16 0.74 
8 .77  2 .22  O. 18 0 .21  1 .70  0 .74  
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10.31 -1 .31 0.29 0.16 -0 .86 0.95 
11.85 -0 .85  0.52 0.27 -0 .65  1.27 
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The output suggests that SYSTAT saves the following variables in its 
default option: estimate, residual, leverage, the Cook D statistic, stu- 
dent's t, and sepred, that is, the standard error of predicted values. The 
critical values for the t statistic is t0.o5,d/=4 = 2.776. The critical value 
for the D statistic is F0.o5,1,5 = 230. None of the values in the output are 
greater than the critical values. Therefore, there is no reason to assume 
the existence of outliers in this sample data set. Readers are invited to 
calculate whether cases 6 and 1 exert too much leverage. 

The following commands created this output: 

Command Effect 

Use Compres 

click Window, Worksheet 

Reads file "Compres.sys"; 
program responds by listing 
names of variables in file 

Program transfers data in 
worksheet 

click File, Print Initiates printing of data file 

click OK Sends entire data file to printer 

17.9 Missing Data Estimation 

As by the date of this writing, SYSTAT does not provide a separate mod- 
ule for missing data estimation. Only in the time series programs missing 
values can be interpolated using distance weighted least squares methods. 
There are modules for missing data estimation in BMDP and EQS. The 
EQS module provides the options to estimate and impute variable means, 
group means, and values estimated by multiple regression. In this sec- 
tion we focus on estimating and imputing missing data using regression 
methods from SYSTAT's MGLH regression module. We focus on data 
with missing criterion values. Data with missing predictor values can be 

treated accordingly. 
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This module allows one to estimate missing data from a regression 

model. Estimation and imputation of missing values requires three steps: 

1. Estimate regression model; 

2. Save regression estimates, residuals, and diagnostics using the de- 
fault option (Section 17.6); 

3. Impute estimates for missing values into original data file; the resid- 

uals file contains these estimates. 

To be able to use the data in file "Compdat.sys," we need to add at 
least one case with a missing criterion value. We add the values Predic- 
tor l  = 12 and Predictor2 - 14. To do this in SYSTAT, we perform the 
following steps: 

Command Effect 

Use Compdat Reads data file 'Compdat.sys' 
click Window, Worksheet Transfers data file into worksheet 

window 
move cursor down to first 
line below last data line, 
move to Predictorl 
column, key in "12" 
move to Predictor2 
column, key in "14" 
click File, Save As 

type "Compdat2"; OK 

click File, Close 

Specifies Predictor1 value for new 
c a s e  

Specifies Predictor2 value for new 
c a s e  

Initiates saving of completed data 
in new file 
Saves completed data in file 
"Compdat2.sys"; leaves all other 
values for new case missing; 
missing values are indicated by a 
period 
Carries us back to command 
mode where we can perform 
statistical analyses 

For the following analyses we only use the three variables Predictor1, 
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Predictor2, and Criterion. The values assumed by these three variables 

appear below. 

P1 C P2 

1 3 1 
2 5 3 
3 9 2 
4 11 4 
5 9 3 
6 11 5 

12 . 14 

The output displays the values the three variables assume for the orig- 

inal six cases. In addition, the values Predictorl  = 12 and Predictor2 - 

14 appear, along with the missing value for Criterion. This selective Out- 

put was created within SYSTAT's command mode, issuing the following 

commands (these commands assume that file 'Compdat.sys'  is the active 
file; if this is not the case, it must be opened before issuing the following 

commands): 

Command Effect 

Caselist Predl ,  Pred2, Crit Initiates listing of values of 

variables Predl ,  Pred2, and Grit; 

all cases will be displayed 

Run Displays all cases on screen 

highlight desired parts of 

display, click File, Print, 

O K .  

Sends highlighted parts of what is 

displayed on screen to printer 

Using file "Compdat2.sys" we now estimate the parameters for the 

multiple regression of Criterion onto Predictorl  and Predictor2. The fol- 
lowing output displays results from this analysis. The commands for this 

run are analogous to the commands for regression with the saving of the 

residual file and are not given here. 

MODEL C = CONSTANT+PI+P2 
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>ESTIMATE 
1 case(s) deleted due to missing data. 

Dep Var: C 
N: 6 
Multiple R: 0.882 
Squared multiple R: 0.778 

Adjusted squared multiple R: 0.630 
Standard error of estimate: 2.000 

Effect Coefficient Std Error t P(2 Tail) 

CONSTANT 2. 333 2. 073 1. 126 O. 342 
P1 1. 333 O. 861 1. 549 O. 219 
P2 O. 333 1. 139 O. 293 O. 789 

With only three exceptions, this output is identical with the output 

on p. 316. For the present purposes most important is that  the case with 

the missing criterion value was excluded from analysis. This is indicated 

in the line before the numerical results block. The last line of the above 

output (not given here) indicates that the residuals have been saved. 

File "Cd2res.sys" contains results from residual analysis. Using the 

same commands as before, we print this file. It appears in the following 
output: 

ESTIMATE RESIDUAL LEVERAGE COOK STUDENT SEPRED 
4 -i 0.58 0.28 -0.70 1.52 
6 -1 0 .58  0 .28  - 0 . 7 0  1 .52  
7 2 0 .33  0 .25  1 .41  1 .15  
9 2 0 .33  0 .25  1 .41  1 .15  

10 -1  0 . 5 8  0 . 2 8  - 0 . 7 0  1 .52  
12 -1  0 . 5 8  0 . 2 8  - 0 . 7 0  1 .52  
23 . 14 .66  . . 7 . 65  

This output displays the same type of information as before. In addi- 
tion, it contains information of importance for the purposes of estimating 

and imputing missing data. For the last case, that  is, the case with the 
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missing Criterion value, this file shows an estimate, a leverage value, and 

the standard error of the predicted value. It is the estimate that  we 

impute into the original file. To perform this we "Use" data  file "Com- 

pdat2.sys," transfer the data  to the worksheet window, and impute 23.0 
for the missing Criterion value. Using the now completed data we recal- 

culate the regression analysis. Results of this analysis appear in following 
output:  

MODEL C = CONSTANT+PJ+P2 

>ESTIMATE 

Dep Var: C 
N" 7 

Multiple R: 0.975 
Squared multiple R: 0.951 

Adjusted squared multiple R: 0.927 
Standard error of estimate: 1.732 

Effect Coefficient Std Error t P(2 Tail) 

CONSTANT 2. 333 1. 224 1. 906 0. 129 
P1 1. 333 0. 686 1. 944 0. 124 
P2 0.333 0.573 0.581 0.592 

Analysis of Variance 

Source SS df MS F P 

R e g r e s s i o n  234. 857 2 117.429 39. 143 0. 002 
R e s i d u a l  12. 000 4 3. 000 

This output  shows a number of interesting results. First, the number 

of cases processed now is n - 7 rather than n - 6 as in the earlier regres- 

sion output.  No case was eliminated because of missing data. Second, 

the three parameter  estimates are exactly as before. The reason is that  

the estimated value sits exactly on the regression hyperplane. Therefore, 

the new data  point changes neither the elevation nor the angles of the 

hyperplane. 
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Also because the new data point sits exactly on the regression plane, 
the overall amount of variance that  is unaccounted for remains the same. 
Thus, considering the larger number of data points processed, the portion 
of variance accounted for is greater than that  without the imputed data  
point. This can be seen in the analysis of variance panel. As a result, 

the standard errors of the parameters are smaller than before, and so are 
the tail probabilities of the t statistics. Overall, the regression model now 
accounts for a statistically significant portion of the criterion variance. 

In general, one can conclude that  good estimation and imputation 
of missing values tends to increase statistical power. The main reasons 
for this increase include the increase in sample size that  results from 
includingcases with imputed data and the placing of OLS estimates on 
the regression hyperplane. 

17.10 Piecewise Regression 

SYSTAT provides two options for estimating continuous piecewise regres- 
sion models. The first is to regress a criterion variable onto vectors from 
a user-specified design matrix of the form given in (15.2) in Section 15.1. 
The second is to estimate a model from a user-specified form. SYSTAT's 
Nonlin module allows one to perform the second type of analysis. This 
section focuses on the second option. 

To illustrate piecewise regression we use the file "Compdat.sys" again. 

We analyze the relationship between the variables Predictorl  and Crite- 
rion. Figure 17.2 suggests that  there may be a change in the relationship 
between Predictorl  and Criterion at Predictorl  = 3.5. Therefore, we es- 
t imate a piecewise regression model of the following form (cf. Section 
15.1): 

Criterion = Constant § bl * Predictor1 

+ b2 * (Predictor2 - 3.5) + Residual. 

Using SYSTAT, this model can be estimated issuing the following 

commands: 
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Command Effect 

Use Compdat Reads file 'Compdat.sys' 

click Stats, Nonlin 

click Model 

type into the model 
window "crit - constant + 
b l*predl  + b2*(pred l -  
3.5)" 
click OK 

Invokes Nonlin module for 
nonlinear estimation of regression 

models 

Opens window for model 
specification; the Loss Function 

option does not need to be 
invoked unless one wishes to 
specify a goal function other than 

least squares 

Specifies piecewise regression 
function to be fit 

Starts estimation; sends results to 

screen 

The following output displays results from the estimation process: 

MODEL c = constant+bl,pl+b2,(pl-3.5) 

>ESTIMATE / QUASI 

Iteration 
No. Loss CONSTANT B1 B2 

0 .86985D+02 .IOIID+OI .I020D+OI .I030D+OI 
1 .37150D+02 .1240D+01 .1724D+01 .9311D+00 
2 .12343D+02 .1617D+01 .1825D+01 -.2868D+00 
3 .12343D+02 .1615D+01 .1824D+01 -.2814D+00 

Dependent variable is C 

Source Sum-of-Squares df Mean-Square 
Regression 425. 657 3 141. 886 

Residual 12.343 3 4. 114 

Total 438.000 6 
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Mean corrected 54. 000 5 

Raw R-square (l-Residual/Total) = 0.972 

Mean corrected R-square (l-Residual/Corrected) = 0.771 

R(observed vs predicted) square = 0.771 

Parameter Estimate A.S.E. 

CONSTANT 1.615 51479 

B1 1.824 14708 

B2 -0.281 14708 

Wald Conf. Interval 

Lower < 95Y.> Upper 

- 1 6 3 8 2 8 .  536 163831. 766 
-46806. 790 46810. 439 
-46808. 896 46808. 333 

The first line of this output shows the model specification. The second 
line shows the Estimate command and, after the slash, the word QUASI. 
This word indicates that the program employs a quasi-Newton algorithm 
for estimation. What follows is a report of the iteration process. Infor- 
mation provided includes the number of iteration, the value of the loss 
function, and parameter values for each iteration step. The report sug- 
gests that convergence was achieved after the fourth iteration step. The 
last part of the output displays results of the statistical analysis of the 
regression model, the raw R 2 and the corrected R 2, and the parameter 

estimates. 

Dividing the regression sum of squares by the residual sum of squares 
yields the F ratio for the regression model. For the present example 

we obtain F - 141.886/4.114-  34.489. This value is, for dr1 - 3 and 
dr2 - 3 greater than the critical value F0.0~,3,3 - 9.28. We thus conclude 
that  the regression model accounts for a statistically significant portion 
of the criterion variance. 

Wilkinson et al. (1992, p. 429) suggest you "never trust the output 
of an iterative nonlinear estimation procedure until you have plotted es- 
timates against predictors ..." Therefore, we now create a plot of the 
data from file "Compdat.sys" in which we lay the piecewise regression 
line along with the standard linear regression line. Figure 17.6 displays 
this plot. 

The straight line in this plot represents the standard linear regression 
line for the regression of Criterion onto Predictor l. The second line repre- 
sents the piecewise regression line. The two lines coincide for the segment 
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where Predictor1 is greater than 3.5. For the segment where Predictor1 is 

less than or equal to 3.5, the piecewise regression line has a steeper slope, 
thus going almost exactly through the two data points for Predictor l = 

2 and Predictor l = 2. 
The following commands create this plot: 

Command Effect 

Use Compdat Reads data file "Compdat.sys" 
click Graph, Option Opens window for specification of 

general graph characteristics 
select Thickness = 3, 
Decimals to Print = 1, and 
Graph Font = British 
click OK 

click Graph, Function 

type "y = 0.83 + 2.049 * 
- 0.506 * (x-  3.5) * (x > 
3.5)" 
click Axes 

insert xmin = 0 ,  y m i n  = 2 ,  

xmax = 7, ymax = 12, 
xlabel = Predl ,  and ylabel 
= Crit; click OK 

Specifies thickness of lines, 
number of decimals, and typeface 

Carries us back to command 
mode 
Opens window that allows one to 
specify function to be plotted 
Specifies function to be plotted 

Opens window for specification of 
axes' characteristics 
Specifies minimum and maximum 
axes values and labels axes 

click OK, OK Sends graph to screen 
click within the Graph 
Window the Window, 
Graph Placement, and 
Overlay Graph options 
click Graph, Plot, Plot 

assign Predictor1 to the X 
axis and Criterion to the Y 
axis 

Tells the program that a second 
graph will follow that is to be laid 
over the first 

Invokes module for plotting data 
in 2D 

continued on next page 
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click Symbol and select *, 
Size = 2, OK 

click Smooth, OK 

click Axes and specify 
xmin = 0, ymin - 2, xmax 
- 7, ymax = 12, xlabel = 
Pred l ,  and ylabel = Crit; 
OK 
OK 

Determines size and type of 
symbol to use for depicting da ta  
points 
Tells the program to insert a 
linear regression line into the da ta  
plot; the linear smoothing is 
default 
Specifies min and max values for 
axes and axes labels; this is 
needed for the same reason as the 
title 

Redraws and overlays both 
graphs; sends picture to screen 
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Figure 17.6" Comparing straight line and piecewise regression. 



Appendix A 

E L E M E N T S  OF 

M A T R I X  A L G E B R A  

This excursus provides a brief introduct ion to elements of matr ix  algebra. 

More detailed introduct ions tha t  also cover more ground can be found 

in such tex tbooks  as Ayres (1962), Searle (1982), Graybill (1983). This 

excursus covers the following elements of matr ix  algebra: definition of a 

matr ix ,  types of matrices,  t ransposing a matrix,  addit ion and subtract ion 

with matrices,  multiplication with matrices, the rank of a matrix,  the 

inverse of a matr ix,  and the de terminant  of a matrix.  

A . 1  D e f i n i t i o n  o f  a M a t r i x  

Definition: A matr ix  is a rectangular  array of numbers.  These numbers  

are ar ranged in rows and columns. Consider matr ix  A with m rows and 

n columns, tha t  is, the m x n matr ix  A. The numbers in this matr ix  are 

a r ranged as 

a l l  a12 �9 �9 �9 aln  

a21 a22 �9 �9 �9 a2n 
A / A  1"~ 

�9 . . . , ~ . , - , . ~ j  

�9 �9 

a m l  a m 2  �9 �9 �9 O - , m n  

333 
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with i = 1 , . . . , m ,  and j = 1 , . . . , n .  

The presentation of a matrix such as given in (A.1) meets the following 
conventions: 

1. Matrices are denoted using capital letters, for example, A. 

2. The a/j are the numbers or elements of matrix A. Each number is 

placed in a cell of the matrix; subscripts denote cell indexes. 

3. The subscripts, ij, give first the row number, i, and second the 
column number, j .  For example, subscript 21 indexes the cell that  

is in the second row in the first column. 

4. Matrix elements, that  is, cells, are denoted using subscripted lower 

case letters, for example, aij. 

The following example presents a 2 x 3 matrix with its elements: 

A -  ( all a12 a13 ) .  
a21 a22 a23 

Matrices can be considered mathematical objects just as, for instance, 

real valued numbers. Therefore, it is natural to ask how one can define 

such operations as addition or multiplication. Are there neutral and in- 
verse elements for addition? Are there neutral and inverse elements for 

multiplication? Generally, the answer is yes, as long as addition is con- 

cerned. However, when it comes to multiplication, an inverse element 

does not always exist. This may not be intuitively plausible, since for real 
numbers there is for every number a an element 1/a which is the inverse 

of a. It is also true that  addition and multiplication are not well-defined 

for arbitrary matrices. This is also not the case for real numbers. Usually, 
any two real numbers can be added or multiplied. Matrix multiplication is 

generally not even commutative, that  is, if A and B are two matrices that  
can be multiplied with each other, then generally A B  ~ BA.  However, 

the situation is not as discouraging as it may seem at first glance. One 

gets rapidly familiar with matrix operations. The following sections intro- 

duce readers into matrix definitions and operations needed in subsequent 

chapters. 
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A.2 Types of Matrices 

This section presents the following types of matrices: square matrix,  col- 

umn vector, row vector, diagonal matrix,  identity matrix,  and tr iangular 

forms of matrices. 

1. Square matrices. Matrices are square if the number of rows equals 

the number of columns. For example, matrices with dimensions 2 x 

2 or 5 x 5 are square. The following is an example of a 2 x 2 matrix: 

B - (  12.31 - 4 . 4 5 )  
-36 .02  0.71 " 

2. Column vectors. A matr ix  with only one column is termed a column 

vector. For example, the following are sample dimensions of column 

vectors: 7 x 1, 3 x 1, and 2 x 1. The following is an example of a 3 

x 1 column vector: (o1) 
a - -  a 2  �9 

a3 

Since there is only one column a subscript indicating the column is 

redundant  and therefore omitted. 

3. Row vectors. A matr ix  with only one row is termed a row vector. 

The following are sample dimensions of row vectors: 1 x 2, 1 x 45, 

and 1 x 3. The following is an example of a row vector 

a ' - - (  114.1 -32 .8  -1 .9  ) .  

For the remainder of this volume we adopt the following convention: 

Whenever we speak of vectors we always mean column vectors. Row 

vectors will be denoted by a prime. 1 For example, if vector a is a 

row vector, we express it as a ~. 

4. Diagonal matrices. A square matrix with numbers in its diagonal 

cells and zeros in its off-diagonal cells is termed a diagonal matrix.  

1 See the definition of a transposed matrix below. 
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The elements a11, a22 , . . . ,  describe the main diagonal of matr ix  A; 

tha t  is, the main diagonal of a matr ix  is constituted by the cells with 

equal indexes. For example, the diagonal cells of a 3 x 3 matr ix  have 

indexes 11, 22, and 33. These are the cells that  go from the upper 

left corner to the lower right corner of a matrix. When a matr ix  is 

referred to as diagonal, reference is made to a matr ix  with a main 

diagonal. The following is an example of a 3 x 3 diagonal matrix: 

t w 

al l  0 0 / 

0 a22 0 . 

0 0 a33 

Usually, diagonal matrices are writ ten as 

A - d i a g (  al l  a22 a33 ) .  

If the elements aii are matrices themselves A is termed a block 

diagonal matrix. 

5. Identity matrices. A diagonal matr ix with diagonal elements tha t  

are equal to some constant value k, that  is, a l l  - a22 -- au3 = . . .  = 

ann - k, is called ascalar matrix. If, in addition, the constant k - 1, 

the matr ix  is termed an identity matrix. The symbol for an n x n 

identity matr ix  is In, for example, 

I 3 -  
100) 
0 1 0 . 

0 0 1 

6. Triangular matrices. A square matr ix with elements aij - 0 for 
j < i is termed an upper triangular matrix. The following is an 

example of a 2 x 2 upper triangular matrix: 

U - (  all0 a22a12/" 

A square matr ix with elements aij - 0 for j > i is termed a lower 

triangular matrix. The following is an example of a 3 x 3 lower 
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t r iangular  matrix: 

L 
a l l  0 0 / 

a21 a22 0 . 

a31 a32 a33 

Diagonal matrices are both upper and lower triangular.  
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A.3 Transposing Matrices 

Consider the m x n matr ix  A. Interchanging rows and columns of A 

yields A ' ,  the transpose 2 of A. By transposing A, one moves cell ij to 

be cell ji. The following example transposes the 2 x 3 matrix,  A: (14) 
A -  4 5 6 -+ - 2 5 . (A.2) 

3 6 

As (A.2) shows, after transposition, what  used to be rows are columns, 

and what  used to be columns are rows. Transposing a t ransposed matr ix  

yields the original matrix,  or, more specifically, A "  = A. Matrices for 

which A '  = A are termed symmetric.  

A.4 Adding Matrices 

Adding matrices is only possible if the dimensions of the matrices are 

the same. For instance, adding A with dimensions m and n and B with 

dimensions p and q can be performed only if both m - p and n = q. This 

is the case in the following example. If A and B are given by 

(1 (4 
A -  10 3 2 5 " 

2Instead of the prime symbol one also finds in the literature the symbol A T to 
denote a transpose. 
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The sum of these two matrices is calculated as 

(1+4 
A + B -  1 0 + 2  3 + 5  - 12 8 " 

Rather than giving a formal definition of matrix addition, this example 

shows that  the corresponding elements of the two matrices are simply 

added to create the element of the new matrix A + B. 

In contrast, matrix A with dimensions 3 x 6 and matrix B with di- 

mensions 3 x 3 cannot be added to each other. In a fashion analogous to 

(A.3) one can subtract matrices from each other, if they have the same 

dimensions. 

A.5 Multiplying Matrices 

This excursus covers three aspects of matrix multiplication: 

1. Multiplication of a matrix with a scalar; 

2. Multiplication of two matrices with each other; and 

3. Multiplication of two vectors. 

Multiplication of a matrix with a scalar is performed by multiplying each 

of its elements with the scalar. For example, multiplication of scalar k = 3 

with matrix A from Section A.4 yields 

kA - 3 10 3 - 30 9 

It should be noted that  multiplication of a matrix with a scalar is com- 

mutative, that  is, kA = Ak holds. 

Multiplication of two m a t r i c e s  

Matrices must possess one specific characteristic to be multipliable 

with each other. Consider the two matrices, A and B. Researchers wish 

to multiply them to calculate the matrix product AB.  This is possible 

only if the number of columns of A is equal to the number of rows of B. 
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One calls A, that is, the first of two multiplied matrices, postmultiplied 
by B, and B, that  is, the second of two multiplied matrices, premultiplied 

by A. In other words, two matrices can be multiplied with each other 
if the number of columns of the postmultiplied matrix is equal to the 
number of rows of the premultiplied matrix. 

When multiplying two matrices one follows the following procedure: 
one multiplies row by column, and each element of the row is multiplied 
by the corresponding element of the column. The resulting products are 

summed. This sum of products is one of the elements of the resulting ma- 
trix with the row index carried over from the row of the postmultiplied 
matrix and the column index carried over from the column of the pre- 

multiplied matrix. Again, the number of columns of the postmultiplied 
matrix must be equal to the number of rows of the premultiplied matrix. 

For example, to be able to postmultiply A with B, A must have 

dimensions m x n and B must have dimensions n x p. The resulting matrix 
has the number of rows of the postmultiplied matrix and the number of 
columns of the premultiplied matrix. In the present example, the product 
A B  has dimensions m xp. The same applies accordingly when multiplying 
vectors with each other or when multiplying matrices with vectors (see 
below). 

Consider the following example. A researcher wishes to postmultiply 
matrix A with matrix B (which is the same as saying the researcher wishes 
to premultiply matrix B with matrix A). Matrix A has dimensions m x n. 

Matrix B has dimensions p x q. A can be postmultiplied with B only 
if n = p. Suppose matrix A has dimensions 3 x 2 and matrix B has 
dimensions 2 x 2. Then, the product AB of the two matrices can be 
calculated using the following multiplication procedure. The matrices are 

(al  al )( 11 
A -  a21 a22 and B = b21 b22 " 

a31 a32 

The matrix product AB is given in general form by 

A B  = 
allb11 -t- a12b21 

a21bll -t- a22b21 
a31bll + a32b21 

alibi2 + a12b22 

a21b12 + a22b22 ) �9 
a31b12 + a32b22 
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For a numerical example consider the following two matrices: 

/ A - 4 1 and B - 3 4 
3 5 7 8 " 

Their product yields 

A B =  
(2 3 3,7 (27 32) 

4 , 3 + 1 , 7  4 , 4 + 1 , 8  - 19 24 

3 , 3 + 5 , 7  3 , 4 + 5 , 8  44 52 

As vectors are defined as a matrix having only one column, there 

is nothing special in writing, for instance, the product of a matrix and a 

vector Ab  (yielding a column vector), or the product of a row vector with 

a matrix b~A (yielding a row vector). As a matter  of course, matrix A 

and vector b must have appropriate dimensions for these operations, or, 

in more technical terms, A and b must be conformable to multiplication. 

M u l t i p l i c a t i o n  of  two vectors  wi th  each other  

Everything that  was said concerning the multiplication of matrices carries 

over to the multiplication of two vectors a and b, with no change. So, no 

extra rules need to be memorized. While the multiplication of two column 

vectors and the multiplication of two row vectors is impossible according 

to the definition for matrix multiplication, the product of a row vector 

with a column vector and the product of a column vector with a row 

vector are possible. These two products are given special names. The 

product of a row vector with a column vector, that  is, a~b, is called the 

inner product. Alternatively, because the result is a scalar, this product is 

also termed the scalar product. The scalar product is sometimes denoted 

by < a, b >. 

In order to calculate the inner product both vectors must have the 

same number of elements. Consider the following example of the two 
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three-element vectors a and b. Multiplication of 

a ' - (  all  a12 a13 ) with b -  b21 

b31 

yields the inner product 

3 

a 'b  - all  bll + a12b21 + a13b31 - E alibi1. 
i=1 

For a numerical example consider the vectors 

a ' - ( 3  6 1 ) and b -  (2) 
The inner product is then calculated as 

a ' b -  3 , 2 + 6 , 7 +  1 , 9 -  57. 
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Most important for the discussion of multicollinearity in multiple re- 

gression (and analysis of variance) is the concept of orthogonality of vec- 

tors. Two vectors are orthogonal if their inner product is zero. Consider 

the two vectors a' and b. These two vectors are orthogonal if 

E aibi - a 'b  - 0. 
i 

The product of a column vector with a row vector ab '  is called the 

outer product and yields a matrix with a number of rows equal to the 

number of elements of a and number of columns equal to the number 

of elements of b. Transposing both a' and b yields a and b' .  a has 

dimensions 3 x 1 and b'  has dimensions 1 x 3. Multiplying 

all / 
a - -  a21 with b ' - (  bll b12 b13 ) 

a31 
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yields the outer product 

ab '  - 
alibi1 alibi2 alibi3 ) 

a21bll a21b12 a21b13 �9 

a31bll a31b12 a31bla 

Using the numbers of the last numeric example yields 

a b  ~ - 

(3,2 3,73,9)(6 21 27) 
6 , 2  6 , 7  6 , 9  - 12 42 54 . 

1 , 2  1 , 7  1 , 9  2 7 9 

Obviously, the order of factors is significant when multiplying vec- 

tors with each other. In the present context, the inner product is more 
important.  

A . 6  T h e  R a n k  of  a M a t r i x  

Before introducing readers to the concept of rank of a matrix, we need 

to introduce the concept of linear dependency of rows or columns of a 
matrix. Linear dependency can be defined as follows: The columns of 

a matrix A are linearly dependent if there exists a vector x such that  

Ax  yields a vector containing only zeros. In other words, if the equation 

Ax  - 0 can be solved for x then the columns of A are linearly dependent. 

Because this question would be trivial if we allow x to be a vector of zeros 

we exclude this possibility. Whether such a vector exists can be checked 

by solving the equation Ax  - 0 using, for instance, the Gaug Algorithm. 

If an x other than the trivial solution x = 0 exists, the columns are said to 

be linearly dependent. Consider, for example, the following 3 x 3 matrix: 

A 
1 2 3 )  

- 2  - 4  - 6  . 

- 3  - 6  5 

If we multiply A by the column vector x' - ( 2 , -1 ,  0) we obtain b '  = 

(0, 0, 0). Vector x is not an array of zeros. Therefore the columns of A 

are said to be linearly dependent. 

A relatively simple method for determining whether rows or columns 
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of a matrix are linearly independent involves application of such linear 

operations as addition/subtraction and multiplication/division. Consider 
the following example of a 3 x 3 matrix: 

A 
1 - 2  - 3  ) 

- 4  2 0 . 

5 - 3  - 1  

The columns of this matrix are linearly dependent. The following opera- 

tions yield a row vector with only zero elements: 

1. Multiply the second column by two; this yields (4) 
4 . 

- 6  

2. Add the result of Step 1 to the first column; this yields (3) 
0 . 

- 1  

3. Subtract the third column from the result obtained in the second 

step; this yields a column vector of zeros. Thus, the columns are 
linearly dependent. 

If the columns of a matrix are linearly independent, the rows are in- 

dependent also, and vice versa. Indeed, it is one of the interesting results 

of matrix algebra that  the number of linearly independent columns of 

a matrix always equals the number of linearly independent rows of the 

matrix. 
We now turn to the question of how many linear dependencies there 

are among the columns of a matrix. This topic is closely related to the 

rank of a matrix. 

To introduce the concept of rank of a matrix, consider matrix A with 

dimensions m • n. The rank of a matrix is defined as the number of 

linearly independent rows of this matrix. If the rank of a matrix equals 

the number of columns, that  is, r a n k ( A )  = n, the matrix has full column 
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rank. Accordingly, if rank(A)  = m, the matrix has full row rank. If a 

square matrix has full column rank (and, therefore, full row rank as well), 
it is said to be nonsingular. In this case, the inverse of this matrix exists 
(see the following section). For numerical characteristics of the rank of 
a matrix we refer readers to textbooks for matrix algebra (e.g., Ayres, 

1962). 

A . 7  T h e  I n v e r s e  of  a M a t r i x  

There is no direct way of performing divisions of matrices. One uses 
inverses of matrices instead. To explain the concept of an inverse consider 
the two matrices A and B. Suppose we postmultiply A with B and obtain 
A B  = I, where I is the identity matrix. Then, we call B the inverse of A. 
Usually, inverse matrices are identified by the superscript "-1," Therefore, 
we can rewrite the present example as follows: B = A -1. It also holds 

that  both pre- and postmultiplication result in I, that  is, 

A A  -1 = A - 1 A -  I. (A.4) 

For an inverse to exist, a matrix must be nonsingular, square (although 
not all square matrices have an inverse), and of full rank. The inverse of a 
matrix can be viewed similarly to the reciprocal of a number in ordinary 
linear algebra. Consider the number 2. Its reciprocal is 1/2. Multiplying 
2 by its reciprocal, 1/2, gives 1. In general, a number multiplied with its 
reciprocal always equals 1, 

1 
x - - - - 1 .  

x 

Reexpressing this in a fashion parallel to (A.4) we can write 

1 
X - - - - X X  - 1  - -  1. 

X 

Calculating an inverse for a matrix can require considerable amounts 
of computing. Therefore, we do not provide the specific procedural steps 
for calculating an inverse in general. All major statistical software pack- 
ages include modules that  calculate inverses of matrices. However, we do 
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give examples for two special cases, for which inverses are easily calcu- 
lated. These examples are the inverses of diagonal matrices and inverses of 
matrices of 2 x 2 matrices. The inverse of a diagonal matrix is determined 
by calculating the reciprocal values of its diagonal elements. Consider the 
3 x 3 diagonal matrix 

all 0 0 / 
A - 0 a22 0 . 

0 0 a33 

The inverse of this matrix is 

i - 1  _ 

1/all  0 0 ) 
0 1/a22 0 . 
0 0 1/a33 

This can be verified by multiplying A with A -1. The result will be 
the identity matrix I3. 

Consider the following numerical example of a 2 x 2 diagonal matrix 
A and its inverse A - l :  

( 3 0 ) i _ l _  (1/3 0 ) (i.5) 
A -  0 6 ' 0 1/6 " 

Multiplying A with A -1 results in 

3 , 1 / 3 + 0 , 0  
A A - 1  - 0 , 1 / 3  + 6 , 0  

3 " 0 + 0 " 1 / 6  / _ /  1 
0 * 0 + 6 *  1/6 0 

01 ) - I 2 ,  

which illustrates that multiplying a matrix by its inverse yields an identity 
matrix. 

The inverse of a 2 x 2 matrix, A -1, can be calculated as 

A 1  1 (a 2 a12) 
a11a22 -- a12a21 --a21 all 
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or, after setting D = alia22 - a12a21 we obtain 

A-~ = 1 (--D -a21a22 -a12)a11 . (A.6) 

To illustrate this way of calculating the inverse of a matrix we use the 
same matrix as in (A.5). We calculate D = 3 �9 6 - 0 �9 0 - 18. Inserting 
into (A.6) yields 

A - 1 = 1 (  6 - 0 ) - (  1 / 3 1 8  - 0  3 0 1/60 ) .  (A.7) 

Obviously, (A.5) is identical to (A.7). The inverses of matrices are 
needed to replace algebraic division. This is most important when solving 
equations. Consider the following example. We have the matrix equation 
A = B Y  that we wish to solve for Y. Suppose that the inverse of B 
exists. We perform the following steps: 

1. Premultiply both sides of the equation with B -1. We then obtain 
the expression B -  1A - B -  ~ BY.  

2. Because of B - 1 B Y  = IY = Y we have a solution for the equation. 
It is Y = B - 1 A .  

A . 8  T h e  D e t e r m i n a n t  of  a M a t r i x  

The determinant of a matrix is defined as a function that assigns a real- 
valued number to this matrix. Determinants are defined only for square 
matrices. Therefore, we consider only square matrices in this section. 
Rather than going into technical details concerning the calculation of 
determinants we list five characteristics of determinants: 

1. A matrix A is nonsingular if and only if the determinant, abbrevi- 
ated IAI or det(A), is different than 0. 

2. If a matrix A is nonsingular, the following holds: 

1 
d e t ( n - 1 ) -  det(A)" 
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3. The determinant of a diagonal or triangular matrix equals the prod- 

uct of its diagonal elements. Let A be, for instance, 

a l l  a 1 2  �9 �9 �9 a l n  

0 a 2 2  �9 � 9  a2n 
A ~ �9 �9 �9 �9 

0 0 . . .  a,,~ 

then 

det(A) = al ia22""  ann.  

4. The determinant of a product of two matrices equals the product of 
the two determinants, 

de t (AB)  = det(A)det(B) .  

5. The determinant of the transpose of a matrix equals the determinant 
of the original matrix, 

det(A')  = det(A).  

A.9 Rules for Operations with Matrices 

In this section we present a selection of operations that can be performed 
with vectors and matrices. We do not provide examples or proofs. Read- 

ers are invited to create examples for each of these operations. Opera- 
tions include the simpler operations of addition and subtraction as well as 

determinants and the more complex operations of multiplication and in- 
version. It is tacitly assumed that all matrices A, B , . . . ,  have admissible 
dimensions for the corresponding operations. 

1. When adding matrices the order is unimportant. One says that the 

addition of matrices is commutative: 

A + B = B + A .  
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2. Here is a simple extension of the previous rule: 

( A + B )  + C  = A +  ( B + C ) .  

3. When multiplying three matrices the result does not depend on 
which two matrices are multiplied first as long as the order of mul- 
tiplication is preserved" 

(AB)C = A(BC) .  

4. Factoring out a product term in matrix addition can be performed 
just as in ordinary algebra: 

C(A + B) = CA + CB. 

5. Here is an example of factoring out a scalar as product term: 

k(A + B) = kA + kB , where k is a scalar 

6. Multiplying first and then transposing is equal to transposing first 

and then multiplying, but in reversed order: 

( A B ) ' =  B 'A ' .  

7. The transpose of a transposed matrix equals the original matrix: 

(A') '  = A. 

8. Adding first and then transposing is equal to transposing first and 

then adding: 

(A + B)' = A' + B'. 

9. Multiplying first and then inverting is equal to inverting first and 
then multiplying, but in reversed order: 

( A B )  - 1  - B - 1 A - 1 .  



A. I O. EXERCISES 349 

10. The inverse of an inverted matrix equals the original matrix: 

( A - t )  -1. 

11. Transposing first and then inverting is equal to inverting first and 
then transposing: 

(A') - '  = (A-l) '  

A . 1 0  E x e r c i s e s  

1. Consider the following three matrices, A, B, and C. 
transpose for each of these matrices. 

- 1  (130)  7 
A -  9 7 2 ' 99 

Create the 

( 15 , C -  34 43 
- 8  - 6  65 " 

2. Consider, again, the above matrices, A, B, and C. Transpose B 
and add it to A. Transpose A and add it to B. Transpose one of 
the resulting matrices and compare it to the other result of addition. 
Perform the same steps with subtraction. Explain why A and B 
cannot be added to each other as they are. Explain why C cannot 
be added to either A or B, even if it is transposed. 

3. Consider the matrix, A, and the vector, v, below: 

- 2  4 ) 
A -  15 1 , v -  

- 1  3 

12 
- 2  ) "  

Postmultiply A by v. 

4. Consider the matrix, X, below 

X .__ 

2 4 
1 2 
9 2 

17) 
- - 3  

- 9  
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Multiply the matrix, X, by the scalar-3. 

5. Consider the matrices, A and B, below 

A -  4 3 1 32 6 - 1  " 

Multiply these matrices with each other. (Hint: postmultiply A 
with B.) 

6. Consider the two vectors, v and w, below: 

v ' = ( 2  4 , 3 ) , w ' = ( s  2 -3 1 ) .  

Perform the necessary operations to create (1) the inner product and 
(2) the outer product of these two vectors. Add these two vectors 
to each other. Subtract w from v. 

7. Consider the diagonal matrix D - diag[34, 4 3 , -  12, 17, 2]. Calculate 
the inverse of this matrix. Multiply D with D-1 .  Discuss the result. 

8. Consider the following matrix: 

(43) 
A -  3 3 

Create the inverse of this matrix. 

9. Find the 2*3 matrix whose elements are its cell indices. 



Appendix B 

B A S I C S  OF 

D IF F E R E N  T I A T I  O N 

This excursus reviews basics of differentiation. Consider function f(x). 
Let x be a real number and f(x) be a real-valued function. For this 

function we can determine the slope of the tangent, that  is the function, 
that  touches f(x) at a given point, x0. In Figure B.1 the horizontal 

straight line is the tangent for the smallest value of f(x). The arrow 

indicates where the tangent touches the square function. 

The tangent of a curve at a specific point xo is determined by knowing 

the slope of the curve at that  point. The slope at xo can be obtained by 

inserting xo into the first derivative, 

df(~), 
of the function f(x). In other words, 

d 
d---~ f (xo) 

yields the slope of the curve at x0 and thus the slope of the tangent of f (x) 

at x0. Often the first derivative is denoted by f ' (x) .  At an extremum the 
slope of f(x) is zero. Therefore, differentiation is a tool for determining 

locations where a possible extremum might occur. This is done by setting 

351 
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Figure B.I: Minimum of square curve. 

b . .  

Y 

X 

the first derivative of f ( x )  to zero and solving for x. This yields the points 

where an extremum is possible. Therefore, knowledge of how derivatives 

are created is crucial for an understanding of function minimization. We 

now review six rules of differentiation. 

1. The first derivative of a constant function, . f (x )  - k, is zero: 

d  k-0. 

2. The first derivative of the function f ( x )  = x is 1: 

d  x-1. 

3. Rule: Creating the first derivative of a function, f (x) ,  that  has the 

form f ( x )  = x n proceeds in two steps: 

�9 subtract 1 from the exponent 
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�9 place the original exponent as a factor of x in the function 

Applying these two steps yields as the derivative of x n 

d x n _ nx  n-1 
dx 

Notice tha t  Rule 2 can be derived from Rule 3. We obtain 

d 1 
~xx x - lx  ~  1. 

4. If we want to differentiate a function tha t  can be writ ten as k f ( x ) ,  
where k is a constant,  then we can write this derivative in general 

form as 

d d 
d--~k f (x) - k -~x f  (X ). 

5. The first derivative of the sum of two functions, fl(X) and f2(x), 

equals the sum of the first derivatives of the two functions, 

d d 
d--x (f l  (x) + f2(x))  - f l  (x) W ~xx f2(x) ,  

or, more generally, 

d n n d 

d-; Z �9 
i--1 i--1 

In words, summat ion and differentiation can be interchanged. 

6. The first derivative of a function f ( y )  which takes as its argument  

another  function g(x) = y is given by the chain rule: 

d f d ~---~g(x) 
dx (g(x)) - -~y f (y) . 

For example, let f ( y )  - y2 and y -- g(x) - (2 - x), tha t  is, f ( x )  = 
( 2 -  x) 2. Now, the chain rule says tha t  we should multiply the 

derivative of f with respect to y, which in the example is 2y, with 
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the derivative of g with respect to x, which is -1. We obtain 

d 
d--~f(g(x)) - 2 y ( - 1 ) -  2 ( 2 -  x ) ( - 1 )  - 2 x -  4. 

after subst i tut ing ( 2 -  x) for y. 

So far we have only considered functions that  take a single argument ,  

usually denoted as x, and return a real number denoted as f (x). To obtain 

the least squares estimates we have to be able to handle functions that ,  

while still returning a real number,  take two arguments,  tha t  is, f ( x ,  y). 
These functions are defined over the x - y plane and represent a surface 

in three-dimensional space. Typically, these functions are differentiable 

as well. We will not t ry to explain differential calculus for real-valued 

functions in n-space. All we need is the notion of partial  derivation, and 

this is quite easy. We merely look at f ( x ,  y) as if it were only a function 

of x, t reat ing y as a constant,  and vice versa. In other words, we pretend 

tha t  f ( x ,  y) is a function taking a single argument.  Therefore, all the 

above rules for differentiation apply. Just  the notat ion changes slightly; 

the partial  derivative is denoted as 

0 
0--x f (x, y) 

if we t reat  y as a constant and as 

O-~- f (x, y) 
Oy 

if x is t reated as a constant.  Again, what  we are after is finding extrema.  

A result from calculus states tha t  a necessary condition for an ex t remum 

at point (xo,yo) in the xy plane is tha t  the two partial  derivatives are 

zero at tha t  point, tha t  is, 

0 
oxS(xo ,  Yo) - 0 and o__ s Oy ( x~ ' Yo ) - O. 



Appendix  C 

B A S I C S  OF V E C T O R  

D I F F E R E N T I A T I O N  

Consider the inner product a~x, where a and x are vectors each having p 

elements, a is considered a vector of constants and x is a vector containing 

p variables. We can write f ( x l , x 2 , . . . , X p )  = a~x, thus considering the 
inner product a~x a real valued function of the p variables. Now, the 

partial derivatives of f with respect to each xj  are easily obtained as 

0 

OXj 
0 P P 0 

a~x-- Oxj i=1 i 1"= ox j  

In words this says that  each partial derivative of a~x with respect to 

xj  just yields the corresponding constant aj. 

We now define the derivative of f with respect to the vector x as 

0 
0--~ f (x) -- 

0--~1 f (x) 
 s(x) 

0 

and for the special case that  f (x)  = a~x we obtain as the derivative with 

355 
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respect to x 

0 
_ _ a l x  - -  
Ox 

al 

a2 

ap 

- -  a ,  

that  is, we obtain the vector a. 

We formulate this as Rule 1. 

0 
Rule 1- _---a'x - a. 

0x 

The following two rules follow accordingly. 

(9 x l  
Rule 2" ~xx a - a .  

0 
Rule 3" - z - a - -  0, 

& x  

where 0 denotes a vector of zeros and a is a vector or a real-valued number. 

In both cases the result will be the vector 0. In words Rule 3 says that  

each partial derivative of a constant vector or a constant is zero. 

Combining all these partial derivatives into a vector yields 0. It should 

be noted that  these rules are very similar to the corresponding rules for 

differentiation for real-valued functions that  take a single argument. This 

holds as well for the following: 

Rule 4: ~ x X ' X -  2x. 

Combining the partial derivative of the inner product of a vector with 

itself yields the same vector with each element doubled. 

Rule 5: X l ~xx A x -  (AA' )x .  

If A is symmetric, functions of the form x ' A x  are called quadratic 

forms. In this case, A -  A'  and Rule 5 simplifies to ~ x x ' A x -  2Ax.  
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With theses rules we are in the position to derive the general O LS 
solution very easily. For further details on vector differentiation, see for 
instance, Mardia, Kent, and Bibby (1979), Morrison (1990). 
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Appendix D 

P O L Y N  O M I A L  S 

The following excursus presents a brief introduction to polynomials and 
systems of polynomials (see, for instance, Abramowitzm & Stegun, 1972). 
Readers familiar with these topics can skip the excursus. 

Functions that  

1. are defined for all real-valued x and 

2. do not involve any divisions 

are called p o l y n o m i a l s o f  the form given in (D.1) 

y = bo + b l x  + b2x 2 + . . .  - 

J 

~ bjx j, 
j = 0  

(D.1) 

where the real-valued bj are the polynomial parameters. The vectors 

x contain x values, termed polynomial coefficients. These coefficients 
describe polynomials given in standard form. 

It is important  to note that  the formula given in (D.1) is linear in 
its parameters.  The x values are raised to powers of two and greater. 
Therefore, using polynomials to fit data can still be accomplished within 
the framework of the General Linear Model. 

The highest power to which an x value is raised determines the degree 
of the polynomial, also termed the order of the polynomial. For example, 
if the highest power to which an x value is raised is 4, the polynomial 

359 
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is called a fourth-degree polynomial or fourth-order polynomial. If the 

highest power is J ,  the polynomial is a J th-order  polynomial. 

Figure 7.2 presents four examples of polynomials - one first-, one 

second-, one third-, and one fourth-order polynomial, all for seven ob- 

servation points. 

The polynomial coefficients used to create Figure 7.2 appear  in Table 

D.1. Textbooks of analysis of variance contain tables with polynomial 

coefficients tha t  typically cover polynomials up to fifth order and up to 

10 values of X; see Fisher and Yates (1963, Table 23) or Kirk (1995, Table 

El0) .  

Table D.I: Polynomial Coefficients for First-, Second-, Third-, and Fourth- 
Order Polynomials for Seven Values of X 

Predictor 
Values 

Polynomials (Order) 
-F i rs t  Second Third Fourth 

3 5 1 3 
- 2  0 1 - 7  
- 1  - 3  1 1 

0 - 4  0 6 
1 - 3  1 1 
2 0 1 - 7  
3 5 1 3 

The straight line in Figure 7.2 displays the coefficients in the column 

for the first order polynomial in Table D.1. The graph of the second order 

polynomial is U-shaped. Quadrat ic  polynomials have two parameters  tha t  

can be interpreted. Specifically, these are the slope parameter  from the 

linear polynomial and the parameter  for the curvature. 1 The sign of this 

parameter  indicates what  type of ext remum the curve has. A positive 

1 In the following sections we apply the Hierarchy Principle. This principle requires 
that a polynomial of degree J contains all lower order terms, that is, the J -  lth term, 
the J -  2nd term, ..., and the J -  Jst term (the constant). The reason for adhering to 
the Hierarchy Principle is that it is rarely justifiable to only use a specific polynomial 
term. For instance, in simple regression, one practically always uses both bo and bl. 
Omitting bo forces the intercept to be zero which is reasonable only if the dependent 
variable, Y, is centered (or when regression analysis is based on a correlation matrix). 
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parameter indicates that the curve is U-shaped, that is, has a minimum. 
A negative parameter indicates that the curve has a maximum. This curve 
is inversely U-shaped. The size of the parameter indicates how flat the 
curve is. Small parameters suggest flat curves, large parameters suggest 
tight curves. 

First- and second-order polynomials do not have inflection points, that 
is, they do not change direction. "Changing direction" means that the 
curve changes from a curve to the right to a curve to the left and vice 
versa. A look at Figure 7.2 suggests that neither the first-order polyno- 
mial nor the second-order polynomial change direction in this sense. In 
contrast, the third and the quartic polynomials do have inflection points. 
For example, the line of the third-order polynomial changes direction at 
X = 4 a n d Y = O .  

The size of the parameter of the third-order polynomial indicates how 
tight the curves of the polynomial are. Large parameters correspond with 
tighter curves. Positive parameters indicate that the last "arm" of the 
polynomial goes upward. This is the case for all four polynomials in Figure 
7.2. Negative parameters indicate that the last "arm" goes downward. 

The fourth-order polynomial has two inflection points. The curve in 
Figure 7.2 has its two inflection points at X = 2.8 and X = 5.2, both 
at Y - 0. The magnitude of the parameter of fourth-order polynomials 
indicates, as for the other polynomials of second and higher order, how 
tight the curves are. The sign of the parameter indicates the direction of 
the last arm. with positive signs corresponding to an upward direction of 
the last arm. 

D.1 Systems of Orthogonal Polynomials 

This section introduces readers to a special group of polynomials, or- 
thogonal polynomials. These polynomials are equivalent to other types 
of polynomials in many important characteristics; however, they have 
unique characteristics that make them particularly useful for regression 
analysis. Most importantly, orthogonal polynomials are "independent" 
of each other. Thus, polynomials of different degrees can be added or 
eliminated without affecting the magnitude of the parameters already in 
the equation. 
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Consider a researcher that has estimated a third-order polynomial 

to smooth the data collected in an experiment on the Yerkes-Dodson- 
Law (see Chapter 7). After depicting the data, the researcher realizes 
that  a third-order polynomial may not be necessary, and a quadratic 
curve may be sufficient. If the researcher has fit an orthogonal third- 
order polynomial, all that needs to be done to switch to a second-order 
polynomial is to drop the third-order term. Parameters for the lower 

order terms will remain unaffected. 

To introduce systems of orthogonal polynomials, consider the expres- 
sion 

y -- bo~) "q- 5 1 ~  -[- b2~2 -~-.--  , (D.2) 

where the ~,  with i - 0, 1 , . . . ,  denote polynomials of ith order. Formula 
(D.2) describes a system of polynomials. In order to describe a system 
of orthogonal polynomials, any two different polynomials on the system 
must fulfill the orthogonality condition 

Z YiJYki --O' f o r j ~ k ,  
i 

where j and k index polynomials, and i indexes cases, for instance, sub- 
jects. This condition requires the inner product of any two different 
vectors of polynomial coefficients to be zero. Consider, for example, 
the orthogonal polynomial coefficients in Table D.1. The inner prod- 
uct of the coefficients for the third- and the fourth-order polynomials is 
( -1 )  , 3  + 1 �9 ( -7 )  + 1 ,1  + 0 , 6 +  ( -1)  �9 1 + ( - 1 ) ,  ( -7)  + 1 , 3  = 0. Readers 
are invited to vector-wise sum polynomial coefficients and to calculate the 
other inner products for the vectors in Table D.1 and to decide whether 
the vectors in this table stem from a system of orthogonal polynomials. 
It should be noted that this condition cannot always be met by centering. 

While not part of the orthogonality condition, the following condition 
is also often placed, for scaling purposes: 

Z Yi - 0 .  
i 
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In words, this condition requires that the sum of y values, that is, 
the sum of polynomial coefficients, equals zero. This can be obtained 
for any array of real-valued measures by, for example, centering them. 
Consider the following example. The array y' - (1,2,3) is centered to 
be y~r - ( -1 ,  0, 1). Whereas the sum of the components, y, equals 6, the 
sum of the components of Yr equals 0. 

Equation (D.2) contains the ~,  for i _ 0, as placeholders for polyno- 
mials. The following formula provides an explicit example of a system of 
two polynomials, one first- and one second-order polynomial: 

Y - ~1 (O~10 -~- OLllX) -I- ]~2 (Ol20 -{- O~21X -~- OL22X2). 

In this equation, the/~j, f o r j  = 1, 2, are the parameters (weights) for 
the polynomials, and the sit ,  f o r j  = 1, 2, andl = 0, 1, 2, are the parame- 
ters within the polynomials. 

As we indicated before, the parameter estimates for orthogonal poly- 
nomials are independent of each other. Most importantly, the ~j remain 
unchanged when one adds or eliminates any other parameter estimate for 
a polynomial of different degree. 

D.2 Smooth ing  Series of Measures  

Polynomials can be used to smooth any series of measures. If there are J 
measures, the polynomial of degree J -  1 will always go exactly through all 
measures. For reasons of scientific parsimony, researchers typically strive 
for polynomials of degree lower than J -  1. The polynomial of degree 
J -  1 has J parameters, that is, as many parameters as there are data 
points. Thus, there is no data reduction. The polynomial of degree J -  2 
has J -  1 parameters. It may not go exactly through all data points. 
However, considering the ubiquitous measurement error, one may be in a 
position where the polynomial describes the series very well nevertheless. 

However, there are some problems with polynomial approximation. 
Two of these problems will be briefly reviewed here. First, while one 
can approximate any series of measures as closely as needed, this may 
not always be possible using polynomials of low order. This applies in 
particular to cyclical processes such as seasonal changes, rhythms, and 
circadian changes. It also applies to processes that approach an asymptote 
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or taper off. Examples of the former include learning curves, and examples 
of the latter include forgetting curves. Thus, one may approximate these 
types of processes using functions other than polynomials. 

Second, as is obvious from Figure 7.2, polynomials assume increasingly 
extreme values when x increases (or decreases). Thus, using polynomial 
functions for purposes of extrapolation only makes sense if one assumes 
that the process under study also assumes these extreme values. This 
applies accordingly to interpolation (see the sections on extrapolation 
and interpolation in Section 2.4). 



Appendix  E 

D A T A  SETS 

E.1 Recal l  Per formance  D a t a  

This  is the  d a t a  set used to i l lus t ra te  the  var iable  selection techniques.  

AGE EGI SEX HEALTH READ EDUC CCI CC2 OVC TG REC 

19 2 1 1 
19 2 1 1 
18 2 1 2 
20 2 1 1 
21 2 1 1 
20 2 1 1 
18 2 1 1 
19 2 1 2 
19 2 2 2 
19 2 1 2 
19 2 1 1 
21 2 2 3 
23 4 2 1 
30 4 1 1 

24 4 1 1 

23 4 2 1 

28 4 2 2 

27 4 1 2 

30 4 1 2 

3 4 14 56 0 . 2 4  1 120 

4 4 36 36 0 . 1 5  1 126 

4 4 8 33 0 . 6 5  1 121 

4 4 24 38 0 . 2 1  1 90 

3 4 7 33 0 . 7 0  1 94 

2 4 15 37 0 . 2 9  1 98 

3 4 12 38 0 . 4 2  2 94 

3 4 14 50 0 . 2 7  2 53 

2 4 13 42 0 . 3 5  2 79 

3 4 14 48 0 . 2 8  2 72 

4 4 10 35 0 . 5 4  2 63 

4 4 7 30 0 . 9 0  2 82 

4 6 11 62 0.28 1 91 
4 6 11 48 0.36 1 72 
4 6 5 36 1 .00  1 80 

4 5 11 31 0 . 5 6  1 63 

4 6 10 46 0 . 4 1  1 69 

3 6 10 36 0 . 4 9  1 63 

3 5 9 56 0 . 3 8  1 53 
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25 4 1 1 4 6 14 28 0.49 1 40 
29 4 2 1 4 6 7 24 1.00 1 38 
22 4 1 1 4 5 7 24 1.00 1 38 
28 4 1 1 4 6 6 37 0 .73 1 44 
22 4 1 2 2 4 5 40 0 .95 1 114 
21 4 2 2 2 4 7 23 0 .94 1 21 
18 4 2 1 3 4 7 43 0 .60 1 80 
18 4 1 2 2 4 16 37 0.32 1 71 
21 4 1 2 2 4 8 31 0.52 1 49 
25 4 2 1 4 5 11 38 0.43 1 41 
20 4 2 1 4 4 7 39 0.67 1 74 
23 4 1 3 4 5 5 28 0 .93 1 43 
20 4 2 1 2 4 5 36 0.78 1 61 
21 4 1 1 4 4 7 40 0 .64  1 89 
20 4 2 1 2 4 8 35 0.57 1 54 
22 4 1 1 2 4 13 39 0 .35 1 64 
21 4 2 2 4 5 6 48 0 .62 1 88 
21 4 1 1 2 4 6 33 0 .90 1 44 
20 4 2 1 3 4 18 32 0 .33 1 26 
20 4 1 2 3 4 7 43 0 .60 1 27 
25 4 1 2 4 4 6 27 1.00 1 48 
20 4 1 1 4 4 11 35 0 . 4 7  1 48 

21 4 1 1 3 4 7 36 0 . 7 6  1 61 

23 4 2 1 2 4 12 34 0 . 4 6  1 64 

21 4 1 1 2 4 9 38 0.50 1 33 
20 4 1 2 3 4 6 48 0 . 3 8  1 80 

22 4 1 1 4 5 18 33 0.32 1 97 
20 4 1 2 3 4 12 40 0.40 2 58 
21 4 1 1 3 4 6 28 0.76 2 30 
24 4 1 1 3 5 8 43 0 .53 2 43 
20 4 1 1 2 4 8 35 0.65 2 77 
26 4 1 1 4 5 5 28 1.00 2 26 
25 4 1 1 4 6 7 44 0 . 6 1  2 46 

22 4 1 2 4 5 11 57 0 .30 2 38 
28 4 i i 4 6 13 41 0.36 2 49 

26 4 2 1 4 5 ii 52 0.33 2 42 

29 4 1 1 4 4 i0 26 0.73 2 51 

20 4 1 2 2 4 9 39 0.46 2 35 

18 4 1 1 2 4 8 38 0.60 2 18 

21 4 2 1 3 4 8 36 0.55 2 31 
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25 4 1 2 2 4 8 35 0 . 6 1  2 38 

21 4 1 2 4 4 10 55 0 . 3 5  2 19 

18 4 1 2 2 4 8 39 0 . 5 2  2 12 

25 4 2 1 3 5 16 69 0.17 2 86 
18 4 1 1 2 4 6 33 0.90 2 55 
18 4 1 1 2 4 5 72 0.53 2 38 
20 4 1 1 2 4 9 40 0 . 4 2  2 39 

21 4 2 1 3 4 6 45 0 . 5 9  2 39 

20 4 2 2 4 4 11 45 0 . 3 9  2 47 

22 4 1 1 4 5 16 48 0 . 2 5  2 30 

21 4 2 1 3 4 4 28 1 .00  2 20 

19 4 1 1 4 4 6 38 0 . 6 5  2 35 

20 4 2 1 4 4 18 43 0 . 2 5  2 53 

20 4 1 1 2 4 8 31 0 . 7 6  2 20 

18 4 1 2 2 4 12 35 0 . 4 0  2 51 

20 4 1 2 4 4 9 24 0 . 7 7  2 17 

20 4 1 2 3 4 6 32 1 .00  2 51 

20 4 1 1 3 4 9 42 0 . 5 0  2 51 

46 2 2 1 4 6 13 35 0 . 3 5  1 145 

37 2 1 2 4 4 10 35 0 . 5 4  1 99 

47 2 1 1 4 6 24 24 0 . 3 2  1 79 

34 2 1 2 3 4 13 35 0 . 4 2  1 121 

37 2 1 1 5 6 9 53 0 . 4 0  1 165 

45 2 2 1 4 6 12 40 0 . 4 0  1 66 

40 2 1 2 5 5 7 39 0 . 5 2  2 28 

31 2 2 1 5 6 15 46 0 . 2 8  2 78 

40 2 2 2 1 4 6 37 0 . 6 8  2 34 

47 2 1 2 1 4 10 20 0.95 2 17 
48 2 1 1 3 4 5 30 1.00 2 23 
38 2 1 1 3 4 14 32 0 . 4 2  2 16 

47 2 1 2 4 4 6 38 0 . 7 8  2 118 

48 4 1 2 4 4 7 33 0 . 7 4  1 60 

47 4 1 1 3 4 12 39 0 . 3 8  1 67 

46 4 1 1 1 4 8 36 0 . 4 8  1 40 

44 4 1 1 3 5 12 45 0 .35 1 72 
46 4 1 1 2 4 i i  29 0 . 6 0  1 55 

46 4 1 1 4 6 20 38 0 . 2 5  1 48 

44 4 2 2 2 5 7 40 0 . 6 8  1 107 

46 4 1 3 4 7 6 32 0 . 7 8  1 61 

49 4 1 3 3 4 24 31 0 . 2 5  1 60 
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6 

4 

5 

4 

5 

4 

5 

5 

4 
4 

6 

5 

4 

14 
29 
10 
12 
28 
12 
15 
14 
17 
22 
24 

6 
8 

21 
12 
6 

16 
10 
27 
11 
23 
24 

7 

10 

8 

10 

15 

17 

9 

26 

11 

10 

8 

5 

4 

7 

7 

13 

8 

6 

APPENDIX E. DATA SETS 

27 

54 

32 

39 

40 

32 

39 

41 

78 

54 

38 

42 

34 

34 

26 

27 

30 

41 

52 

37 

47 

40 

37 
40 

33 

48 

38 

45 

41 

32 

34 
40 

60 

34 

40 

37 
44 

39 

55 

25 

0.47 1 53 

0.12 1 76 
0.56 1 89 

O. 40 1 84 

0.17 1 80 

O. 47 1 44 

0.32 1 69 
0.33 1 79 
O. 14 1 50 

O. 16 1 46 

0.23 1 72 
0.68 2 17 
O. 63 2 54 
0.27 2 40 
0.61 2 34 
1.00 2 33 
0.39 2 42 
O. 46 2 22 
O. 13 2 28 
0.46 2 43 
O. 17 2 64 
0.20 2 38 
0.69 2 27 
0.45 2 73 
0.65 2 33 
0.37 2 38 
0.33 2 43 
0.22 2 39 
0.51 2 49 
0.23 2 69 
0.46 2 31 
0 . 4 1  2 54 

0.39 2 18 
1.00 1 87 
1. O0 1 97 
0.65 1 59 
0.61 1 130 
0.34 1 111 
0.43 1 73 

1.00 2 38 
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64 2 2 2 4 5 8 36 0 . 6 2  2 42 

67 2 1 2 4 4 6 32 1 . 0 0  2 49 

67 2 1 2 5 5 8 26 0 . 9 0  2 67 

68 2 1 3 4 4 7 24 1 . 0 0  2 50 

69 4 1 1 4 5 7 49 0 . 5 6  1 47 

60 4 1 2 4 5 8 30 0 . 6 3  1 52 

64 4 1 1 3 6 7 31 0 . 8 6  1 37 

63 4 1 2 4 5 12 42 0 . 3 8  1 67 

64 4 1 1 3 5 8 34 0 . 6 3  1 67 

63 4 2 1 4 6 15 46 0 . 2 8  1 65 

60 4 2 2 4 7 16 24 0 . 3 3  1 50 

60 4 1 1 3 6 9 43 0 . 4 6  1 57 

61 4 1 2 3 4 17 33 0 . 3 4  1 93 

66 4 2 1 2 4 4 30 1 . 0 0  1 37 

61 4 1 1 2 5 21 30 0 . 3 0  1 58 

67 4 2 1 3 7 14 38 0 . 3 6  1 57 

59 4 I i 3 5 17 32 0.35 i 40 

69 4 i 2 3 6 8 45 0.52 i 37 

73 4 2 3 2 4 6 35 0.76 i 14 

60 4 i I 3 5 6 42 0.72 i i i  

60 4 2 2 3 4 i i  49 0.33 i 51 

60 4 i 2 4 5 20 42 0.23 i 54 

67 4 i 2 3 6 17 35 0.30 i 84 

63 4 2 i 3 7 21 45 0.20 i 25 

66 4 2 1 3 4 5 28 1.00 2 16 

63 4 2 2 4 5 6 27 1.00 2 20 

59 4 i i 2 4 8 29 0.78 2 42 

70 4 i 2 3 7 9 31 0.67 2 39 

61 4 i 2 4 5 7 27 0.95 2 29 

61 4 i i 2 4 6 33 0.90 2 21 

64 4 I i 3 4 i i  36 0.45 2 41 

67 4 2 2 3 5 5 38 0.68 2 29 

64 4 i I 4 6 17 33 0.34 2 45 

67 4 1 1 4 7 7 77 0 . 3 5  2 50 

63 4 i 2 4 5 12 34 0.46 2 22 

60 4 2 I 4 6 i i  26 0.66 2 25 

59 4 2 i 2 7 22 42 0.21 2 34 

62 4 1 2 2 4 6 27 0 .94 2 29 
66 4 1 1 4 4 6 42 0.52 2 45 
63 4 1 1 2 5 12 32 0.50 2 34 
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67' 4 2 2 3 
59 4 2 2 3 
69 4 1 2 4 
65 4 2 1 4 
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7 18 43 0.23 2 47 
5 5 30 1.00 2 110 
4 5 42 0.90 2 26 
6 12 42 0 .34 2 42 

E.2 Examinat ion  and State Anxie ty  Data  

This is the da ta  set tha t  was used to il lustrate robust  modeling of longi- 

tudinal  data.  

Females Males 

t l t2 t3 t4 t5 t l t2 t3 t4 t5 

13 17 18 20 24 6 14 22 20 24 
26 31 33 38 42 4 11 14 12 23 
13 17 24 29 32 17 25 26 29 38 
22 24 26 27 29 19 22 26 30 34 
18 19 19 22 30 12 21 21 23 24 
32 31 30 31 32 11 16 20 19 22 
16 16 21 27 30 14 23 26 29 33 
18 22 25 29 35 9 18 20 20 24 
14 17 23 21 25 12 16 23 26 32 
20 19 23 25 28 11 13 17 14 20 
17 24 24 24 26 12 20 22 23 31 
22 22 24 24 26 7 15 16 18 26 
19 24 27 29 34 2 10 16 16 22 
30 29 29 28 28 3 10 13 14 24 
21 25 24 28 30 3 13 13 15 23 
16 20 19 21 24 9 17 21 22 25 
24 23 27 28 33 16 23 23 29 35 
19 20 22 25 30 14 24 23 24 30 
21 27 30 30 30 6 15 17 18 26 
17 17 20 23 28 6 16 16 15 25 
15 20 23 21 28 1 6 11 15 16 
20 22 26 27 31 14 16 21 21 30 
22 22 24 25 26 6 15 16 17 24 
23 26 28 30 32 13 20 27 27 32 
10 13 14 16 23 5 17 21 19 22 
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28 29 27 30 32 8 17 21 23 28 
25 27 28 29 3:1. 8 15 18 19 26 
26 28 30 31 35 15 23 24 27 28 
23 25 27 27 30 16 23 23 24 29 
25 32 34 33 38 12 2:1. 26 27 35 
23 32 34 35 32 15 23 25 24 30 
20 19 19 23 25 5 10 16 21 24 
20 24 30 33 38 1_5 19 26 25 30 
16 22 23 26 32 3 11:1.2 14 19 
24 29 29 33 37:1.1 20 21 1_9 22 
17 20 23 26 32 7 15 18 21 3 l  
11 13 17 22 29 20 27 32 30 37 
25 26 27 28 34 4 8 11. 13 22 
19 21 27 26 27 3 1_! 17 20 25 
22 25 28 32 38 18 24 28 26 29 
2:1. 24 23 23 23 :1. 8 10 12 1_6 
15 17:1.6 17 16 5 11 15 21 29 
23 21 16 18 21 15 23 23 27 28 
21 24 24 28 30 11 15 20 18 27 
17 22 24 22 26 11 21 25 23 27 
31 33 36 38 42 0 7 1_0 14 20 
21 24 25 28 33 15 19 25 26 30 
19 26 27 27 30 8 14 15 17 25 
22 28 26 27 28 13 21 26 29 35 
20 22 26 30 30 6 19 21 25 30 
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